A Novel Therapeutic that Harnesses Microtubules to Promote Cavernous Nerve Regeneration after Radical Prostatectomy

Information

  • Research Project
  • 9552024
  • ApplicationId
    9552024
  • Core Project Number
    R41DK117684
  • Full Project Number
    1R41DK117684-01
  • Serial Number
    117684
  • FOA Number
    PA-17-303
  • Sub Project Id
  • Project Start Date
    9/20/2018 - 6 years ago
  • Project End Date
    8/31/2019 - 5 years ago
  • Program Officer Name
    GOSSETT, DANIEL ROBERT
  • Budget Start Date
    9/20/2018 - 6 years ago
  • Budget End Date
    8/31/2019 - 5 years ago
  • Fiscal Year
    2018
  • Support Year
    01
  • Suffix
  • Award Notice Date
    9/19/2018 - 6 years ago
Organizations

A Novel Therapeutic that Harnesses Microtubules to Promote Cavernous Nerve Regeneration after Radical Prostatectomy

Radical prostatectomy (RP) is a commonly used treatment option for localized prostate cancer. Unfortunately, the procedure carries a risk of post-surgical complications including a high risk of erectile dysfunction (ED). According to The Prostate Cancer Outcomes Study, virtually all men experience ED after surgery, including a profound loss of nocturnal erections. The Prostate Cancer Outcomes Study further reveals that 60% of men experienced self-reported ED 18 months after RP, and only 28% of men reported erections firm enough for intercourse at a 5-year follow-up. The main pathophysiological mechanism behind this is damage to the cavernous nerves (CN). Consequently, the mechanisms that facilitate cavernosal oxygenation fail; fibrosis ensues and leads to cavernosal smooth muscle apoptosis. Whereas neuropraxia may be reversible, the penile fibrosis resulting from poor oxygenation permanently damages cavernosal function and produces chronic ED. Accelerated wound healing and nerve growth would preserve penile anatomy and corporal smooth muscle and potentially reduce the time patients experience ED following RP. However, there are at present no clinically approved strategies for this procedure. Several promising studies in animal models have used gene therapy approaches, usually involving overexpression of ?nerve growth factors.? Clinical translation of these gene therapy approaches will be hampered by safety issues over the use of viral vectors or transformed stem cells in a ?benign urological disease? as well as concerns over the ease of application. In addition, there are no orally or topically administered therapeutics that reliably elicit an erection in men with RP-induced ED. Our goal is to develop a novel therapeutic that enhances EF after RP via RNAi-mediated silencing of the microtubule severing enzyme, Fidgetin-like 2 (FL2). Preliminary results in an animal model of RP demonstrate that FL2 can be targeted by nanoparticle-delivered siRNA to dramatically and predictably recover EF. FL2 acts through mechanisms dramatically different from other genes/proteins/factors currently being investigated; the experiments presented in this application represent the first reported success of siRNA in treating ED associated with RP. In addition, our recent preliminary findings indicate that a polyplex-based carrier (?wafer?) of FL2-siRNA is at least as effective as FL2-siRNA-np in restoring EF in an animal RP model. In Specific Aim 1 we will compare a range of concentrations of FL2-siRNA incorporated in a wafer formulation for efficacy in restoring EF following CN injury (transection). Finally, in Specific Aim 2, we will perform toxicity studies to provide evidence of safety for the different siRNA concentrations. Thus, at the end of the project, we will have identified the siRNA-wafer formulation that restores EF and is safe for further IND-enabling studies.

IC Name
NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES
  • Activity
    R41
  • Administering IC
    DK
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    234898
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    847
  • Ed Inst. Type
  • Funding ICs
    NIDDK:234898\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    MICROCURES, INC.
  • Organization Department
  • Organization DUNS
    079613572
  • Organization City
    SANTA CRUZ
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    950603728
  • Organization District
    UNITED STATES