The present invention is directed to a novel toy console configured and operable to communicate with a smart device. The novel toy console is further configured to be electrically attached and detached to a console ready toy via a dedicated toy module, and it may further mechanically be connected to a pseudo connected toy.
Toys, games, playing systems and other similar entertainment and educational systems are well known for providing entertainment opportunities as well as valuable learning to children and adults. In the new era when smart devices become integral part of our life, it seems that the possibilities of bringing fun and excitement as well as education and learning through games and toys are limitless and the options to challenge children's imaginations and to encourage creativity and social interactivity are infinite.
Although enormous number of games and toys are available in the market, most of them offer only a primitive engaging play experience, and thus, there is a need for more exciting and entertaining games and toys that will increase learning and entertainment opportunities for children and stimulate creativity and imagination.
Some toy companies have already understood the potential of connected toys, and started developing their own version of these toys. Examples of such toys are: “Apptivity Barnyard” by Fisher Price, animals play set that is also being used as a case for iPad, wherein thee figures can be placed on the iPad for connectivity (http://www.amazon.com/Fisher-Price-Little-Apptivity-Barnyard-Playset/dp/B00DEG6WG8). Another example is the toys line of AppToyz (http:www.apptoyz.com/shop/appdrive/).
Both examples illustrate the need for this kind of interactivity. However, the main issue with these toys still remains the cost of electronic component in the toy, as well as the lack in flexibility (all the toys above suit only one size and type of smart device, e.g. iPad).
In addition, most of the small-medium toy companies in the market have no ability to make the required adjustments with ease, in order to develop a connected toy, there's a need to implement hardware, firmware and software as an integral part of the toy, which is by itself, a very complex and expensive process. This causes a raise in the toys' retail price to a non-affordable one.
In addition, the excessive usage of electrical components in general due to the accelerated technological developments including in the toys industry, contributes to environmental pollution, thus, a solution that allows minimizing the usage of electric units is required.
The present invention is aimed to provide a novel toy console that is functionally configured and operable to serve as an independent control unit i.e. to serve as the “brain”, the core element of connected interactive toy systems that will provide the user a creative and multi-optional playing experience. In accordance with one aspect of the invention, the novel toy console is a detachable unit, configured to be attached and detached from the a console ready toy (CRT) having a complementary toy module according to the user/users preferences, thus, reducing the need for having a control unit in every single toy system and saving undesired waste of electrical components. Thus, reducing significantly the cost of the toy itself (since the novel toy console which contains the electrical components is purchased only once for a limitless amount of supported toys).
In accordance with one another aspect of the invention, the novel toy console is configured to be carried by the user together with a wearable accessory such as a glove or a bracelet or to be carried by the user together with a pseudo connected toy.
It is the aim of the present invention to provide a novel detachable toy console that functionally serves as a core element in connected toy systems for entertainment and learning purposes.
The novel toy console provided herein (also referred hereinafter as: “detachable control unit”, “detachable toy console”, and “control unit” interchangeably) is configured to be electrically attached and detached from any compatible toy i.e., any “Console Ready Toy” (CRT) comprising a complementary toy module, thus reducing the need for having a control unit in every single toy system and saving undesired waste of electrical components and money.
According to one aspect of the invention, the novel detachable toy console is configured and operable to be connected to a complementary toy module that is embedded within a CRT and configured and operable to connect to the toy console and to transfer data and commands to and from the CRT (toy platform) to the toy console and vice versa. The toy console is further configured and operable to transfer data and commands to and from a smart device connected to the toy console either by wires or wirelessly.
For simplicity of the description, the complementary toy module will be denoted hereinafter as: “toy module”, however it should be clear that the same module may be used in other systems as well such as learning/tutoring system. The unique toy console (control unit) of the invention is configured to be detached from one toy platform and to be attached to another toy platform according to the user preferences, thus, allowing a large variety of playing modules in one system, and further allowing a substantial economy in money and in electric components thereby contributes to a greener environment.
The CRT may be a plane two dimensional shape like a Monopoly board or a chess board. Alternatively CRT may be configured in a three dimensional landscape structure such as, but not limited to a jungle, a savanna, a field, an island, a battlefield, a garden etc. Alternatively CRT may be configured in a three dimensional structure like, but not limited to, a kitchen, a working tool desk, a doll house, a farm, a castle, a pirate ship, a car racing track, a doll, an animal, a robot, and the like.
The term “connected toy system” as used herein refers to a playing system comprising at least a toy console configured to function as the “brain” of the system and responsible for connection and communication with a smart device, and a toy platform, wherein the toy system have the ability to interchangeably connect with smart devices including without limitation smart phones, tablets, TVs, smart TVs, PCs, gamming consoles and micro consoles. A detailed description of exemplary connected toy systems is provided in WO PCT/IL2012/000302 of the same inventors, incorporated herein by reference. Although the toy console is mostly used for connection and communication, it is also configured to make some local computations. For example, the CRT can make a simple reaction when connected to the toy console, even if the toy console is not connected to a smart device. Additionally, the toy console may be configured to make computations on the data before sending it to the smart device, or after receiving it from the smart device.
Also, two or more consoles may have the ability to communicate with each other even when a smart device is not in their surroundings.
The term “toy platform” as used herein refers to a toy configured and operable to be used in a connected toy system. The toy platform may contain two main types of toys:
Toy type A: a pseudo connected toy. This toy is a non-electric toy and has no sensors and buttons positioned on it or attached to it. Toy type A may have a pocket or a groove as part of its structure and/or accessories configured to hold the toy console within it. In such variation, the player may simply hold the toy with the console within it and play in front of the smart device. In such variation the toy is a pseudo connected toy as the motion and signals received by the smart device is obtained from the toy console and not from the toy platform holding the toy console. Similarly, the pseudo connected toy itself may be wearable; for example, the toy is a theater doll character that the user wears on his/her hand and the toy console is carried by the doll in a pocket or another accessory positioned on the doll. In such variation, the toy console is configured to be connected only with the smart device. A pseudo connected toy may also be used with a “wearable” toy console, i.e. a wearable accessory such as a glove or a bracelet that the toy console is inserted into it in a dedicated pocket or groove. In such embodiment the user “wears” the toy console and holds the pseudo connected toy in his/her hand and every movement that the user performs with its hand is being referred to the toy although the signal is obtained from the wearable console. Additionally, the pseudo toy may be mechanically attached to the wearable toy console via mechanical means such as a Velcro, connecting strip, magnets, belt, sticky materials, and the like.
Toy type B: a console ready toy (CRT). This toy is an electric toy, i.e., a toy having the ability to be electrically connected with the toy console. The connection is obtained by an interfacing with a complementary toy module implanted in the CRT. The CRT further comprises sensors and/or buttons attached to it. In such variation, additional playing accessories such as detachable toy elements in various shapes and characters may be attached to the toy via sensors as will be described in details with reference to the figures below. In such variation of the invention, data created on the toy platform is processed by the toy console and displayed by using a suitable proprietary app on the smart device. In addition, data created or obtained by the smart device may be delivered via the toy console to the toy platform to thereby create a signal on the toy platform (e.g. a led is lightened, a buzz is heard, a movement is created, and the like.
In accordance with embodiments of the present invention, the detachable toy console may be used as a stationary element. Alternatively, the toy console may be a portable element configured to be carried together with the CRT when connected. The toy console is configured to be detached from one CRT and to be attached to another CRT according to the user preferences as will be described in details below. The toys console may have many different shapes and designs: square, circle, heart, diamond, and others. The console can also have different battery type: AA, AAA, CR2032, and others.
The CRT may be a static toy such as a doll house, a castle, a farm and the like. Alternatively, the CRT may be a mobile toy such as a pirate ship, an airplane, a dragon, and the like. The connection of the CRT to the toy console via the toy module is established by a dedicated connector configured to provide electrical and mechanical attachment of the two elements. The communication between the toy console and the toy module may be established in various configurations and modes. Some examples of such communication modes are provided with reference to the figures below. The connector physically attaches the toy console and the toy via the connector's pins and complementary socket. The connection between the two elements may further be strength by additional lock, so as to fasten the holding between the two components upon usage. This can be useful when the toy console comprises accelerometer sensor or any other motion sensor, and the CRT is a mobile toy that may be used by the player on a surface and on air as well, for example a pirate ship that the user plays with the detachable toy pirates on a surface and when the player desire to simulate sailing he may hold the ship in his hand and every movement he performs is processed and/or displayed on the smart device.
The novel toy console provided herein is functionally adapted to serve as a processor embedded unit that upon attachment to a toy module allows the module communication capabilities that further enhances the ability to output feedback to the user either through the toy module or through the smart device or both. The feedback output types produced may be without limitation, audio, visual and mechanical.
Examples illustrative of embodiments of the disclosure are described below with reference to figures attached hereto. In the figures, identical structures, elements or parts that appear in more than one figure are generally labeled with the same numeral in all the figures in which they appear. Dimensions of components and features shown in the figures are generally chosen for convenience and clarity of presentation and are not necessarily shown to scale. Many of the figures presented are in the form of schematic illustrations and, as such, certain elements may be drawn greatly simplified or not-to-scale, for illustrative clarity. The figures are not intended to be production drawings.
The figures (Figs.) are listed below.
In the following description, various aspects of a novel detachable and optionally wearable control unit and a toys of connected toy systems will be described. For the purpose of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the invention.
Although various features of the disclosure may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the disclosure may be described herein in the context of separate embodiments for clarity, the disclosure may also be implemented in a single embodiment. Furthermore, it should be understood that the disclosure can be carried out or practiced in various ways, and that the disclosure can be implemented in embodiments other than the exemplary ones described herein below. The descriptions, examples and materials presented in the description, as well as in the claims, should not be construed as limiting, but rather as illustrative.
Terms for indicating relative direction or location, such as “right” and “left”, “up” and “down”, “top” and “bottom”, “back” and “front”, “horizontal” and “vertical”, “higher” and “lower”, and the like, may also be used, without limitation.
The present invention is directed is directed to a detachable toy console usable as a control unit for multiple connected toy systems, said toy console is configured and operable to connect interchangeably with at least one smart device and to be attached to a console ready toy and detached from it, to thereby allow a user to use the toy console with another console ready toy. The toy console comprises a MCU; a communication module for establishing connection with at least one smart device; an external connector for attaching and detaching the toy console to the console ready toy; and a power source. The toy console is configured to establish connection and communication with the smart device and the console ready toy and further to perform computations of data received by the toy console before sending it to the smart device, or after receiving it from the smart device. The toy console is further configured to connect with another toy console in an on-line and in an off-line modes, to save data while in an off-line mode, to activate sensors on the toy console and on the console ready toy and further capable of exchanging toys IDs, with another toy console.
The connection between the toy console and the smart device may be established by wired or wireless connection modules selected from the following list: Bluetooth Low Energy (BLE), Bluetooth standard, NFC, IR, USB connection, audio jack connection, Wi-Fi connection, and ultrasonic connection.
The console ready toy comprises at least a toy module, sensors, an external connector to the toy console, and optionally a memory chip. Upon utilizing the sensors of the console ready toy, the information is transferred via the toy console to the smart device and a corresponding reaction, appears on the smart device's screen. The toy module content determines the communication mode between the toy console and the console ready toy and the performance abilities of the connected toy system. The toy module contains input sensors and output sensors allowing the user to interact with the console ready toy via the input sensors and output sensors to create a sound, an image, a LED indication, a mechanical output relay and a buzzer either on the smart device or on the console ready toy itself. The console ready toy comprises sensors and/or buttons attached to it that allows attachment of detachable toy elements in various shapes and characters to be connected to the console ready toy via said sensors, and data created on the console ready toy is processed by the toy console, saved, and displayed by a proprietary app on the smart device. Data created or obtained by the smart device is delivered via the toy console to the console ready toy to create a signal on the toy, said signal is either one of a LED lightened, a buzz is heard, and a movement created by the toy. The sensors comprised in the console ready toy are selected from the group consisting: pressure sensors, touch sensors, odor sensors, temperature sensors, distance sensors, acceleration sensors, humidity sensors, sound sensors, image sensors, proprietary hotspots and tags sensors, and combinations thereof.
The memory chip is used to install a toy ID and a unique serial number, so when the console ready toy is connected to the toy console, the toy ID and the unique serial number are transferred to the toy console and from the console to a smart device for launching a relevant part of the toy app, which transfers the toy ID and its unique serial number to a dedicated server in order to authenticate the toy and to instruct the toy console how to work properly with the specific connected console ready toy. The connection between the toy console and the console ready toy is established in a physical manner or wirelessly by any one of the following connectors: a USB connector, an Edge card connector, a proprietary connector, Wi-Fi, Bluetooth low energy (BLE), Bluetooth, and NFC.
In some embodiments of the invention the toy console is configured to operate as a smart device and upon connection is established between the toy console and the console ready toy authentication process is performed and upon recognition, a relevant toy app is lunched to provide the user an interactive playing experience.
The smart device according to the present invention is selected from the group consisted of: a smart phone, a tablet, a smart TV, TV, a PC, a gamming console, and a micro console.
The detachable toy console may further comprise at least one of the following: function buttons, LED indicators, voice command, offline operating mode configured to allow the user an option to play with the toy without being connected to a smart device, remote control features, a tag reader, and a rechargeable battery. The toy console may further comprise a motion sensor, a gyro sensor and other motion detection elements. The toy console may further be configured to be wearable on the user's hand via attachment to a hand wearable accessory.
Reference is now made to the figures.
In
It should be clear that the specific elements comprised in toy console 120 and in toy module 130 may vary from the elements illustrated in
In accordance with the specific example illustrated in
In accordance with the specific example illustrated in
Detachable Toy console 120 further comprises an oscillator 121 that functions as a clock source for the MCU and RF section. In accordance with variations of the invention detachable control unit 120 may comprise more than one oscillator for example, one high speed accurate oscillator and one slow oscillator low power battery conserving for sleep modes. Toy console 120 may further comprise a debug and burn connector (used for production) 123, and a FET switch 129 adapted to provide controlled power to the toy module (as illustrated in
In accordance with variations of the present invention, toy module 130 is preferably made of a small PCB hardware module inserted into (secured to) CRT 140, and it is functionally connected at one end preferably via a solder connection 131 to sensors/output units 142 that are implemented or attached to CRT 140, and to toy console 120 at the other end via connector 128B that is suitable to connect with connector 128A of toy console 120. Toy module 130 is generally in charge of collecting the toy sensors reading and transferring the reading to the toy console 120. In accordance with variations of the present invention, toy module 130 may operate in different modes based on variations of the PCB it is consisted of. Detailed description of exemplary operation modes is provided below.
Toy module 130 further comprises an ID component 133. ID component 133 can be an identifying element (such as resistor) that is connected through a fixed voltage divider to dedicated ADC channel 127 allowing identification of the toy module by resistance encoding. Upon boot, after system initialization detachable control unit reads the toy ID resistor value via ADC channel 127, and the toy type and ID are stored as smart device 150 needs to read this value. In more details, in the variation illustrated in
In accordance with the present invention sensors 142 may be without limitation: pressure sensors, touch sensors, odor sensors, temperature sensors, distance sensors, acceleration sensors, humidity sensors, sound sensors, image sensors and combinations thereof. Additionally or alternatively, sensor 142 in accordance with variations of the invention may be a combination of two components: a “Hotspot” and a “Tag”. The term “hotspot” as used herein refers a mechanical element attached to or embedded in CRT 140, allowing the connection of a “tag” to close an electric circuit to one of the channels on toy module 130. A “Tag” as used herein refers to mechanical element attached to or embedded in a detachable toy element (not shown), containing a predetermined resistance value, that when is placed on a hotspot it closes a circuit.
Detachable toy elements are configured according to the opportunities that every specific CRT allows. For example, when the CRT is a savanna then the detachable toy elements may be various animals such as a lion, a zebra, a giraffe, an elephant, or human characters such as an animal savior and his team, a researcher and his team, an exotic tribe members, and various accompanying accessories suitable for each variation. Alternatively, when the CRT is a kitchen then the detachable toy elements may be a plate, a pot, a tea pot, and the like. Similarly, when the CRT is a doll then the detachable toy system may be a wearing particles and accessories such as a shirt, a dress, trousers, skirt, a hat, eye glasses, shoes, bags, and the like.
A detailed description of hotspots and detachable toy elements is provided in PCT/IL2012/000302 and PCT/IL2013/000055 of the same inventors, incorporated herein by reference. When CRT comprises hotspots, solder connect 131 are simple solder holes allowing connection of the hotspots via electric wires.
An example of tag sensing upon mating with a hotspot embedded in CRT (toy platform) 140 and attached to toy module 130 via toy console 120 is described in detailed with reference to
As illustrated in
Reference is now made to
In accordance with variations of the invention toy module 230 may consist of a simple electronic PCB with solder connection to sensors 242, and direct wiring to connector 228, thus, allowing a direct read of the resistance values by an ADC positioned on toy console 220. Alternatively, the ADC may read current values, and any physical values according to the sensors type implemented in toy platform 240. In the specific example illustrated in
Serial EEPROM 235 is basically a memory unit which can store a unique serial number of toy module 230 that is used for toy authentication. This is used as another option for toy identification (instead of a simple resistance value) The Toy ID Serial EEPROM 235 may contain a certain amount of bytes generally containing the toy's hardware type and serial number of the toy module, and resides on an I2C bus 256 on an address to be determined by the programmer. Toy console 220 is configured and operable to transfer a digital number that was received from toy module 230 upon attachment to a dedicated app on the smart device, which further connects to a server to receive from it the information regarding the number of inputs/outputs of the specific toy module attached to it. This information is then being transferred to toy console 220.
Serial EEPROM 235 also have reserved space for further future data. When a serial EEPROM 235 is positioned on toy module 230 the module further comprises a tap connector 237, which in the specific example illustrated herein is an I2C+VCC+GND, 6 pin simple solder hole connection allowing the burn in of the EEPROM serial number on toy module 230.
In the variation illustrated in
All other components illustrated in this figure have a similar functionality as described with reference to
Reference is now made to
In the specific example illustrated in this figure, toy module 330 comprises a data bus 356 such as a standard 2-wire half-duplex serial protocol between integrated circuits (ICs) and peripherals such as I2C or SPI, a compatible IO expander 334 configured to translate the serial commands into outputted GPIO lines that acts according to a select index for an Analog Multiplexer(s) (Mux) 336. Thus, allowing connection of multiple sensors 342 while keeping the number of connections on the connector between the CRT and toy console low (up to 16 in the specific example illustrated in this figure) to CRT 330 via linear scanning, and reading by 1 ADC channel 327 positioned on the toy console 320 that functionally receives the output of Mux 336 via connector 328.
IO expander 334 is a standard chip that can convert I2C serial commands into discrete digital 3.3V IO lines. In the specific example illustrated in this figure, as only four (4) lines are needed for scanning inputs with sixteen (16) inputs analog mux the excess lines of the twelve (12) lines (or 4, depends on the specific chip that is in use), can be used as general purpose outputs (i.e. LEDs, buzzers, mechanical relays, and the like.). Analog multiplexer 336 functionally select one input (according to its digital select port) and connect it to its output.
In addition to the above, other components as illustrated with reference to
In the specific operation mode illustrated in
Additional variations of other modes for toy module may include different I2C chips configured to allow additional functionalities via communication to the master processor, including without limitation: display means (preferably a screen), additional sensor types, accelerometers, gyroscopes, larger memory modules, audio means such as microphone, loudspeaker, and audio processor. This will allow enhancement and addition of features to the toy without the need to change the toy console hardware. Thus, allowing a user a simple and friendly operation of the connected toy system especially upon changing one CRT 340 with another, as there is no need to use a different dedicated toy console to each toy platform. For example in a family having small children in ages two, five and seven. When the seven years old child desires to play with the toy system the only operation the child/parent should perform is to detach the toy console from the previously used CRT and to connect it to the new one to be used. Thus, one toy console may be used for the entire family with different toy platform. Additionally, a substantive economy in electric wastes production is achieved that further allows keeping the environment clean and green.
In accordance with variations of the present invention the toy consoles 120,220,230 illustrated in
Toy module 130/230/330 is mainly a small PCB hardware module, which is fitted within the CRT 140/240/340 and is in charge of collecting the toy sensors 142/242/342 reading and transferring/delivering the data to the toy console 120/220/320. As mentioned and illustrated above the different operation modes of each connected toy system is de facto determined according to the specific elements contained in the toy module 130/230/330 PCB as the elements on the detachable toy console are the same for all.
Detachable toy console 120/220/320 may contain a LED (not shown) that will be exposed, for example, through a plastic casing of the toy console. For example, the LED may be a bicolor LED with red and blue lights. In such example the following exemplifying modes are optional:
In addition to the above, a pushbutton (not shown) may be added to the toy console configured to allow a user to interact with the toy console as follows:
It should be clear to a man skilled in the art that although the hardware of the detachable toy console 120/220/320 illustrated in the exemplary variations in
The firmware for operating the detachable toy console and the complementary toy module of the present invention is adapted to communicate the state of the sensors to the smart device via correct BLE stack encapsulation of the data (service/characteristic, etc.), and will respond to report any change carried by a user on one of the sensors on the CRT. Furthermore, it is configured to operate the CRT to light up LEDs according to requests from the smart device (application).
Fundamental functionalities that shall be implemented in the Toy console firmware supporting the hardware of the present invention while sensors are Tags and Hotspots are listed below:
In the following description, examples of the firmware for different operation modes are described.
In accordance with the operation mode illustrated in
Additionally or alternatively, when a toy ID is detected as a specific operation mode or as another specific operation mode, this initiates the relevant firmware behavior for the toy type.
In the operation mode illustrated in
The Firmware is further able to change the other unused pins of the IO expander to output LED light statuses etc. Different from the first operation mode described in the above, in the operation mode described in
In sleep modes the toy console does not have an on/off switch therefore it should enter low power mode, whenever one of the following occurs:
Upon attaching a toy console (i.e. a detachable control unit (DCU)) to a toy module type illustrated in
Upon attaching a toy console (DCU) to a toy module type illustrated in
Similar to the above operation flow for toy modules comprising a Multiplexer the player can activate up to sixteen hotspots via analog mux IC and seven more hotspots via the ADC. Also, the number of output sensor may increase to eleven. In such scenario, seven (7) ADC channels are free to be used as sensor (input and output sensors). Thus, it allows addition to the existing sensors.
Reference is now made to
Reference is now made to
In accordance with the present invention, a toy may become a “Console-ready” if it includes at least connection ability to the console, and a set of sensors embedded in the toy. When utilizing the sensors, the information is transferred via the toy console to the smart device that is configured to communicate with the toy console (as it comprises an appropriate app), and a corresponding reaction on the smart device's screen appears. The connection between the CRT and the toy console is preferably established in a physical manner (i.e. via a USB connector, an Edge card connector, a proprietary connector, and the like). However, the connection may also be established in a wireless manner by any know wireless communication technology known in the art and mentioned above.
A variety of sensors may be applicable when playing with the CRT including without limitation: pressure sensors, touch sensors, odor sensors, temperature sensors, distance sensors, acceleration sensors, humidity sensors, sound sensors, image sensors and combinations thereof. Moreover, a set of proprietary sensors may also be used as described in details in PCT/IL2013/000055 mentioned above. These proprietary sensors are embedded in the CRT and generally allow recognition of every detachable toy element attached to the CRT. Thus, when a player places a detachable toy element on any given sensor on the CRT when it is connected to the toy console, then this information is transferred via the toy console to the smart device and a corresponding reaction on the smart device's screen appears.
In hardware specs, the CRT illustrated in this figure preferably comprises at least the following: sensors, toy module PCB, connector to the toy console, and a memory chip. The memory chip, for example a EEPROM, is used to install a toy ID and a unique serial number, so when the CRT is connected to the toy console, the toy ID and the unique serial number are transferred to the toy console and from the console, wirelessly, to a smart device. Then, the smart device is launching the relevant toy app, which transfers the toy ID and its unique serial number to a dedicated server in order to authenticate the toy (using the toy ID) and to instruct the toy console how to work properly with the specific connected toy (using its serial number).
The detachable toy console provided herein is configured and operable to connect to smart devices, and once connection is established then a relevant app is launched on the smart device. Then, a fully interactive playing experience awaits the user. For example, the CRT may be a family house with 3 rooms, some family figures (mother, father, baby, and a dog) and a designated position to place the smart device. The player can play with the family house as a usual toy, but once it is connected to the toy console, the playing experience is practically endless. The player can choose to explore the house with either one of the character, which will appear on the screen of the smart device and describe its where about in the house. Moreover, the player can choose to play a quest in the house, so the app on the smart device instructs the player to use all the characters in different interactions and in different rooms inside the house in order to solve the quest.
In accordance with one another example, the CRT is an education/learning board, which comes with different characters dressed in their profession, such as a doctor, a fireman, a teacher, a police officer, and the like. Once connecting the board to the toy console, the player is to obtain different educational content about the professions. When the player is a child he can learn the vocabulary of the professions and their scope of work. Furthermore, educational videos may be screened on the smart device in response to placing a character on the board, thus learning about each profession or its related issues. For instance, when placing the doctor on the board and choosing a video mode, then videos about the human body may be screened to the child, or when placing the fireman then videos about the risks of fire may be screened to the child, and such. The gaming options are endless and the playing experience is much higher.
The toy console is further configured to operate as a smart device, and once connection is established between the console and the CRT authentication process is performed and upon recognition, a fully interactive playing experience awaits the user.
As mentioned above, at its basic feature, the toy console should have the ability to connect to the CRT and to the smart device in either a wired or a wireless manner.
In some embodiments, the CRT may be attached to the toy console directly via a USB connector, an edge card connector, a proprietary connector or any other suitable connector. As for the connection between the toy console to the smart device, it is preferred to be wireless so it will be able to connect to variety of smart devices in the market and at home according to the user preferences and family containments. Relevant hardware components should be incorporated inside the toy console. In the example above, the toy console should have a physical connector connected to its PCB, a MCU for wireless connectivity and other components to allow receiving data from the toy itself and transferring it, wirelessly, to the smart device. Additionally a power source is also required.
In addition to the above, the toy console may further comprise additional features and options, which functionally allow a better communication and functional abilities, and consequently a better playing experience. The toy console may comprise, among others, the following features: function button/s, LED indicator(s), offline Mode to allow the user an option to play with the game without being connected to a smart device, Remote control features such as 5-Way Joystick, touch pad, touch screen, motion controls, a tag reader on the console (e.g. RFID, Optical), an improved connectivity (Wi-Fi connectivity, Standard Bluetooth, BLE (Bluetooth 4), a rechargeable battery, sensors such a gyro, accelerometer, and proximity sensor.
In accordance with another aspect of the invention a wearable toy console usable as a control unit for multiple connected toy systems is provided. The wearable toy console is configured and operable to connect interchangeably with at least one smart device and to be carried by a toy and/or by a wearable accessory on the hand of a user, wherein the wearable toy console is configured to be passed by the user from one toy to another or to the hand wearable accessory so as to allow the usage of the toy console with multiple toys. The toy console comprising: a MCU; a communication module for establishing connection with at least one smart device; a motion sensor configured and operable to allow reading of movements by the smart device; and a power source.
The motion sensor in configured to simulate movement of the toy carrying the toy console upon movement of the toy console itself, as the toy movement rides on the toy console movement and interpreted as if the toy is connected to the toy console. The data obtained from the motion sensor is saved on the toy console and can be used in an offline and online modes, and may be saved on the toy console and be used in a later time. Similar to the detachable toy console the wearable toy console may operate in the same manner and contain sensors and buttons as well as other features that provide the wearable toy console configured to connect to a pseudo connected toy as defined above the same characters and capabilities as the console configured to be attached to a console ready toy.
The identification of the toy carrying the wearable toy console is established by wither one of the following options: a) by selecting the relevant toy from a list or other visual representation of toys on the smart device screen; b) by entering an ID code which appears on the toy or on its packaging to the smart device; c) by introducing the toy to a camera on the smart device and using image recognition techniques; and d) by introducing a QR code or a similar visual code printed on the toy or on its packaging to a camera of the smart device and a software, running on the smart device, uses the camera to take a picture of the visual code, and to analyze the visual code.
The toy console may be inserted into a dedicated pocket or groove on the toy or on the hand wearable accessory. Alternatively, the toy console is reversibly attached to the toy or to the hand wearable accessory by mechanical means selected from the group consisting: a Velcro, connecting strip, magnet, and sticky material. The hand wearable accessory is selected from either one of a glove or a bracelet.
In accordance with specific variation, the toy in use with the connected system is a wearable toy configured to carry within it the toy console or carried by the hand wearable accessory and the user is playing with a virtual toy selected and displayed on the smart device. The wearable toy console may further comprise at least one of the following: function buttons, LED indicators, remote control features, voice command, offline mode, activation of sensors, memory, connection ability with other toy consoles, exchanging toys ID information, and a rechargeable battery.
The present invention is further directed to a detachable toy console usable as a control unit for multiple connected toy systems, said toy console is configured and operable to connect interchangeably with at least one smart device and to be attached to or to be carried by a toy and/or by a wearable accessory on the hand of a user, wherein the detachable toy console is configured to be passed by the user from one toy to another or to the hand wearable accessory so as to allow the usage of the toy console with multiple toys, said toy console comprising: a MCU; a communication module for establishing connection with at least one smart device; connection elements configured to allow reversible attachment of the toy console from to the toy and/or to allow carrying of the detachable toy console by a toy and/or a wearable accessory; a motion sensor; and a power source.
Detailed description of the wearable toy console is provided with reference to the following figures.
All other components viewed in this figure are similar to the components described with reference to
Identification of a pseudo connected toy may be established by various techniques, some are presented below:
Since the same console is used with different toys, and sometimes different toys could fit the same game logic, when a new toy is released to the market, “graphic contents” about the new toy is uploaded to the server. When a user connects the console to the toy, the smart device recognizes the toy type and downloads the fitting ‘graphic contents’ from the server. In this manner, each game, which is relevant for the toy, can make ‘dynamic binding’ of the ‘graphic contents’ to the toy will be presented to the user.
If an accelerometer or Gyro (or other sensors) are built into any configuration of the toy console presented herein, a “calibration” action is required. The calibration is done after to console is connected (or pseudo connected) to the toy for determining the ‘base’ position of the toy console.
All types of connections illustrated above 812′, 814′, and 828 may be applicable with any wearable design.
When a user launches app on a smart device (step 910) the app is scanning for advertising consoles (step 912). Is a console found? (step 914). If No, return to step 912. If Yes, the app attempts to connect with the toy console (step 916). If connection succeeded (step 918) the console fetches the toy ID and send it to the app (step 920). If connection is not succeeded the app alerts the user for next action (step 930), the user should take action (step 932) whether to retry connecting to the console (step 916), scan for other consoles and return to step 912 or to cancel the process and end (step 934). Is the toy ID valid? (step 922), if No, go to step 930. If Yes, app attempts to load assets from local resource (step 924). Is the loading succeeded? (step 926) If Yes, the game starts (step 928). If No, app attempts to load assets from server (step 936). Is load succeeded? (step 940). If Yes, start game (step 928), if No, the app alert the user for next action (step 942). The user should take action (step 938) to go back to step 912 or to cancel and end (step 934).
The present invention further provides a method for using a detachable toy console usable as a control unit in multiple connected toy systems, said method comprising the following steps: a) connecting the toy console interchangeably with at least one smart device; b) attaching the toy console to a console ready toy; c) utilizing sensors and buttons positioned on the console ready toy; d) saving data relating to the utilization of the sensors on the toy console; e) creating an output on the smart device or the toy console relative to the utilization of the sensors on step (c); f) transferring information and data from the console ready toy via the toy console to the smart device thereby creating a corresponding reaction that appears on the smart device's screen; g) detaching the toy console from the console ready toy attached to it; and reattaching the toy console to another console ready toy, to thereby allow a user to use the toy console with multiple console ready toys, said toy console comprising: a MCU; a communication module for establishing connection with at least one smart device; a connector for attaching and detaching the toy console to the console ready toy; sensor; and a power source. The method may further comprising the step of: h) disconnecting the toy console from the smart device and reconnecting to another smart device.
It should be clear that the description of the embodiments and attached figures set above in this specification serves only for a better understanding of the invention, without limiting its scope. It should also be clear that a person skilled in the art, after reading the present specification could make adjustments or amendments to the attached Figures and above described embodiments that would still be covered by the present invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2013/051028 | 12/12/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61767526 | Feb 2013 | US | |
61736604 | Dec 2012 | US |