Current US Class: 379/142.14, 455/402, 3.01
Intern'l Class: H01F 027/42
Field of Search: 200/49, 307/3, 340/310.01, 310.05, 310.07, 370/276, 375/145, 379/142.14, 23, 455/3.01, 3.05, 14, 74.1, 280, 402, 560, 572
None
None
This invention addresses the quest of competitive local exchange carriers and other emerging network operators to gain direct access to potential customers without paying extensive access charges to companies that own incumbent infrastructures. The invention provides a low-cost solution that enables communication service providers that are competing in these new markets to bypass physical communication lines that are owned by entrenched competitors.
Power line communications (PLC) dates back to the 1940's when important aspects about the technology were first disclosed in U.S. Pat. Nos. 2,510,273 and 2,516,211; both issued in 1950. Since that time 154 U.S. and 19 foreign patents were registered with claims to protect improvements and alternative approaches to power line communications. However, none of these patents address the opportunity to reduce the market entry startup costs and performance barriers that have impeded widespread acceptance of PLC technologies. A comprehensive reference list of these patents is disclosed in U.S. Pat. No. 6,243,571, which is hereby incorporated by reference in its entirety for the material disclosed therein. Other more recent expired patents in the PLC arena include U.S. Pat. No. 3,949,72, “Telephone Extension”; U.S. Pat. Nos. 4,636,771 and 4,745,391 “Data Communications”; U.S. Pat. No. 4,473,817, “Single Phase Signal Coupling”; and U.S. Pat. No. 4,458,236, “Three Phase Signal Coupling”. These expired patents provide a broad foundation of expired prior art that launched the use of power lines as a physical layer for communication applications.
The below listed relevant recent prior art suffers from high cost, low data transfer rates, installation difficulties, limited access to roof tops and landlord permissions, high distribution costs, applicability, performance and any combination of the foregoing: U.S. Pat. No. 5,559,377, “Transformer Coupler for Communication Over Various Lines”; U.S. Pat. No. 6,107,912, “Wireless Modem Jack”; U.S. Pat. No. 6,243,571, “Method and System for Distribution of Wireless Signals for Increased Wireless Coverage Using Power Lines”; U.S. Pat. No. 6,246,868, “Conversion and Distribution of Incoming Wireless Telephone Signals Using the Power Line”; U.S. Pat. No. 6,487,657, “Data Communication Network”; U.S. Pat. No. 6,573,826, “Wireless Communication System by Using Electric Power Line as Data Link Network”; U.S. Pat. No. 677,522, “Concurrent Wireless/Landline Interface Apparatus and Method”; and, U.S. Pat. No. 6,785,532, “Power Line Communications”.
Prior art fails to describe, in particular, a solution that affords last mile broadband and voice service that is economically attractive for competitive local exchange carriers and those who seek to bypass existing telecommunication and emerging networks. This invention fills the void and the deficiencies of prior art that were cited in the preceding paragraph by enabling optimal selection of back haul access techniques and line-of-sight reduction while providing a nearly identical and repeatable installation method that yields access to a price regulated domain for installation of the technology. This invention further addresses performance deficiencies of prior art by using the transformer as a distribution point (D-point), by eliminating the need for ad-hoc phase signal couplers, and by providing a means to remotely control bandwidth access and utilization for each customer network access point.
This invention discloses a method of coupling payload signals from communication service providers to the secondary, or load side, of existing power line transformers. An intention of this invention is to use power lines emanating from step-down transformers as a distribution point (D-point) to provide a low-cost way to bypass any existing physical connection to the edge of any type of communication network. The invention utilizes a multi-phase galvanic isolating coupling scheme that passes signals onto the secondary side of step-down power transformers to simultaneously protect energy customers from lightning effects while ensuring signal presence in all phases on the end-user side of the power meter. This invention uses the common neutral power line at the transformer as a signal return path, which eliminates the need for signal couplers between active phases. Customer network access points, including those disclosed in patent application Ser. No. 10/906,864, receive these signals and translate them into standard legacy and emerging network termination points that support any International Telecommunication Union (ITU), Internet Engineering Task Force (IETF) and any computer interface standards. The invention will provide a means for remote or direct network management functions including but not limited to bandwidth access and utilization control, quality of service and security.
The below listed figures use drawings of two-phase and three-phase images to illustrate the disclosed invention. These drawings do not limit the scope of this invention to two-phase and three-phase systems. This invention disclosure describes a device that is intended for use on any single or multiple phase power line network on the load side of any power transformer.
This invention disclosure describes the application of any device that couples communication signals from alternative communication media to power lines for the purpose of bypassing existing physical communication lines between the curb and the customer network access point. It is not the intention of this invention to disclose power line communication devices that for the most part are disclosed by prior art. The intention of this invention is to provide a low-cost means to install any combination of legacy or emerging network connectivity to the load side of any power transformer. The novelty of the approach disclosed herein is the application of any type of power line communication device at or near the power transformer, which enables easy installation, low-cost access to a price regulated domain, and assured signal presence on every power line phase on the load side of the transformer. This disclosure includes a unique method of signal coupling that uses a common conductor, usually neutral or ground, as a signal feedback loop. The invention works on pole mount, ground mount, and any other type of power transformers.
The general application of the disclosed invention is illustrated in
A detailed schematic that illustrates how and where the disclosed invention couples payload signals to all power lines on all phases on the load side of the transformer is shown in
A detailed block diagram that illustrates how to assemble the communication bridge component (D-Point) of this invention, which is used to deliver signals from external service providers or any other type of signals to the previously elucidated signal transceivers at 12, 16, 17, and 18, is shown in
The communication bridge in
A completely assembled system as described by this invention disclosure offers optimal selection of back haul access points, mitigation of the need of line-of-sight, and provides a repeatable installation method for all customers, and access to a price regulated domain for installation and utilization of the technology. One application of the combined distribution point and customer access point model described herein is to bridge communications between the Institute of Electrical and Electronics Engineers (IEEE) 802.16 communication standard and the HomePlug standard. This sample application of the disclosed invention will reduce rollout costs and setup time and lower the cost per user threshold in part by capitalizing on the guaranteed line of sight between power poles and the net optimization increase of shared bandwidth. This example is not intended to limit the scope of this invention as this invention is intended to couple any existing and future communication media to the load side of any power transformer.
Number | Date | Country | |
---|---|---|---|
60556834 | Mar 2004 | US |