The present invention relates to a pressurised fluid cylinder having a shut off valve. In particular, the invention relates to a pressurised gas cylinder tor use, for example, with medical gasses, welding gasses and the like.
Such cylinders are traditionally provided with a shut off valve at the top of the cylinder which is protected by a guard. The valve has a valve element which is moved towards and away from a seat by rotation of a screw mechanism. This consists of a hand wheel with a male screw which mates with a female screw thread in the valve body. The user can therefore open and close the shut off valve by rotating the hand wheel to raise and lower the valve element.
Although such mechanisms are widely used, they suffer from a number of problems. The hand wheel requires multiple rotations in order to rotate it which is time consuming and it is not particularly accessible when the guard is in place. Further, it can be stuck in a fully open or a fully closed position. Although arrows are usually present on the wheel to indicate the direction of opening and closing to the user, it is difficult to determine by sight the current position of the wheel, such that the user can, for example, attempt to open an already fully open valve and mistakenly believe the valve to be stuck.
A further difficulty with the fact that there is no clear indication of position is that a user may not fully close a valve as there is no clear indication that the valve has reached the fully closed position, thereby leading to inadvertent leakage from the container.
A number of these problems are overcome by using a lever in place of a hand wheel,
A lever provides good mechanical advantage and its position can provide a clear indication of the position of the valve. The lever can, in one position, be placed alongside the container such that it is reasonably web protected from damage. However, it is required to move to a second position which is generally diametrically opposed to the first position and in such a position, it would be generally vulnerable to damage as such containers are often used in harsh environments and are vulnerable to being hit, dropped or knocked over.
An example of such a device is disclosed in CA2282129. This discloses a lever which has a weakened portion which is designed such that, if the lever is knocked in some way, the weakened portion will break thereby preventing damage to the valve mechanism and leaving enough of the lever in place that the valve can still be operated. The lever has a cam mechanism in order to move the valve element. This requires a relatively high force to open it as it relies on relative sliding motion between components.
Also, in order to provide a ‘snap’ feature to provide a clear demarcation between a fully open/or closed position and a nearly open/or closed position, an additional mechanism is required which adds further complexity.
According to the present invention, there is provided a pressurised fluid cylinder having a shut-off valve, the shut-off valve comprising a valve demerit which is movable along a main axis towards and away from a valve seat in order to close the valve; a valve stem which is constrained to move axially along the main axis to operate the valve element; a biasing member arranged to exert a biasing force on the valve element and a crank for moving the valve stem, the crank comprising a first linkage pivotally attached at one end to the valve stem and a second linkage pivotally attached at one end to the second end of the first linkage and being positionally fixed but rotatable about the opposite end; the crank being arranged so that rotation of the first linkage in a first rotational direction initially causes biasing of the biasing member and further rotation of the second linkage causes the linkage to pass a top or bottom dead centre position, at which point a proportion of the energy stored in the biasing member during its biasing causes the first linkage to be biased further in the first rotational direction after the top or bottom dead centre position.
The combination of the crank mechanism together with the biasing member means that, once the top or bottom dead centre position is passed, the user is no longer doing work to compress the biasing member, but is instead benefiting from the return of the energy of compression of the biasing member which they will effectively feel as a “snap” which urges the valve element to a position which may be either a fully open or fully closed position. This not only ensures that the lever is positively in the fully opened or fully closed position, but also provide the user with a “snap” like feel which demonstrates to them that the valve element is fully home. This can be achieved with a simple mechanism and one which does not rely on a sliding earn engagement, so that the forces required to operate it are reduced.
The crank and biasing member may be configured in a number of ways. In one example, the biasing member acts to bias the valve element away from the valve stem with the pressurised fluid working against a biasing member, whereby rotation of the first linkage from an open position of the valve element compresses the biasing member and closes the valve element against the action of the fluid pressure, whereupon passing bottom dead centre causes the biasing member to urge the valve element away from the valve stem thereby causing further rotation of the first linkage member in the first direction to urge it into a fully closed position. In order to open the valve element, the first linkage member is rotated in the opposite direction initially compressing the biasing member until the linkage passes bottom dead centre or whereupon the biasing force of the biasing member and the pressure force act to urge the valve element to the fully open position. This design therefore snaps into the closed position in which it is held by the resilience of the biasing member. It is then relatively easy to open as a user only has to push the first linkage member past the bottom dead centre position, whereupon both the biasing member and the fluid pressure assist with the valve opening.
In an alternative configuration, the biasing member acts to bias the valve element towards the seat with the fluid pressure working against the valve element, whereby to open the valve, the first linkage member is rotated in a first direction to compress the biasing member such that the fluid pressure opens the valve, and whereby movement of the first linkage member in the first rotational direction past a top dead centre position causes the biasing member to urge the first linkage member further in the first direction so as to push the first linkage member into a fully open position. In order to close the valve, the user has to push the first linkage member through the top dead centre position against the action of the biasing member, whereupon, beyond the top dead centre position, the biasing member acts to close the valve element against the fluid pressure.
In both of the above examples, the biasing member and valve element are outside the pressurised gas space and are closed towards the pressurised gas space. However, it is also possible for the valve element and biasing member to be within the pressurised gas space and for the valve to be closed by urging it outwardly of the pressurised gas space. In this case, the biasing member urges the valve element closed and the first linkage member is rotated, from a position in which the valve element is open, in a first direction past the bottom dead centre position compressing the biasing member as it travels towards the bottom dead centre position, whereupon, on passing the bottom dead centre position, the biasing member and fluid pressure urge the first linkage mechanism further in the first direction in order to urge the first linkage member into a fully closed position.
The relationship between the valve stem, valve element and valve housing may be such as to axially limit the rotation of the crank such that it cannot rotate beyond certain design limits. Alternatively, there may be at least one stop which acts against the crank in order to prevent unwanted rotation.
An example of a cylinder in accordance with the present invention will now be described with reference to the accompanying drawings, in which:
The fluid cylinder consists of a cylinder body 1 for a pressurised fluid and a valve body 2. The cylinder 1 is provided with a female screw thread 3 which mates with a male screw thread 4 on an outer surface of the lower portion of the valve body 2.
The valve body has an axial gas outlet path 5 extending centrally up through the valve body 2. Flow through the gas outlet path 5 is controlled by a valve element 6 which selectively blocks flow to a gas outlet port 7. The lateral port 8 of to pressure side of the valve element 6 leads to a pressure gauge G as is well known in the art.
The pressurised gas path is sealed above the valve element 6 by an inner 9 and outer 10 high pressure O-ring seal.
Lifting the valve element 6 from its seat 11 selectively opens and closes the gas flow path out of the cylinder. The mechanism for lifting the valve element 6 will now be described.
The valve element 6 is biased closed by a spring 15 the top end of which bears against a shoulder 16 in the valve body and the bottom of which bears against an annular flange 17 which forms part of the valve stem 18. As shown in the drawings, the valve stem 18 comprises a main stem 19, a valve element retaining member 20 and a valve element coupling number 21 all of which are rigidly fixed together.
As mentioned above, the pressurised gas path is sealed by inner and outer high pressure O-ring seals 9, 10. The inner seal 9 surrounds a lower annular component 22 in the ease work and seals the interface between the valve stem retaining member 20 and the lower annular component 22. The outer high pressure O-ring seal 10 seals the interface between the lower annular component and the surrounding valve body.
There is a potential leak path past each of these seals. For the inner high pressure O-ring seal 9, this leakage path can leak around the valve stem 8, but this leakage path is sealed in an upper low pressure O-ring seal 23. Instead, a vent, path is provided between the lower annular component 22 and an adjacent upper annular component 24. Similarly, there is a potential leakage flow path around the outer high pressure O-ring seal 10 and, again, this is routed to a vent path between the upper and lower annular components 22, 24. The interface between the upper annular component 24 and the surrounding case work is sealed by a low pressure seal 25. As a result of this, all leakage past the inner 9 and outer 10 high pressure O-ring seals 9, 10 is routed to a gas leakage outlet orifice 26.
In order to carry out a leakage test, the user can spray detecting fluid in the vicinity of the outlet of the gas leakage outlet orifice 26 which provides a simple indication of a leakage of the pressurised cylinder.
In order to open the valve element 6 against the action of the spring 15, a lever mechanism is provided. This comprises a lever 27 which is connected via a pair of bosses 28 and shear pins 29 to be rotatable with a shaft 31 about fixed lever axis L. The shear pins protect the valve mechanism against unexpected forces about the lever axis L. The shaft is mounted in bearings 32 in respective bosses 33 at the top of the valve body as best shown in
This provides a crank arrangement whereupon lifting the lifting lever 27 from its at rest position shown in
Further crank mechanisms for opening the valve element 6 will now be described with reference to
The second example shown in
As shown on the right-hand side of
In order to close the valve, the crank mechanism is moved from the position shown on the left-hand side of
A third example is shown in
In the closed position shown on the right-hand side of
A fourth example is shown in
Number | Date | Country | Kind |
---|---|---|---|
1309045.1 | May 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/060329 | 5/20/2014 | WO | 00 |