At the highest level of government in many countries, it is understood that efforts must continue to develop nuclear fusion as an energy source, (see, for example, www.parliament.the-stationery-office.co.uk/pa/cm200809/cmselect/cmdius/50/5002.htm). Consequently, Research Councils UK (among others) has established an energy programme for urgent research into fusion, (see, www.rcuk.ac.uk/documents/energy/20-yearvision.pdf).
Nuclear fusion is the process whereby two light nuclei bind together to form a heavier nucleus, with energy release due to some conversion of mass to energy. Harnessing fusion on earth, via deuterium to helium reactions would be environmentally friendly, safe, clean, and effectively limitless. In the UK, one such process involves confining hot plasma inside a tokomak reactor like JET or ITER, (see www.ccfe.ac.uk and www.iter.org). Alternatively in the USA, inertial confinement fusion is being tried wherein a pellet of deuterium and tritium fuel is compressed strongly by lasers, or particle beams, or z-pinch wires, (see, http://dorland.pp.ph.ic.ac.uk/magpie/research/PWMAY00.pdf, www.hiper-laser.org and https://lasers.llnl.gov/programs/ife). World-wide, other experimenters persistently try to produce cold fusion in electrolytic cells (see: www.iccf17.org/sub16.php, lenr-canr.org and www.iscmns.org). All these techniques are now being pursued vigorously in many different laboratories, in an effort to prevent a global warming catastrophe and the riotous consumption of remaining oil and gas supplies. Unfortunately, progress has been depressingly slow and increasingly expensive, with questions arising about the timescale for success.
This invention relates to a process for making nuclear fusion occur in a prescribed solid state fusion-fuel when subjected to compression.
In one aspect, the invention provides a process for making nuclear fusion energy by compressing a fusion-fuel comprising a catalytic material mixed with a deuteride of an alkaline earth metal or alkali metal.
In particular embodiments of the invention, the deuteride may be of an alkaline earth metal, for example calcium.
The catalytic material may comprise a mixture or a compound containing phosphorus (in particular red phosphorus) and a transition metal from Period 4 or Period 5 of the Periodic table.
In particular embodiments, the transition metal is from Period 4 of the Periodic table—for example, manganese.
The catalytic material may advantageously comprise powders of red phosphorus and the chosen transition metal(s). The fusion fuel may be formed, for example, from a mixture of powders of red phosphorus, the chosen transition metal(s) and the chosen deuteride. The particle sizes of the respective powders may, for example, be in the range 20 to 75 μm. The weight proportions of the ingredients of the fusion fuel may, for example, be substantially equal to each other; however, they may vary within reasonably wide bands (for example up to 50% or more). Thus, for example, weight ratios of deuteride:red phosphorus:transition metal may vary from 1:1:1 to 1:1:2, 1:2:1, 2:1:1, 2:1:2 and all points in between and potentially beyond.
If desired, the fusion-fuel may comprise a mixture of deuteride(s) and hydride(s), the deuteride(s) providing the primary fusionable fuel source and the hydride(s) a secondary, milder, source of fusionable material. This may be of benefit, for example, in moderating the energy generation in the fusion reaction.
An advantage of this invention is that the fusion-fuel is comparatively cheap to produce and the technology for compression is already available. Any suitable compression method may be employed. For example, compression may be accomplished by using incident beams of laser radiation, electrons, ions, atoms, or high velocity particles. As an alternative, compression may be accomplished by using a mechanical force, a shockwave, a grinding action, or a mill. As a further alternative, compression may be accomplished by propelling a pellet or a capsule of the fusion-fuel against an object (such as a wall or another pellet of fusion-fuel). As a yet further alternative, compression may be accomplished by using a Z-pinch effect. The person skilled in the art will appreciate that the precise manner of supplying compression is not of primary importance to the operation of the invention; any suitable method for providing a sufficient degree of compressive force may in principle be applied.
In some embodiments of process according to the invention, it may be advantageous to heat the fusion-fuel in addition to applying compressive force. Such heating may be accomplished by any suitable means, for example by using an external heat source, a hot filament, an electric spark discharge, or an incident beam of laser radiation, electrons, ions, atoms, or high velocity particles. Suitable alternative heating means will suggest themselves to those skilled in the art.
It is well known in the art that the predominant product of the fusion of hydrogen/deuterium is helium. Helium has a number of uses due to its inertness and low density, and it is widely used in cryostats. However, naturally occurring reserves of helium are rapidly being depleted. A further facet of the invention therefore resides in the collection of the helium gas created by the fusion process, for industrial or commercial use.
Reproducible fusion has been demonstrated experimentally in embodiments of the process, as described below. A number of additional embodiments are also described below for the purpose of using the fusion process of the invention for commercially viable energy generation. Alternative modes of commercial energy generation will suggest themselves to those skilled in the art.
The invention is hereinafter described in further detail by way of example only, with reference to the accompanying drawings.
The drawings illustrate six embodiments of apparatus for carrying out the method of the invention, all of which have been tested successfully by the Applicant. These are shown in
For demonstrating the reality of solid state nuclear fusion, the following procedures were performed many times, resulting in strong reactions which could not be attributed to normal chemical exothermic processes.
The most successful experiments employed fusionable material, calcium deuteride, which was produced by heating pieces of calcium in an atmosphere of deuterium in a silica flask. This was ground with mortar and pestle, and then mixed with similar weights of a catalytic material comprising red phosphorus powder and manganese powder, to yield the basic prescribed fusion-fuel.
It is anticipated that other alkaline earth or alkali metals would work in place of calcium, because their primary function would be to fix the deuterium. Indeed, further experiments using the deuterides of magnesium, strontium, barium, lithium and sodium have provided satisfactory results. Similarly, transition elements in Periods 4 and 5 have wide-ranging catalytic properties and are likely to work in place of manganese to an acceptable degree (see www.sigmaaldrich.com/chemistry/chemistry-products.html?TablePage=16257685). Satisfactory results have been achieved using fusion fuels comprising mixtures of powders of calcium deuteride, red phosphorus and each one of the following: scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum and cadmium. The person skilled in the art will be able to select a suitable transition metal for use in any particular set of circumstances, in order to optimise the method for either energy generation or helium production.
Having disclosed the general principle by which nuclear fusion may be achieved, the person skilled in the art will understand how to put that principle into practice in order to generate power and/or to produce helium. The embodiments described above are merely examples and are not intended to restrict the scope of the invention in any way. The scope of the invention is, on the contrary, defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
1308127.8 | Jun 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2014/051386 | 5/6/2014 | WO | 00 |