Atmospheric air is a composite of nitrogen and oxygen in the ratio of about 4:1 in volume.
Nitrogen oxides are formed at gas turbine combustors and others. The two most common and hazardous nitrogen oxides are nitric oxide and nitrogen dioxide. Nitrogen oxides have tremendous harsh effect on environment.
Nitrogen oxides react with substances in the atmosphere forming acid rain which have bad effects on living world and wildlife environment.
Minimizing Nitrogen from gas turbines applications leads to healthier innocuous and inoffensive environment for the living world and wildlife.
Gas turbine efficiency alone ranging between 35 to 45%. More that 50% of the energy is consumed by gas turbine compressor and the rest heat losses to the surroundings.
This application is a continuation to PCT No. PCT/IB 2013/05445 Dated May 31, 2016 titled “Reducing compressor load consumption and maximizing gas turbine flow” the content of which are hereby incorporated by reference, and the same calculation example will be used.
The invention is focusing on gas turbines in power plants and similar applications to minimize nitrogen oxides emitted from gas turbine exhaust and maximizing gas turbine efficiency.
The invention has following features.
The atmospheric air is a composite of 4 units nitrogen and 1 unit oxygen.
Replacing the air intake filter with Oxygen filters (OF) to allow only oxygen into the turbine, where the surface area of OF capable to allow 5 units of Oxygen to fulfill the compressor capacity.
The expelled nitrogen is substituted by High-Pressure Water HPW injected into compressor last stationary/stator blades only using high pressure injectors/nozzles. HPW can be injected at ambient/atmospheric temperature to reduce compressor superheated oxygen/high pressure water mixture outlet temperature to Compressor Outlet Targeted Temperature COTT to reduce the load consumed by the compressor and improve gas turbine efficiency.
The HPW temperature can also be raised ranging from atmospheric/ambient temperature up to CAOTT also reduce compressor outlet superheated oxygen/high pressure water mixture temperature to COTT to reduce the load consumed by the compressor and maximize gas turbine efficiency.
In all cases the purpose of injecting HPW into the compressor last stages is to reduce compressor outlet air to CAOTT above air saturation point, that is superheated.
A heat exchanger to be installed at gas turbine exhaust duct to heat HPW fed into the compressor through control valve. The heated HPW is to be mixed with HPW at ambient/atmospheric temperature through control valve to reduce compressor air outlet temperature to CAOTT.
This huge amount can be injected into compressor last stages since the superheated oxygen/high pressure water mixture at compressor outlet is superheated and if injected by high-pressure water at compressor outlet air saturation temperature can be raised to infinity with no risk of blade pitting or erosion.
This invention has many advantages:
The invention has following features.
The invention is continuous process to minimize nitrogen oxides and maximizing gas turbine efficiency.
Replacing the air intake filter with Oxygen filters (OF) to allow only oxygen into the turbine, where the surface area of OF capable to allow 5 units of Oxygen to fulfill the compressor capacity.
The expelled nitrogen is to be substituted by High-Pressure Water HPW injected into compressor last stationary/stator blades using high pressure injectors/nozzles and can be injected at ambient/atmospheric temperature to reduce compressor outlet superheated oxygen/high pressure water mixture temperature to Compressor Outlet Targeted Temperature COTT to reduce the load consumed by the compressor and improve gas turbine efficiency.
The HPW temperature can also be raised ranging from atmospheric/ambient temperature to also reduce compressor outlet superheated oxygen/high pressure water mixture temperature to COTT to reduce the load consumed by the compressor and maximize gas turbine efficiency.
In all cases the purpose of injecting HPW into the compressor to reduce compressor superheated outlet oxygen/high pressure mixture to COTT and above air saturation point.
A heat exchanger to be installed at gas turbine exhaust duct to heat HPW fed into the compressor through control valve. The heated HPW is to be mixed with HPW at ambient/atmospheric temperature through control valve to reduce compressor outlet superheated oxygen/high pressure water mixture temperature to COTT.
This invention has many advantages:
Avoids the formation of Nitrogen oxides, minimize acidic rain, improves the environment for the living world and wildlife and maximize gas turbine efficiency.
Decreasing compressor air outlet temperature and pressure to reduce compressor load consumption and enhancing gas turbine efficiency.
Raising the temperature of the injected HPW to CAOTT maximizes the mass of injected high-pressure water into compressor last stages and maximize gas turbine efficiency.
HPW specific volume equals 1.5542 the specific volume of expelled Nitrogen and leads to further gas turbine efficiency enhancement.
Atmospheric air is a composed of Nitrogen and oxygen and are burn in gas turbine combustor. Nitrogen oxides are formed in the gas turbine combustors and applications. The two most common and hazardous nitrogen oxides are nitric oxide and nitrogen dioxide.
Nitrogen oxides react with substances in the atmosphere forming acid rain which have bad effects on living world and wildlife environment.
Gas turbine efficiency alone ranging between 35 to 45%. More than 50% of the energy is consumed by gas turbine compressor and the rest heat losses to the surroundings.
The objective to be fulfill by the invention is to minimizing nitrogen oxides emitted from gas turbine applications to achieve healthier innocuous and inoffensive environment for the living world and wildlife and maximizing gas turbine efficiency.
Though the calculation is done for specific gas turbine, similar calculations to be done for each gas turbine alone.
For a Gas turbine having the following characteristics:
T1: Compressor-air inlet temperature ° K=283° K
T2: Compressor-air outlet temperature ° K=547° K
P2: Compressor air outlet pressure=12 bar
T3: Gas turbine inlet temperature ° K=1258° K
T4: Gas turbine outlet temperature ° K=768° K
ηad: adiabatic efficiency
The corresponding compressor outlet air pressure and temperature is in the superheated zone. Therefore, it is safe to inject high-pressure water into compressor outlet superheated oxygen/high pressure water mixture to reduce its temperature to COTT above air saturation point, assuming compressor outlet pressure constant at 12 bar.
Compressor outlet air saturation temperature=465° K
Compressor outlet air degree of superheat=547−465=82° K
Considering temperature safety factor of =12° K
Note: Compressor outlet air will remain superheated at pressure of 12 bar and temperature of 477° K avoiding compressor blade pitting/erosion.
From Brighton cycle,
The adiabatic efficiency of the gas turbine ηad=32%
Table 1 below shows the improvement in the adiabatic efficiency from 32% to 38% in relation to drop in compressor outlet temperature from 547° K to 477° K.
From Fluid Mixture Equation
Taw=(Ma Ta+Mw Tw)/(Ma+Mw)
Therefore Mw=Ma(Ta−Taw)/(Taw−Tw)
Taw: Targeted air water mixture temperature=477° K
Ta: Compressor outlet temperature=547° K
Tw: Injected water temperature=288° K
Mw/Ma=Injected water mass to air mass ratio
At ambient/atmospheric temperature of 288° K Injected high-pressure water mass required to reduce compressor outlet temperature from 547° K to 477° K is Mw=0.37 Ma
The table below shows the increase in injected high-pressure water air mass ratio Mw/Ma against raise in injected high-pressure water temperature up to targeted compressor outlet air temperature 477° K.
Table 2 showing the relationship between the rise in temperature of injected HPW (Tw) in ° K to the ratio of high-pressure water mass (Mw) injected into compressor to air mass (Ma).
The ratio of injected water (Mw) to air mass (Ma) reaches infinity at injected water temperature (Tw) of 477° K.
Gas turbine Work done Wd=M Cp ΔT
From table 2 If Mw=0 before HPW injection
From table 2 if Mw=0.37 Ma
If Specific volume of water=1.5542 of Nitrogen
M=Mf+Ma+0.575 Ma . . . from table 1
Wd=583(Mf+1.575Ma) Equation (Eq) (2)
ΔWd=335.23Ma Equation (Eq) (3)
If Specific volume of water=1.5542 of Nitrogen
From table 2 if Mw=0.40 Ma=
Wd=583(Mf+1.622Ma) Equation (Eq) (4)
ΔWd=371.63Ma Equation (Eq) (5)
From table 2 if Mw=0.55 Ma=
Wd=583(Mf+1.848Ma) Equation (Eq) (6)
ΔWd=494.38Ma Equation (Eq) (7)
Table 4 showing the increase in Δ Wd against Mw/Ma and Tw
The objective to be fulfill by the invention is to minimizing nitrogen oxides emitted from gas turbine applications and maximizing gas turbine overall efficiency continuously.
The atmospheric air is a composite of 4 units nitrogen and 1 unit oxygen. The normal air intake filter to be replaced by Oxygen filters (OF) to allow only oxygen into the gas turbine. The surface area of OF is to be capable to allow 5 units of oxygen alone to fulfill the compressor capacity.
Four units of HPW mass required to replace each one unit of oxygen drawn by the compressor to replace the expelled units of atmospheric nitrogen. Therefore, minimum 20 units of HPW required to mix with the 5 units of oxygen drawn by the compressor to ensure good combustion at combustor.
This huge amount can be injected into compressor last stages since the air at compressor outlet is superheated and if injected by high-pressure water at compressor outlet air saturation temperature can be raised to infinity with no risk of blade pitting or erosion, a safety factor of 10 to 15 degrees to be considered.
The HPW injection system is to be capable to supply the required mass of HPW for the operation.
Compressor stationary blade carrier and compressor casing to be modified to incorporate HPW system and injectors.
Number of high-pressure injectors required to be calculated and installed between compressor stationary last stages blades as shown in
The expelled nitrogen is to be substituted by HPW injected into compressor last stationary/stator blades and can be injected at ambient/atmospheric temperature to reduce compressor outlet superheated oxygen/high pressure water mixture temperature to COTT to reduce the load consumed by the compressor and enhance gas turbine efficiency.
The HPW temperature is to raised ranging from atmospheric/ambient temperature up to COTT and injected into compressor last stages to reduce the load consumed by the compressor and maximize gas turbine efficiency.
In all cases the purpose of injecting HPW into the compressor to reduce compressor outlet oxygen/high pressure mixture to COTT above compressor outlet air saturation point.
A heat exchanger to be installed at gas turbine exhaust duct as shown in
The heated HPW is to be mixed with HPW at ambient/atmospheric temperature through control valve. The mixed HPW is injected into compressor last stationary blades only to reduce compressor oxygen/high pressure mixture outlet temperature to COTT and maximize gas turbine efficiency.
A controlling system to control the process is to be adopted to control HPW temperature and mass injected into compressor outlet superheated oxygen/high pressure water mixture at last stationary blades, COATT, and gas turbine overall efficiency.
The objective to be fulfill by the invention is to minimizing nitrogen oxides emitted from gas turbine applications and maximizing gas turbine overall efficiency continuously.
In gas turbine applications huge amount of air consumed, where atmospheric air is a composite of nitrogen and oxygen in the ratio of about 4:1. Therefore, 4 units of nitrogen is to be replaced by injected high-pressure water.
The normal air intake filter to be replaced by Oxygen filters (OF) to allow only oxygen into the gas turbine. The surface area of OF is to be capable to allow 5 units of oxygen alone to fulfill the compressor capacity.
As 4 units of HPW mass required to replace each one unit of oxygen drawn by the compressor to replace the expelled units of atmospheric nitrogen. Therefore, minimum 20 units of HPW required to mix with the 5 units of oxygen drawn by the compressor to ensure good combustion at combustor.
The HPW injection system using high pressure injectors/nozzles is to be capable to supply the required mass of HPW for the operation.
Compressor stationary blade carrier and compressor casing to be modified to incorporate HPW system and injectors.
Number of high-pressure injectors required to be calculated and installed between compressor stationary last stages blades as shown in
The expelled nitrogen is to be substituted by HPW injected into compressor last stationary/stator blades and can be injected at ambient/atmospheric temperature to reduce compressor air outlet temperature to COTT to reduce the load consumed by the compressor and enhance gas turbine efficiency.
The HPW temperature is to raised ranging from atmospheric/ambient temperature up to COTT and injected into compressor last stages to reduce the load consumed by the compressor and maximize gas turbine efficiency.
In all cases the purpose of injecting HPW into the compressor to reduce compressor outlet superheated oxygen/high pressure water mixture to COTT above compressor outlet air saturation point.
A heat exchanger to be installed at gas turbine exhaust duct as shown in
The heated HPW is to be mixed with HPW at ambient/atmospheric temperature through control valve. The mixed HPW is injected into compressor last stationary blades only to reduce compressor oxygen/high pressure mixture outlet temperature to CAOTT and maximize gas turbine efficiency.
A controlling system to control the process is to be adopted to control HPW temperature and mass injected into compressor outlet air at last stationary blades, COTT, and gas turbine overall efficiency.
Since specific volume of water is 1.5542 of Nitrogen specific volume, then the required HPW flow rate of 20/1.5542=12.8683 unit/min of injected high-pressure water. From table 1 this can be met if the injected high-pressure water temperature between 470° K and 475° K for the invention example.
The mass of injected HPW can be increased to attain best gas turbine efficiency.
As different turbines have different compressor, for each compressor the following guidelines can apply: —
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2021/050467 | 1/21/2021 | WO |