A RAILWAY WAGON

Information

  • Patent Application
  • 20200156667
  • Publication Number
    20200156667
  • Date Filed
    May 29, 2018
    6 years ago
  • Date Published
    May 21, 2020
    4 years ago
Abstract
The present invention provides a railway wagon (100) comprising: a pair of bogies (106a, 106b), each bogie having wheels (108) configured in use to run on rails; a frame (104) supported by the pair of bogies (106a, 106b); and a bin (102) supported by the frame (104). The bin (102) has: a base portion (110) defining at least one catchment area (124); a substantially upright first end wall (114a); a substantially upright second end wall (114b) two longitudinal sidewalls (116a, 116b) extending between the first end wall (114a) and the second end wall (114b); an interior volume (118) for carrying product therein, the interior volume (118) being at least substantially defined by the first end wall (114a), the second end wall (114b), the two longitudinal sidewalls (116a, 166b), and the base portion (110); and an opening (120) opposite the base portion (110). The bin (102) is formed from at least two sections (103a, 103b) joined together, each section (103a, 103b) being formed at least substantially of composite materials and moulded as a single structure.
Description
FIELD

The present invention relates to a railway wagon.


BACKGROUND

Railway wagons for carrying and transporting products such as, for example, coal, ore, grains, or the like are known. These known railway wagons typically include a hopper for carrying the product, which are commonly constructed of steel. Steel offers good mechanical properties and is relatively inexpensive. Further, steel offers good abrasion resistance, which is important to the lifetime of the hopper when abrasive products, such as coal, are frequently loaded and discharged from the hopper.


A disadvantage of hoppers constructed from steel is that they are heavy and complex shapes cannot be easily manufactured. Accordingly, it will be appreciated that the weight and shape of steel hoppers will negatively affect the total amount of product a freight train will be capable of transporting, thereby reducing the efficiency and profitability of the train as a freight transport means.


Further, to fabricate hoppers constructed from steel into preferred shapes is time-consuming, labour intensive, and difficult to do without adversely affecting strength of the hopper. Accordingly, it will be appreciated that this will also increase the costs associated with manufacturing the hoppers.


Yet further, due to the nature of steel fabrication, there are restrictions on the shapes of the hopper that can be fabricated in a cost-effective manner. The shape of the hopper will typically determine the total amount of product the hopper can carry and transport, and the discharge rate and efficiency of the hopper. If the shape of the hopper is not optimised for the product it is carrying and transporting, the capacity and discharge rate of the hopper may be negatively affected.


OBJECT OF THE INVENTION

It is an object of the present invention to overcome or at least ameliorate one or more of the above disadvantages.


SUMMARY OF INVENTION

In a first aspect the present invention provides a railway wagon comprising:


a pair of bogies, each bogie having wheels configured in use to run on rails;


a frame supported by the pair of bogies; and


a bin supported by the frame, the bin having:

    • a base portion defining at least one catchment area;
    • a substantially upright first end wall;
    • a substantially upright second end wall
    • two longitudinal sidewalls extending between the first end wall and the second end wall;
    • an interior volume for carrying product therein, the interior volume being at least substantially defined by the first end wall, the second end wall, the two longitudinal sidewalls, and the base portion; and
    • an opening opposite the base portion,


wherein the bin is formed from at least two sections joined together, each section being formed at least substantially of composite materials and moulded as a single structure.


In a preferred form, each catchment area is located between the pair of bogies.


In a preferred form, the bin further comprises a centre sill and each catchment area at least partially straddles the centre sill.


In a preferred form, each catchment area has:


at least one discharge hole for discharging product from the interior volume of the bin; and


a discharge door operatively associated with each discharge hole, each discharge door being movable between an open position where product is able to pass through the respective discharge hole and a closed position where the respective discharge hole is sealed by the respective discharge door to prevent product passing through the respective discharge hole.


In a preferred form, each discharge door has a scoop, the scoop being configured to hold product therein when the discharge door is in the closed position.


In a preferred form, each discharge door is formed at least substantially of composite materials.


In a preferred form, each discharge door is moulded as a single structure.


In a preferred form, each discharge door has a low friction layer to reduce the coefficient of friction of the discharge doors.


In a preferred form, the low friction layer of each discharge door is a gelcoat.


In a preferred form, the base portion comprises one or more tents configured to direct product towards at least one of the catchment areas.


In a preferred form, the bin further comprises:


a first angled wall extending between, and coupled to, the base portion and the first end wall; and


a second angled wall extending between, and coupled to, the base portion and the second end wall.


In a preferred form, the first angled wall extends from the first end wall at an angle of 10 to 35 degrees, and the second angled wall extends from the second end wall at an angle of 10 to 35 degrees.


In a preferred form, the first angled wall extends from the first end wall at an angle of 30 degrees, and the second angled wall extends from the second end wall at an angle of 30 degrees.


In a preferred form, the railway wagon further comprises:


a first support structure supported by a respective one of the bogies and configured to support the first angled wall and the first end wall; and


a second support structure supported by the other bogie and configured to support the second angled wall and the second end wall.


In a preferred form, the bin is rotatable about a longitudinal axis of the wagon such that product is dischargable from the interior volume of the bin through the opening.


In a preferred form, the bin further comprises one or more wheel arch portions, each wheel arch portion dimensioned to accommodate at least one wheel of a respective one of the bogies.


In a preferred form, in use, each wheel arch portion accommodates a vertical displacement and a horizontal displacement of a respective one of the bogies such that the wheels of the bogies do not contact the bin.


In a preferred form, the bin further comprises at least one diaphragm located in the interior volume of the bin, each diaphragm extending inwardly from the sidewalls and base portion.


In a preferred form, an inner surface of the bin has a low friction layer to reduce the coefficient of friction of the inner surface of the bin.


In a preferred form, the low friction layer is a gelcoat.


In a preferred form, the at least one catchment area is one of a plurality of catchment areas.


In a second aspect, there is provided a railway wagon comprising:


a pair of bogies, each bogie having wheels configured in use to run on rails;


a frame supported by the pair of bogies; and


a metal bin supported by the frame, the bin having:

    • a base portion defining at least one catchment area;
    • a substantially upright first end wall;
    • a substantially upright second end wall
    • two longitudinal sidewalls extending between the first end wall and the second end wall;
    • a first angled wall extending between, and coupled to, the base portion and the first end wall; and
    • a second angled wall extending between, and coupled to, the base portion and the second end wall;
    • an interior volume for carrying product therein, the interior volume being at least substantially defined by the first end wall, the second end wall, the first angled wall, the second angled wall, the two longitudinal sidewalls, and the base portion;
    • an opening opposite the base portion,


      wherein one or more regions of an inner surface of the bin have a low friction layer to reduce the coefficient of friction of the inner surface of the bin at the respective regions


In a preferred form, the one or more regions of the inner surface include regions of the inner surface of the bin that are defined by the first angled wall and the second angled wall.


In a preferred form, the entire inner surface of the bin has a low friction layer.


In a preferred form, the inner surface of the bin is formed by a liner received in the interior volume of the bin and the liner has the low friction layer.


There is also disclosed herein provided a railway wagon for transporting bulk commodities, the wagon comprising:


a body, the body comprising a first body portion and a second body portion, the body portions forming a container;

    • the container having a base comprising at least one door to permit bulk commodities to be discharged from the wagon;
    • end walls, having an elongated axis extending therebetween, and
    • side walls;
    • the end walls and side walls extending upwardly from the base to an opening to receive bulk commodities;


a frame supporting the body, the frame comprising a first end and a second end, with a headstock located at each respective end of the frame, the frame further comprising a structural support member and;


a pair of bogies upon which the frame sits, with one bogie being located toward each respective end of the frame, the bogies each comprising wheels adapted in use to run on rails;


wherein the body is at least substantially made from composite materials.


In a preferred form, the frame comprises headstock insert portions connected to structural members being at least substantially made from the composite materials.


In a preferred form, the body comprises a generally elongated inverted frustum shape; the end walls slope outwardly from the base and extend substantially over the bogies; and the side walls are substantially vertical.


In a preferred form, the composite material comprises a fibre-reinforced polymer matrix composite


In a preferred form, the fibre-reinforced polymer matrix composite comprises a fibre selected from glass fibre, carbon fibre, aramid (Kevlar) fibre and the like.


In a preferred form, the fibre-reinforced polymer matrix composite comprises a resin selected from fire-retardant vinylester resin, polyester resin, epoxy resin and the like.


In a preferred form, the first body portion comprises a first body base portion and the second body portion comprises a second body base portion,


the first body base portion and the second body base portion each comprise a base member portion transverse to the elongate axis, the base member portions being positioned complementarily on the first and second body portions,


the base member portions further comprise base member end portions,


wherein the first and second body portions are joined together by fixedly joining the respective base member end portions to form the base member.


In a preferred form, the base member end portions comprise respective male and female end portions for fixedly joining the first and second body portions to each other.


In a preferred form, the first and second body portions are at least substantially formed by moulding.


In a preferred form, the structural members being substantially made from the composite are moulded over the headstock insert portions.


In a preferred form, the headstock insert portions are formed from a metal material.


In a preferred form, a portion of the structural members are integrated with the first body portion and another portion of the structural members are integrated with the second body portion, and the first and second body portions are formed unitarily with their respective portions of the structural members.


In a preferred form, the body further comprises diaphragms extending inwardly from the side walls and base for providing structural rigidity to the body.


In a preferred form, the diaphragms have a rounded profile.


In a preferred form, the end walls further comprise wheel arch portions.


In a preferred form, the at least one door has a rounded oval convex shape.





BRIEF DESCRIPTION OF DRAWINGS

Preferred embodiments of the invention will be described hereinafter, by way of examples only, with reference to the accompanying drawings, wherein:



FIG. 1 is an isometric view of a railway wagon according to a first embodiment of the present invention;



FIG. 2 is a side view of the railway wagon of FIG. 1;



FIG. 3 is an isometric view of the bin of the railway wagon of FIG. 1;



FIG. 4 is a side view of the bin of FIG. 3;



FIG. 5 is a top view of the bin of FIG. 3;



FIG. 6 is another side view of the bin of FIG. 3 showing the wheels of the bogies but omitting the bogies, frame, and discharge doors;



FIG. 7 is a partial isometric view of the railway wagon of FIG. 1, omitting the support structures of the railway wagon and the frame;



FIG. 8 is a top isometric view of the bin of the railway wagon of FIG. 1;



FIGS. 9a and b show the profile of the wheel arch portions of the bin of the railway wagon of FIG. 1;



FIGS. 10a-c are views of the discharge doors of the railway wagon of FIG. 1;



FIG. 11 shows a prior art coal railway wagon;



FIG. 12 is a side view of railway wagons according to a second embodiment of the present invention;



FIG. 13 is an end view of the railway wagon of FIG. 12;



FIG. 14 is a sectional view of a railway wagon according to a third embodiment of the present invention;



FIG. 15 is a top view of the railway wagon of FIG. 14;



FIG. 16 is an isometric view of the railway wagon of FIG. 14;



FIG. 17 is an inverted isometric view of the bin of FIG. 14;



FIG. 18 is a perspective view of two separated portions of the bin of FIG. 17;



FIG. 19 is a detailed end view of separated bin portions of the bin of FIG. 14;



FIG. 20 is a detailed view of the end of the bin portions of FIG. 20;



FIG. 21 is a detailed perspective view of structural components of two complementary portions of the bin of FIG. 17;



FIG. 22 is a perspective view of selected components of an end portion of the railway wagon of FIG. 14;



FIG. 23 is a perspective view of structural components of an end portion of the bin of the railway wagon of FIG. 22;



FIG. 24 is an exploded perspective view showing the structural portions of the body separated from an end deck supported by a bogie of the railway wagon of FIG. 14; and



FIG. 25 is a perspective view of an end deck and a support member of the railway wagon of FIG. 14.





DESCRIPTION OF EMBODIMENTS


FIGS. 1 and 2 show a railway wagon 100 according to a first embodiment of the present invention. The railway wagon 100 has a bin 102 in the shape of a hopper configured to carry product such as, for example, coal, grain, iron ore, or the like therein. The bin 102 is formed from two sections 103a, 103b joined together, thereby forming a split line 105 extending along the length of the bin 102. Each section 103a, 103b is at least substantially formed of composite materials and is moulded as a single structure. It is also envisaged that each section 103a, 103b may be entirely formed of composite materials and moulded as a single structure.


Alternatively, each section 103a, 103b may be formed such that when they are joined together they form a split line extending across the width of the bin 102 or at any other angle. The bin 102 may also be formed from more than two sections joined together and that there may be one or more split lines extending along the length of the bin 102 and/or one or more split lines extending across the width of the bin 102 or at one or more angles. It is also envisaged that the bin 102 may be moulded as a single structure (i.e. having no split lines) and/or may be entirely formed of composite materials.


It is envisaged that the composite materials forming the bin 102 comprise a fibre-reinforced polymer composite, or fibre reinforced polymer matrix composites or the like. It is also envisaged that the main fibre type used in the composite is glass fibre. However, fibres that may also be used in the composite material could include carbon fibre, aramid (Kevlar) fibre or the like. A thermosetting or thermoplastic resin is preferably used to set the fibres. Preferably, the resin is fire-retardant vinylester resin. However, any other suitable resins or adhesives known in the art may be used, including polyester resin, epoxy resin or the like.


The railway wagon 100 also has a frame 104 and a pair of bogies 106a, 106b supporting the frame 104. Each of the bogies 106a, 106b has wheels 108 (only one labelled for clarity of illustration) configured in use to run on rails (not illustrated). Connected to bogie 106a is a rotary coupler 109a and connected to bogie 106b is a rotary coupled 109b. The rotary couplers 109a, 109b allow the wagon 100 to be rotated about a longitudinal axis of the wagon 100 and allow the wagon 100 to be coupled to other wagons.


Referring to FIGS. 3 and 4, the bin 102 has a base portion 110, a first angled wall 112a connected to the base portion 110, and a second angled wall 112b connected to the base portion 110 opposite the first angled wall 112a. Referring to FIG. 4, the first angled wall 112a and the second angled wall 112b form an angle X of 10 and 35 degrees with a horizontal plane 10. Preferably, angle X is 30 degrees.


Connected to the upper portion of the first angled wall 112a is a substantially upright first end wall 114a, and connected to the upper portion of the second angled end wall 112b is a substantially upright second end wall 114b. Extending between the angled walls 112a, 112b and the end walls 114a, 114b are longitudinal sidewalls 116a, 116b.


The base portion 110, the angled walls 112a, 112b, the end walls 114a, 114b, and the longitudinal sidewalls 116a, 116b define an interior volume 118 (see FIGS. 7 and 8) for carrying product therein. Referring to FIGS. 5 and 8, the end walls 114a, 114b and longitudinal sidewalls 116a, 116b define an opening 120 opposite the base portion 110. The opening 120 permits product to be received into the interior volume 118 of the bin 102.


Referring to FIG. 1, each of the junctions between each of the walls of the bin 102 has a rounded profile 122. This rounded profile reduces product hang-up when discharging product from the interior volume 118 of the bin 102, thereby improving the discharge rate of the product from the bin 102.


Referring to FIG. 4, the base portion 110 has a number of catchment areas 124 (only one labelled for clarity of illustration), a number of tents 126 (only one labelled for clarity of illustration), and at least one discharge hole 128 (see FIG. 6). The discharge holes 128 permit product to be discharged from the interior volume 118 of the bin 102. Referring to FIG. 2, the catchment areas 124 are located between the pair of bogies 106a, 106b.


Referring to FIG. 5, the base portion 110 comprises a centre sill 134 located within the interior volume 118 of the bin 102. The centre sill 134 strengthens the bin 102 against longitudinal loads that are applied to the bin 102 in use. It can be seen from this figure, that each of the catchment areas 124 at least partially straddle the centre sill 134.


As best seen from FIGS. 4 and 6, when discharging product from the interior volume 118 of the bin 102, the tents 126 direct product towards a respective one of the catchment areas 124 and therefore towards a respective one of the discharge holes 128. It will also be appreciated that the angled walls 112a, 112b direct product towards the base portion 110 and the catchment areas 124.


Referring to FIG. 8, the bin further comprises diaphragms 136 (only one labelled for clarity of illustration) located in the interior volume 118 of the bin 102 and connected to the base portion 110 and the sidewalls 116a, 116b. Each of the diaphragms 136 extend towards the centre of the interior volume 118 from the sidewalls 116a, 116b. The diaphragms 136 improve the structural rigidity of the bin 102, and aid product flow and reduce product hang-up within the bin 102 when discharging product from the interior volume 118 of the bin 102.


It will be appreciated that, in use, each of the bogies 106a, 106b, and therefore each of the wheels 108, will be displaced horizontally and vertically with respect to the bin 102. Referring to FIG. 3, the bin 102 has wheel arch portions 130a-d that are shaped and dimensioned to accommodate at least one wheel 108 of a respective bogie 106a, 106b. Referring to FIGS. 9a and b, each of the wheel arch portions 130a-d space a respective wheel 108 at a distance from the bin 102, both horizontally and vertically, in order to accommodate for the vertical and horizontal displacement of the bogies 106a, 106b such that, in use, the wheels 108 do not contact the bin 102.


Referring to FIGS. 3 and 4, the bin 102 further comprises discharge doors 138 (only one labelled for clarity of illustration), each discharge door 138 is operatively associated with one discharge hole 128. Each of the discharge doors 138 are movable between an open position and a closed position. In the closed position, the discharge doors 138 close and preferably seal a respective discharge hole 128, thereby preventing product from being discharged from the interior volume 118 of the bin 102 through the respective discharge hole 128. In the open position, the discharge holes 128 are not closed or sealed by respective discharge doors 138, thereby allowing product to be discharged from the interior volume 118 of the bin 102 through the respective discharge hole 128.


Referring to FIGS. 10a-c, each discharge door 138 has a scoop 140, and an interior surface 142, and an external surface 144 opposite the interior surface 142. The scoop 140 and the interior surface 142 face towards the interior volume 118 of the bin 102 when the discharge doors 138 are in the closed position. The scoop 140 is capable of holding product therein, thereby increasing the volume, and therefore the amount of product, the interior volume 118 of the bin 102 may carry. It will therefore be appreciated that, as the discharge doors 138 are able to increase the amount of product the bin 102 can carry, the profitability per bin 102 may also be increased.


The discharge doors 138 are at least substantially formed of composite materials and are moulded as a single structure. It is envisaged that the composite materials forming the discharges doors 138 comprise a fibre-reinforced polymer composite, or fibre reinforced polymer matrix composites or the like. It is also envisaged that the main fibre type used in the composite is glass fibre. However, fibres that may also be used in the composite material include carbon fibre, aramid (Kevlar) fibre or the like. A thermosetting or thermoplastic resin is used to set the fibres. Preferably, the resin is fire-retardant vinylester resin. However, any other suitable resins or adhesives known in the art may be used, including polyester resin, epoxy resin or the like.


Referring to FIG. 2, the railway wagon 100 further comprises support structures 146a, 146b. The support structure 146a engages the first angled wall 112a, the first end wall 114a, and an end deck 150a supported by the bogie 106a. Each end deck 150a, 150b has a king casting (not shown) that engages a queen casting 111 (see FIG. 9a) of a respective bogie 106a, 106b to couple the end decks 150a, 150b to respective bogies 106a, 160b. The support structure 146b engages the second angled wall 112b, the second end wall 114b, and an end deck 150b supported by the bogie 106b. The support structures 146a, 146b provide support to the respective angled walls 112a, 112b, thereby improving the load bearing capacity of the bin 102. The support structures 146a, 146b may be integrally moulded with the bin 102 or formed separately of the bin 102.


The inner surface 148 (see FIGS. 7 and 8) of the bin 102 and/or the interior surface 142 of each discharge door 138 has a low friction layer that reduces the coefficient of friction of the inner surface 148 of the bin 102 and/or the interior surface 142 of each discharge door 138. It will be appreciated that the inner surface 148 of the bin 102 includes the surfaces of each of the walls of the bin 102, the base portion 110, and each of the tents 126 facing the interior volume 118 of the bin 102. It is envisaged that the entire inner surface 148 of the bin 102 may have a low friction layer, or that only specific regions of the inner surface 148 of the bin 102 may have a low friction layer.


The low friction layer may be applied during manufacture of the bin 102 and/or the discharge doors 138, or may be applied after the bin 102 and discharge doors 138 are manufactured. It is envisaged that the low friction layer is a gelcoat or any other suitable material known in the art for reducing the coefficient of friction of a surface.


The low friction layer provides a low friction, hard wearing surface that may also meet environmental exposure, chemical exposure, and fire requirements. The friction of the inner surface 148 of the bin 102 impacts on the discharge rate of product from the interior volume 118 of the bin 102. It will therefore be appreciated that the low friction layer reduces the friction of the inner surface 148 of the bin 102, which may improve the discharge rate of product from the interior volume 118 of the bin 102. The low friction layer may also provide abrasion resistance to the bin 102, which may provide protection to the bin 102 from abrasive materials such as, for example, coal, iron ore, or the like, thereby potentially improving the service life of the bin 102.


Referring to FIG. 11, which shows a prior art coal railway wagon 12, it can be seen that the incline of the end walls 14a, 14b of the bin 16 is relatively steep, approximately 50 degrees. It will be appreciated that the angle of the end walls 14a, 14b is a contributing factor to the discharge rate of product from the bin 16 of the coal railway wagon 12. Another factor to consider is that the bin 16 cannot extend longitudinally past the bogies 18a, 18b, otherwise the bin 16 of one coal railway wagon 12 may contact and damage the bin 16 of an adjacent coal railway wagon 12 in the train consist.


Steeper end walls 14a, 14b may provide faster discharge rates than shallower angled walls 14a, 14b. However, taking into account the considerations in paragraph [0094], steeper angled walls 14a, 14b may reduce the volume of the bin 16 and therefore the amount of product the bin 16 may carry. Shallower end walls 14a, 14b may increase the volume of the bin 16 and therefore the amount of product the bin 16 may carry, but may not provide the desired discharge rate or be high enough to clear the bogies 18a, 18b.


As the bin 102 of the railway wagon 100 is formed of composite materials, the bin 102 may have a lower coefficient of friction compared to bins of the prior art. Accordingly, it will be appreciated that a lower coefficient of friction may allow the angle of the angled walls 112a, 112b of the bin 102 to be lower while still providing an acceptable discharge rate of product from the interior volume 118 of the bin 102.


The combination of the end walls 114a, 114b with the shallower angled walls 112a, 112b increases the interior volume 118 of the bin 102 compared to bins of the prior art, and the lower coefficient of friction of the composite materials forming the bin 102 improves the discharge rate of the product from the interior volume 118 of the bin 102. The coefficient of friction of the inner surface 148 of the bin 102 may be reduced by the inner surface 148 having a low friction layer, which may improve the discharge rate of product from the interior volume 118 of the bin 102 and/or may allow for even shallower angled walls 112a, 112b to be utilised.


Although the bin 102 of the railway wagon 100 has been described above as being formed at least substantially of composite materials, it is also envisaged that the bin 102 could be formed from more traditional methods using metals such as, for example, steel. In this case, to improve the discharge rate of product from the interior volume 118 of the bin 102 through the discharge holes 128, one or more regions of the inner surface 148 of the bin 102 may comprise a low friction layer. The low friction layer may be one or physical components affixed at predetermined/preferred regions to the bin 102 within the interior volume 118. To improve the discharge rate of product flowing from a bin 102 formed from metal, it is preferable that at least the angled regions of the inner surface 148 of the bin 102 that are defined by the first angled wall 112a and the second angled wall 112b have a low friction layer. It is also envisaged that the inner surface 148, at least in part, may be defined by a liner that is received in the interior volume 118 of the bin 102, and that the liner has the low friction layer. Accordingly, it will be appreciated that the benefits described with respect to the bin 102 formed at least partially of composite materials (and described above) may also be achievable with a bin 102 that is formed of metal, in which its inner surface, at least in part, has a low friction layer, such as, for example, a gelcoat or the like.


Although the discharge doors 138 have been described above as being formed at least substantially of composite materials, it is envisaged that the discharge doors 138 may be formed of metals such as, for example, steel. To reduce the coefficient of friction of such metal discharge doors 138, the interior surface 142 of the discharge doors 138 may also have a low friction layer such as, for example, a gelcoat.



FIGS. 12 and 13 show railway wagons 200 according to a second embodiment of the present invention. The railway wagon 200 has a bin 202 configured to carry product such as, for example, iron ore or the like therein. The bin 202 is formed from two sections 203a, 203b joined together, thereby forming a split line 205 (see FIG. 13) extending along the length of the bin 202. Each section 203a, 203b is at least substantially formed of composite materials and is moulded as a single structure. It is also envisaged that each section 203a, 203b may be entirely formed of composite materials and moulded as a single structure.


Alternatively, each section 203a, 203b may be formed such that when they are joined together they form a split line extending across the width of the bin 202 or at any other angle. It is also envisaged that the bin 202 may be formed from more than two sections joined together and that there may be one or more split lines extending along the length of the bin 202 and/or one or more split lines extending across the width of the bin 202 or at any other angle. It is also envisaged that the bin 202 may be moulded as a single structure (i.e. having no split lines) and/or may be entirely formed of composite materials.


It is envisaged that the composite materials forming the bin 202 comprise a fibre-reinforced polymer composite, or fibre reinforced polymer matrix composites. It is also envisaged that the main fibre type used in the composite is glass fibre. However, fibres that may also be used in the composite material could include carbon fibre, aramid (Kevlar) fibre or the like. A thermosetting or thermoplastic resin is preferably used to set the fibres. Preferably, the resin is fire-retardant vinylester resin. However, any other suitable resins or adhesives known in the art may be used, including polyester resin, epoxy resin or the like.


The railway wagon 200 also has a frame 204 supporting the bin 202 and a pair of bogies 206a, 206b supporting the frame 204. Each of the bogies 206a, 206b has wheels 208 (only one labelled for clarity of illustration) configured in use to run on rails (not illustrated). Connected to bogie 206a is a rotary coupler 209a and connected to bogie 206b is a rotary coupled 209b. The rotary couplers 209a, 209b allow the wagon 200 to be rotated about a longitudinal axis of the wagon 200 and allow the wagon 200 to be coupled to other wagons.


The bin 202 has a base portion 210, a substantially upright first end wall 214a connected to the base portion 210, and a substantially upright second angled end wall 214b connected to the base portion 210 opposite the first angled wall 214a. Extending between the end walls 214a, 214b are longitudinal sidewalls 216a, 216b.


The base portion 210, the end walls 214a, 214b, and longitudinal sidewalls 216a, 216b define an interior volume 218 for carrying product therein. The end walls 214a, 214b and longitudinal sidewalls 216a, 216b define an opening 220 opposite the base portion 210. The opening 220 permits product to be received into, and discharged from, the interior volume 218 of the bin 202. It will be appreciated that rotating the wagon 200 about a longitudinal axis of the wagon 200 via the rotary couplers 209a, 209b allows product to be discharged from the interior volume 218 of the bin 200 through the opening 220.


Each of the junctions between the walls and each of the junctions between the walls and the base portion 210 of the bin 202 have a rounded profile 222. This rounded profile reduces product hang-up when discharging product from the interior volume 218 of the bin 202, thereby improving the discharge rate of the product from the bin 202.


The base portion 210 has a catchment area 224 located between the pair of bogies 206a, 206b and at least partially disposed below the frame 204. It will be appreciated that the catchment area 224 increases the interior volume 218 and therefore the product carrying capacity of the bin 202.


It will be appreciated that, in use, each of the bogies 206a, 206b, and therefore each of the wheels 208, will be displaced horizontally and vertically with respect to the bin 202. Similar to railway wagon 100, the bin 202 of railway wagon 200 has wheel arch portions 230a-d that are shaped and dimensioned to accommodate at least one wheel of a respective bogie 206a, 206b. Each of the wheel arch 230a-d space a respective wheel 208 at a distance from the bin 202, both horizontally and vertically, in order to accommodate for the vertical and horizontal displacement of the bogies 206a, 206b such that, in use, the wheels 208 do not contact the bin 202.


The inner surface (not shown) of the bin 202 is coated with a low friction layer that reduces the coefficient of friction of the inner surface of the bin 202. The low friction layer may be applied during manufacture of the bin 202, or may be applied after the bin 202 is manufactured. It is envisaged that the low friction layer is a gelcoat or any other suitable material known in the art for reducing the coefficient of friction of a surface.


The low friction layer provides a low friction, hard wearing surface that may also meet environmental exposure, chemical exposure, and fire requirements. The coefficient of friction of the internal surface of the bin 202 impacts on the discharge rate of product from the interior volume 218 of the bin 202. It will therefore be appreciated that the low friction layer reduces the coefficient of friction of the inner surface of the bin 202, which may improve the discharge rate of product from the interior volume 218 of the bin 202. The low friction layer may also provide abrasion resistance to the bin 202, which may provide protection to the bin 202 from abrasive materials such as, for example, coal, thereby potentially improving the service life of the bin 202.


Although the bin 202 of the railway wagon 200 has been described above as being formed at least substantially of composite materials, it is also envisaged that the bin 202 could be formed from more traditional methods using metals such as, for example, steel. In this case, to improve the discharge rate of product from the interior volume 218 of the bin 202, one or more regions of the inner surface of the bin 202 may comprise a low friction layer. The low friction layer may be one or physical components affixed at predetermined/preferred regions to the bin 202 within the interior volume 218. It is also envisaged that the inner surface, at least in part, may be defined by a liner that is received in the interior volume 218 of the bin 202, and that the liner has the low friction layer. Accordingly, it will be appreciated that the benefits described with respect to the bin 202 formed at least partially of composite materials (and described above) may also be achievable with a bin 202 that is formed of metal, in which its inner surface, at least in part, has a low friction layer, such as, for example, a gelcoat or the like.



FIG. 14 shows a railway wagon 300 according to a third embodiment of the present invention. FIG. 14 is a sectional view taken through a vertical plane of a longitudinal axis A-A of the wagon depicted in FIG. 15. The railway wagon 300 has a substantially (inverted) frustum shaped bin (or hopper) 302 being supported by a frame 340. The frame 340 rests on a pair of bogies 370, having wheels 372 adapted in use to run along a set of rails 20.


The bin 302 is substantially formed of composite materials. It is envisaged that the composite materials forming the bin 302 comprise a fibre-reinforced polymer composite, or fibre reinforced polymer matrix composites. It is also envisaged that the main fibre type used in the composite is glass fibre. However, fibres that may also be used in the composite material include carbon fibre, aramid (Kevlar) fibre and the like. A thermosetting or thermoplastic resin is used to set the fibres. Preferably, the resin is fire-retardant vinylester resin. However, any other suitable resins known in the art may be used, including polyester resin, epoxy resin or the like.


The bin 302 forms a container and has an elongated base 304. The base 304 includes tents 311 and doors 310. End walls 306 and side walls 308 extend upwardly from the base 304 to form an opening (not shown). The base 304, side walls 308 and end walls 306 define a bin 302 to hold material to be transported by the wagon 300 along the rails 20. In a preferred embodiment, components of the frame 340 are integral to the bin 302.


The base 304 of the bin 302 includes doors 310 adapted in use to permit the bulk material (not shown) held in the bin 302 to exit from low-points of the bin 302.


The frame 340 has ends 341 and 342. The frame 340 includes a pair of headstocks 343, 344, and a series of structural members 346 supported by respective end decks 350,351, which are supported by respective bogies 370. The structural members 346 ad transfer load from the bin 302 to the bogies 370. The load may include the weight of any bulk materials being transported in the bin 302. The structural members 346 further comprise cant rails 347 running along the top of the container side walls 308. At least some of the structural members 346 may be integrally formed with the bin 302. Structural members 346 being integrated into the walls 306 may use different materials, and the structural members 346 may also comprise shapes external to the bin 302. These external shapes may be used, for example, when permitted by volume and/or envelope restrictions and the like.


The side walls 308 may have diaphragms 312 extending inwardly from the side walls 308. As seen in FIG. 14, the diaphragms 312 are oriented vertically, which increases the structural rigidity of the side walls 308.


The base 304 includes base members 314 running transverse to the bin 302 of the wagon. The base members 314 provide structural support for the base 304. The base members 314 comprise base member portions 314a, 314b on each side of the base 304. The base member portions 314a, 314b (see FIGS. 19 and 21) include complementary base member portion end features 317, 318 for joining together. The base member portion end features 317, 318 may be complementary male and female features. The plane from which the sectional view of FIG. 14 is taken transects the base members 314 at the point where male and female end features are joined together. The base members 314 are preferably optimised to improve the flow of bulk materials, such as coal, from the wagon. In alternative embodiments, different base member portion end features may be used to achieve suitable joining of the base member portions.


Referring to FIG. 14, a first part of the end walls 306 extends upwardly from the base 304. The end wall 306 extends upwardly at an angle X from a horizontal plane extending between the ends of the frame 340. Preferably, the angle X is in the range of 25-50 degrees. Still preferably, X is about 45 degrees. (In contrast, the angle X for steel-bodied wagons is generally 50 degrees or more. See, for example the end wall 2 of the prior art wagon 12 in FIG. 11. The end walls 306 may further comprise a second part (not shown) extending upwardly from the first part at a different angle. As shown in FIG. 14, each of the end walls 306 is supported by a support member 307 extending upwardly from a respective end deck 350, 351. The end decks 350, 351 rest upon and are supported by a respective bogie 370 at the end of the wagon. The end decks 350, 351 have structural components for transferring load between the bin 302 and the bogies 370. Attached to the headstocks 343, 344 is draw gear 348 for joining wagons to each other or to a locomotive (not shown).


The sidewalls 308 extend upwardly and generally vertically from the base 304 and may include a second portion (not shown) extending inwardly to the opening (not shown). The sidewalls 308 are structurally supported by internally extending diaphragms 312. The weight of the bin 302 and load being carried in the bin 302 is supported by the structural members 346 of the bin 302. The structural members 346 then transfer the load to the end decks 350, 351. The structurally supporting components, such as structural members 346, diaphragms 312, base members 314 and the like, may be integral to the bin 302.



FIG. 15 is a top view of the wagon 300 according to an embodiment of the present invention. The base members 314 are transverse to the longitudinal axis of the wagon. As shown in FIG. 15, the base members 314 form tents 311 for directing the carried material towards the doors 310. The diaphragms 312 may extend across the base 304. The doors 310 are held closed when retaining bulk materials in the bin 302. The end walls 306 comprise wheel arches 309.



FIG. 16 shows load bearing structural members 346 in solid form and the sidewalls 308, end walls 306 and base 304 of the bin 302 are shown in semi-transparent overlay. The bin 302 comprises two portions 302a, 302b shown in different shaded colours.



FIG. 17 shows an inverted bin 302 according to an embodiment. The bin 302 comprises two body portions 302a, 302b in a joined-together state. Openings 313 are shown in which doors 310 (not shown) are installed. The wagon body base members 314 form tents 311, with doors 310 moveable between open and closed positions. In a closed position, the doors 310 are able to retain bulk materials in the bin 302. The end walls 306 include moulded wheel arches 309, allowing the end walls 306 to be closer to the bogies 370 (shown in FIG. 14).



FIG. 18 shows the inverted bin 302 with two portions 302a, 302b in a separated configuration prior to being joined together.



FIG. 19 shows two portions 302a, 302b of the bin 302 of a railway wagon in a separated state. Base member portions 314a, 314b are positioned with the base member portion end features 317, 318 aligned prior to the portions 302a, 302b being joined together.



FIG. 20 shows a view of the overlapping join between body portions 302a, 302b of an end wall of FIG. 19 in greater detail. In FIG. 20, the overlapping join consists of a male joint 321 and a female joint 322 into which the male joint 321 is extended to form the join when the body portions 302a, 302b are joined together. Alternative joints such as overlaps, flanged joints or the like may also be used.



FIG. 21 shows the bin portions 302a, 302b in a separated form with the male and female base member portion end features 317, 318 of the wagon body base member portions 314a, 314b in an aligned position prior to being joined.



FIG. 22 shows an end view of the bin 302 according to a preferred embodiment. Two separate bin portions 302a, 302b are joined to form the bin 302. The join between the portions extends down the end wall 306. The bin 302 further comprises structural members 346 including diaphragms 312. In alternative embodiments, the bin 302 may comprise only one significant body portion, or alternatively, multiple body portions may be joined together to form the bin 302.



FIG. 23 depicts structural components (e.g. structural members 346) of the bin 302 according to an embodiment. The structural components of the end decks 350, 351 and end wall support member 307 are also shown.



FIG. 24 depicts the end decks 350, 351 separated from the structural members 346 of the bin 302. Female connections 349b into which the wagon body structural member male connections 349a are joined are depicted in an exploded (separated) view.



FIG. 25 depicts the end decks 350, 351 and end wall support member 307.


In one embodiment, the draft gear pocket and/or the end decks may be formed of steel or at least substantially of composite materials. In another embodiment the railway wagon 300 may have a centre sill, which is not shown in the figures. The centre sill may be at least substantially fabricated from steel. Alternatively, the centre sill may be at least substantially fabricated from composite materials. The structural members of the frame comprise the side sills and/or the centre sill, where the centre sill is included.


In another embodiment, the centre sill may be omitted from the railway wagon 300, and loads may be transferred instead to side sills.


In a preferred embodiment, the railway wagon 300 is assembled from a number of components, with railway bin portions separately moulded.


In a preferred embodiment, the bin 302 comprises two substantial body portions being joined together. Where the portions join together, appropriate joining profiles are used to make the join effective. The joining of structural members extending between bins may be made using one or more male and female end joint profiles on each structural member. The types of joints used could include single lap joints, double lap joints or the like. The wagon bin joints may comprise at preformed joining piece such as a dowel or other structural component. The location of joints requires optimisation to ensure that joints are away from critical gauge areas so any thickness increase required does not significantly affect hopper volume. Further, the location of joints may be optimised to be positioned away from high stress regions.


In a preferred manufacturing embodiment of the railway wagon 300, fabrication of the bin portions includes forming a pair of bin portions from a single mould. The mould has complementary features in first and second halves. When two identical moulded body portions are produced from the mould, they have complementary features, such as wagon body base member portions with, for example, complementary male/female end features and male/female joints along end wall portions of the body portions. Rotating a first moulded bin portion around 180 degrees with respect to a second bin portion and aligning the two portions would have the effect of positioning these complementary features such that the two identical portions can be joined together to substantially form the wagon body.


The connections or bonding between composite materials in the bin 302 and embedded steel insert portions are formed during infusion of the resin with the composite fibre. The composite bin portions (bin halves) are joined together to form the bin 302. The process of joining together the body portions comprises joining the wagon body base member portions together to form body base members. Steel structures are then welded to the steel inserts portions previously embedded in the composite.


In alternative manufacturing embodiments, the entire bin 302 may be manufactured in a single step or mould to remove the step of joining the two body portions. A joining piece (or multiple pieces) may be used down the centre of the wagon between two bin portions.


In an alternative embodiment to forming the connection between composite materials and embedded steel insert portions during bonding of the resin with the composite fibre, the steel inserts or components may be post-bonded or bolted to the composite structure. Furthermore, the bonding may be performed such that the steel may not require welding after assembly.


Additional wagon body components may be affixed to the moulded bin 302 both before and/or after the body portions are joined together.


The doors 310 affixed to the base 304 of the wagon bin 302 are preferably made of a composite material. Preferably, the main fibre type used in the composite is glass fibre. However, fibres that may also be used include carbon fibre, aramid (Kevlar) fibre and the like. In a preferred embodiment, the doors comprise a composite sheath encasing a foam core. The composite doors 310 are shaped to increase both volume and stiffness.


The base 304 comprises fixed tents 311 and doors 310 between the tents 311. The tents 311 are fixed members having an “A” sectional profile such that bulk materials will be guided down the sides of the “A” towards the doors 310. The doors comprise hinges (not shown). Preferably, the door hinges will be moved outwards (toward the sides of the wagon) to allow narrowing of the tents 311, thereby increasing the wagon bin volume. The doors 310 will be built with a higher stiffness than conventional doors to enable the hinges to be repositioned as described. The smaller tent sizes and change in hinge positions will allow the doors to be larger, thereby increasing flow rates during unloading of the wagons 300.


The door hinges are preferably metallic and bolted to the door 310. The hinges are fabricated from steel, aluminium or the like. Inserts will be installed in the doors 310 and wagon 300 during manufacture of the composites to allow the doors 310 to be bolted to the hinges.


The doors further comprise pivot points. Preferably, the pivot points for the door mechanisms is similar to conventional railway wagon door pivot points and frames, however an alternate embodiment may comprise the frame being incorporated into the side sill.


When joining the bin 302 to the headstocks, the joint is designed to enable welding repairs to be performed on the steel by ensuring there is sufficient length between the composite and the steel. Procedures will be used to prevent damage to the composite when welding is performed.


Railway wagons according to embodiments of the present invention may have larger discharge doors which may increase discharge rates during unloading and therefore reduce unloading times. The increased door sizes should also lead to fewer hang-ups of the product being carried in the wagon body during unloading. Additionally, railway wagons 100, 200, 300 comprising a low friction layer (e.g. gelcoat surface treatment) to surfaces of the respective bin 102, the bin 202, or the bin 302 may also have a lower friction factor between respective surfaces and the carried product (compared with steel-bodied wagons), thereby contributing toward further improving unloading times of the railway wagons 100, 200, 300. Loading times for railway wagons according to embodiments of the present invention are not significantly affected when compared with prior-art wagons.


A preferred manufacturing method for forming the composite materials used to form the bins 102, 202, 302 includes resin infusion processes. The resin infusion process is understood by persons skilled in the art, and is a general term covering numerous slightly different techniques. Other options that could be used for all or part of the wagon may include, hand layup, pre-preg, spray lay-up and the like.


The composite material used to form the bins 102, 202, 302 may be a composite body laminate. The composite body laminate may comprise the composite material and a core material at predetermined locations. The type of core material will vary depending on the structural requirements at the particular location in the bins 102, 202, 302. Preferably, the core material will be a foam material, balsa material or the like.


To improve the transfer of loads, metallic inserts may be used at specific locations on the railway wagons 100, 200, 300 to transfer loads and allow fixings to be attached (bolts, etc.).


Where materials are to be joined by adhesive bonding in the railway wagons 100, 200, 300, a suitable bonding adhesive will be used.


Although depicted with an open bin 102, an open bin 202, and an open bin 302, the railway wagons 100, 200, 300 may also comprise one or more lids to contain the product within the respective bins 102, 202, 302 after loading and prevent water ingress.


The alternative embodiments described above may be used when forming different sections of the railway wagons 100, 200, 300 or during different stages of manufacturing the railway wagons 100, 200, 300 or wagon sub-components.


The low friction layer may provide high wear resistance, lower friction, UV protection and/or fire resistance (to the level required by the relevant standard). The application of a low friction layer provides enhanced freedom to use non-standard shapes when forming the bins 102, 202, 302 of the respective railway wagons 100, 200, 300 as it is applied more easily than with solid sheet-type surface covers. The low friction layer may contain various fillers to provide the required properties.


The low friction layer may be a wear resistant surface coating comprising a standard fire retardant low friction layer diluted with the infusion resin and fillers. The fillers may comprise carbon black (UV), UHMWPE (friction and wear), Zircon flour (wear) or Silica (wear) and the like. The low friction layer may begin with a base resin (such as vinylester or the like), and will further comprise additives common to standard gelcoats which may include fumed silica (thixotrope) plus other additives. Preferably, the low friction layer may further comprise a short fibre reinforcement (Kevlar, carbon, glass, etc) to improve toughness, and/or other resin toughness additives. Further optimisation of the low friction layer and additives may occur. Preferably, the Carbon black, UHMWPE and the wear additives will be used in the low friction layer.


Repairs to the composite portions of the bins 102, 202, 302 may be performed using standard composite repair procedures. For example, a damaged section may be ground away and new composite installed to replace the damaged section.


As the bins 102, 202, 302 are formed at least substantially from composite materials, the respective railway wagons 100, 200, 300 may be lighter than comparable all-steel wagons. However, another benefit, though being a compromise between manufacturing cost and weight of the railway wagons 100, 200, 300, may be the tare capacity per train. As the product carrying capacity of the bins 102, 202, 302 may be increased, the length of the train consist may be reduced whilst maintaining the same payload.


As the bins 102, 202, 302 are formed substantially from composite materials, they may provide noise damping and may reduce noise and vibration. In embodiments of the railway wagons 100, 200, 300 that do not comprise a steel centre sill, the noise damping and/or vibration benefits should be greater.


Although comprising composite materials, the rigidity of the bins 102, 202, 302 may be similar to conventional steel railway wagons. The railway wagons 100, 200, 300 are designed to fit into the dimensional constraints specified by the respective international rail network owners. The design flexibility afforded by construction of the bins 102, 202, 302 using moulded composites enables the shape of the bins 102, 202, 302 to be optimised to increase the product carrying capacity of the respective railway wagons 100, 200, 300 while the overall dimensions of the railway wagons 100, 200, 300 remain within the prescribed limits specified by international standards and rail network owners.


According to embodiments of the invention, the bin 102 and the bin 302 may comprise shallower angled walls and end walls, respectively, enabled by the reduced friction factor between the surfaces of the bin 102 and the bin 302 and the product being carried. The reduced angle of the angled end walls of the bin 102 and the reduced angle of the end walls of the bin 302 may enable the capacity of the railway wagons 100, 300 to be increased but may also reduce unloading times.


As the bins 102, 202, 302 are formed from composite materials, the bins 102, 202, 302 may be formed having complex shapes, which cannot be easily attained with traditional railway wagon bins. This may allow the bins 102, 202, 302 to be formed having shapes optimized for carrying different products, thereby improving the amount of product carried by, and the unloading times of, the railway wagons 100, 200, 300.


Although the invention has been described with reference to specific examples, it will be appreciated by those skilled in the art that the invention may be embodied in many other forms.

Claims
  • 1. A railway wagon comprising: a pair of bogies, each bogie having wheels configured in use to run on rails;a frame supported by the pair of bogies; anda bin supported by the frame, the bin having: a base portion defining at least one catchment area;a substantially upright first end wall;a substantially upright second end walltwo longitudinal sidewalls extending between the first end wall and the second end wall;an interior volume for carrying product therein, the interior volume being at least substantially defined by the first end wall, the second end wall, the two longitudinal sidewalls, and the base portion; andan opening opposite the base portion,wherein the bin is formed from at least two sections joined together, each section being formed at least substantially of composite materials and moulded as a single structure.
  • 2. The railway wagon of claim 1, wherein each catchment area is located between the pair of bogies.
  • 3. The railway wagon of claim 1 or 2, wherein the bin further comprises a centre sill and each catchment area at least partially straddles the centre sill.
  • 4. The railway wagon of any one of the preceding claims, wherein each catchment area has: at least one discharge hole for discharging product from the interior volume of the bin; anda discharge door operatively associated with each discharge hole, each discharge door being movable between an open position where product is able to pass through the respective discharge hole and a closed position where the respective discharge hole is sealed by the respective discharge door to prevent product passing through the respective discharge hole.
  • 5. The railway wagon of claim 4, wherein each discharge door has a scoop, the scoop being configured to hold product therein when the discharge door is in the closed position.
  • 6. The railway wagon of any one of claim 4 or 5, wherein each discharge door is formed from at least substantially of composite materials.
  • 7. The railway wagon of claim 6, wherein each discharge door is moulded as a single structure
  • 8. The railway wagon of any one of claims 4 to 7, wherein each discharge door has a low friction layer to reduce the coefficient of friction of the discharge doors.
  • 9. The railway wagon of claim 8, wherein the low friction layer of each discharge door is a gelcoat.
  • 10. The railway wagon of any one of the preceding claims, wherein the base portion comprises one or more tents configured to direct product towards at least one of the catchment areas.
  • 11. The railway wagon of any one of the preceding claims, wherein the bin further comprises: a first angled wall extending between, and coupled to, the base portion and the first end wall; anda second angled wall extending between, and coupled to, the base portion and the second end wall.
  • 12. The railway wagon of claim 11, wherein the first angled wall extends from the first end wall at an angle of 10 to 35 degrees, and the second angled wall extends from the second end wall at an angle of 10 to 35 degrees.
  • 13. The railway wagon of claim 9 or 10, wherein the first angled wall extends from the first end wall at an angle of 30 degrees, and the second angled wall extends from the second end wall at an angle of 30 degrees.
  • 14. The railway wagon of any one of claims 11 to 13, further comprising: a first support supported by a respective one of the bogies and configured to support the first angled wall and the first end wall; anda second support structure supported by the other bogie and configured to support the second angled wall and the second end wall.
  • 15. The railway wagon of any one of claims 1 to 3, wherein the bin is rotatable about a longitudinal axis of the wagon such that product is dischargable from the interior volume of the bin through the opening.
  • 16. The railway wagon of any one of the preceding claims, wherein the bin further comprises: a first wheel arch portion dimensioned to accommodate the wheels of a respective one of the bogies; anda second wheel arch portion dimensioned to accommodate the wheels of the other bogie.
  • 17. The railway wagon of claim 16, wherein, in use, each of the first wheel arch portion and the second wheel accommodates a vertical displacement and a horizontal displacement of a respective one of the bogies such that the wheels of the bogies do not contact the bin.
  • 18. The railway wagon of any one of the preceding claims, wherein the bin further comprises at least one diaphragm located in the interior volume of the bin, each diaphragm extending inwardly from the sidewalls and base portion.
  • 19. The railway wagon of any one of the preceding claims, wherein an inner surface of the bin has a low friction layer to reduce the coefficient of friction of the inner surface of the bin.
  • 20. The railway wagon of claim 19, wherein the low friction layer is a gelcoat.
  • 21. The railway wagon of any one of the preceding claims, wherein the at least one catchment area is one of a plurality of catchment areas.
  • 22. A railway wagon comprising: a pair of bogies, each bogie having wheels configured in use to run on rails;a frame supported by the pair of bogies; anda metal bin supported by the frame, the bin having: a base portion defining at least one catchment area;a substantially upright first end wall;a substantially upright second end walltwo longitudinal sidewalls extending between the first end wall and the second end wall;a first angled wall extending between, and coupled to, the base portion and the first end wall; anda second angled wall extending between, and coupled to, the base portion and the second end wall;an interior volume for carrying product therein, the interior volume being at least substantially defined by the first end wall, the second end wall, the first angled wall, the second angled wall, the two longitudinal sidewalls, and the base portion;an opening opposite the base portion,wherein one or more regions of an inner surface of the bin have a low friction layer to reduce the coefficient of friction of the inner surface of the bin at the respective regions.
  • 23. The railway wagon of claim 23, wherein the one or more regions of the inner surface include regions of the inner surface of the bin that are defined by the first angled wall and the second angled wall.
  • 24. The railway wagon of claim 23, wherein the entire inner surface of the bin has a low friction layer.
  • 25. The railway wagon of claim 23 wherein the inner surface of the bin is formed by a liner received in the interior volume of the bin and the liner has the low friction layer.
Priority Claims (1)
Number Date Country Kind
2017902048 May 2017 AU national
PCT Information
Filing Document Filing Date Country Kind
PCT/AU2018/000080 5/29/2018 WO 00