The invention relates to centrifugal cleaners and their reject chambers, which reject chambers have at least one dilution nozzle.
Centrifugal cleaners like hydrocyclones are known to be diluted at their bottom areas by many different ways. CA885026 discloses a dilution flow to the reject chamber of the cleaner. U.S. Pat. No. 4,696,737 discloses a hydrocyclone, which has an additional low solids flow tangentially cocurrently applied under the cone of the cyclone. Lightest particles will flow back to the primary cyclone and to an accept outlet. U.S. Pat. No. 4,151,083 discloses a countercurrent dilution flow, which will minimize the vortex flow within a reject chamber for promoting separation efficiency of heavy impurities. U.S. Pat. No. 2,927,693 discloses a tangential cocurrent dilution feed and a tangential reject outlet for enhancing the separation. EP1509331 discloses a central dilution nozzle, which extends a central dilution arrangement up to inside the cone interior. U.S. Pat. No. 2,953,248 discloses an arrangement for temporary dilution for cleaning a reject outlet of a centrifugal cleaner. The dilution flow cyclically blows out blocking particles from the reject outlet.
Centrifugal cleaners comprises normally three main parts: A top feed part, a cone and a reject chamber. The cleaners are often arranged in tight banks, which have plenty of cleaners. Then they are often arranged so that every second cleaner has a different direction of vortex which saves space and makes arrangement of conduits easier. Thus there has to be two different bodies for the top part of the cleaner units. If the vortex should be stopped in a reject chamber by a countercurrent dilution flow, also there has to be two different sets of reject chambers. The parts will wear and they are replaced at certain intervals. Having two similar but not interchangeable parts produce confusion and errors within limited servicing schedules. A dilution nozzle which extends up to the cone of the cleaner will partially block the bottom of the cone. It will also prohibit backflow of lightest particles from the reject chamber to the accept outlet. A cleaner should be operating constantly without blockages, which will cause quality losses and capacity problems.
A new way of slowing the vortex within the reject chamber has been developed. At least one sharp dilution fluid flow is directed outwards from a central dilution arrangement across the vortex flow coming from the cone part of the cleaner to the reject chamber. The dilution flow acts like an obstacle or a stick in the vortex flow and will slow it down. The reject chamber and dilution arrangement according to the invention is defined in detail by the claim 1 and a centrifugal cleaner having the inventive reject chamber and dilution arrangement is defined in claim 9.
The reject chamber has a central dilution arrangement, which has at least one dilution nozzle for delivery of dilution fluid to the reject chamber and the reject chamber has a reject outlet at the bottom of the reject chamber. When the at least one dilution nozzle sprays the dilution fluid flow across the annular space below the cone of the centrifugal cleaner, the circulating motion of fluid coming from the cone of the centrifugal cleaner to the reject chamber slows down. The flow of dilution water will go to outer periphery of the reject chamber and as the vortex is slower, lightest particles are able to move to the top center of the reject chamber and then go up to the accept outlet. The slowing of the vortex also reduces the wear of the reject chamber. Hard obstacles cannot perform the slowing as the rejected particles will wear them out fast and the dilution feed cannot happen by them. When separating pulp fibers, the suspension may contain particles of filler material. By the invention, the light filler particles can be better recovered from treated suspension. As the vortex is slowed within the reject chamber and the vortex in the cone is not affected, smallest reject particles have more time to separate out of accept flow. When the dilution arrangement has also a clearing nozzle, which is directed against the reject outlet, the flow of dilution fluid will keep the reject outlet clear of rejected particles. The same central dilution arrangement can thus perform also the cleaning task and only one dilution inlet is needed. The dilution arrangement can handle both vortex directions, if one sole dilution nozzle is at the opposite side of the dilution arrangement than the clearing nozzle and/or the reject outlet. If there are several dilution nozzles, they preferably are symmetrically aligned and the plane of symmetry is defined by the center of the reject outlet and the central axis of the dilution arrangement. If the reject outlet is asymmetrically positioned to the reject chamber, then the dilution and/or the cleaner nozzles may also be asymmetrically aligned and/or positioned for optimizing the process.
When the dilution arrangement does not extend up higher than the bottom end of the cone of the centrifugal cleaner, it will not block the upflow of the lightest particles to the accept outlet. The low dilution arrangement also helps avoiding blockages of rejected particles at the entrance of the reject chamber.
The dilution nozzles are easiest to manufacture when their horizontal axis point outward to radial direction. Still especially with asymmetric dilution arrangement, a horizontal alignment of the dilution nozzles against the direction of vortex can increase the slowing effect a bit. The alignment should horizontally differ less than 45 degrees from the direction of the inside radius of the dilution arrangement.
The flow of dilution fluid from dilution nozzles should be targeted to flow below the cone of the cleaner, but the length of the flow of dilution fluid should be short to be still effective at the outermost end of the flow where the vortex is strongest. A zero degrees horizontal alignment of the dilution nozzle should normally produce the shortest distance to the wall of the reject chamber. As the dilution nozzle will be under the bottom end of the cone, it may have to be targeted upwards to have effect suitable close to the end of the cone. The vertical alignment angle should be less than 60 degrees upwards from the horizontal plane. Most preferably the vertical alignment angle should be less than 45 degrees upwards for avoiding upward flow of dilution fluid. The actual optimal angle depends on the contour of the opposite wall. When the flow hits the opposite wall, it should be diverted mostly downwards. Manufacturing of the nozzles have the widest manufacturing process options, if a dilution nozzle and the clearing nozzle have the same central axis with the reject outlet.
The centrifugal cleaners can be assembled in other than vertical attitudes, but in this disclosure, the mentioned orientations refer to the attached drawings.
Preferably the dilution arrangement 3 has also a clearing nozzle 6. The clearing nozzle 6 is aligned to produce a sharp flow against a reject outlet 7. Then rejected particles will not build up a blockage on the reject outlet 7. The alignment preferably aims at the center of the reject outlet 7 but may also be aligned a bit upwards or downwards or aside of the center for optimizing the cleaning function. The dilution effect of the cleaning flow is reduced as the flow will go quite directly into the reject outlet 7. For making for example drilling and mould based manufacturing methods easier, the dilution nozzle 4 and the clearing nozzle 6 have the same central axis with the reject outlet 7. The diameters of the dilution nozzle 4 and the clearing nozzle 6 do not have to be equal and their inner shapes can be slightly tapered or have other substantially tubular shapes for optimizing properties of outflow. The clearing nozzle 6 should be at a lower level than the dilution nozzle.
Number | Date | Country | Kind |
---|---|---|---|
20195354 | May 2019 | FI | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2020/050051 | 1/30/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62799144 | Jan 2019 | US |