Printers provide a user with a hard copy of a document. A print head assembly is used to eject printing fluid or other printable material onto a print medium via a number of nozzles to form an image or text. In some examples, a carriage moves along a rod via a motor to position the print head assembly to selectively eject the printing fluid onto the print medium to form an image or text.
The accompanying drawings illustrate various examples of the principles described herein and are a part of the specification. The examples do not limit the scope of the claims.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
A print head assembly is used to eject printing fluid or other printable material onto a print medium via a number of nozzles to form an image or text. The print head assembly includes a fluid chamber to retain printing fluid inside of the print head assembly and to supply the printing fluid to nozzles. The nozzles of the print head assembly selectively eject drops of the printing fluid onto the print medium to form an image or text. As noted, in some examples, a carriage moves the print head assembly relative to the print medium such that the printing fluid ejected by the print head assembly can be properly placed on the print medium to form the image. The carriage is moved relative to the print medium by a motor and is guided by a rod. In other examples, the print head assembly spans an entire printable width of the print medium such that the print head assembly does not move, but still ejects printing fluid or other printable material onto the print medium to form an image or text.
While such a system is useful in depositing the printing fluid onto a print medium, some aspects of the system complicate its implementation. For example, since the nozzles of the print head assembly open to the exterior of the print head assembly and point downwards, the printing fluid or other printable material may leak out of the print head assembly via the nozzles if a negative pressure is not maintained in the fluid chamber. To combat this leakage, a negative pressure is maintained inside the fluid chamber. To maintain this negative pressure, a print head assembly may include components to regulate the pressure inside the fluid chamber of the print head assembly. These components may include moveable levers restrained by a spring which in turn operate a valve that admits fluid at a pressure and a flow rate suitable for printing such that the negative pressure is maintained in the fluid chamber to prevent the printing fluid from drooling from the nozzles.
However, these components in the print head assembly can be relatively large in size, have a large part count, and may be hard to assemble during time of manufacture. These factors add to the overall size, cost, and complexity of the print head assembly.
Accordingly, the principles described herein include a rocker valve to regulate pressure inside a fluid chamber of a print head assembly. Such a rocker valve includes a number of rails to transitionally connect an arm of a spring to the rocker valve such that the arm of the spring transitions across the rocker valve to actuate the rocker valve. As the arm of the spring moves along the rocker valve surface, a first side of the rocker valve selectively engages with a valve seat. More specifically, as the arm of the spring moves along the rocker valve surface, a number of pivot arms allow the rocker valve to pivot between a closed position and an open position such that the first side of the rocker valve selectively engages with the valve seat to regulate pressure inside a print head assembly.
In other words, the rocker valve is used to regulate the pressure inside of the print head assembly. Specifically, the rocker valve opens and closes based on the printing fluid demand of a print head assembly pulling printing fluid out of the fluid chamber. Further, the rocker valve is used to maintain a negative pressure in the print head assembly at all times through temperature and atmospheric pressure changes.
Such a rocker valve regulates the pressure inside of the print head assembly while reducing the size of the components in the print head assembly, reducing the part count to regulate pressure inside the print head assembly, and simplifying the manufacture of the print head assembly such that the overall size and complexity of the print head assembly is reduced while still delivering high performance.
In the present specification and in the appended claims, the term “transitionally connected” or “transitionally attached” refers to a connection or attachment between members where the point of connection or attachment can move or transition relative to at least one of the member where the connection is made. An example is an arm of a first member that is attached to a slider that is on a second member, where the slider is attached to, but slides with respect to, the second member on which it resides. This is one example of a transitional connection or transitionally attached. The arm is attached to the member and has a fixed attachment to the slider. However, the point of connection with the second member can move or transition because the slider slides thereon. Thus, to transitionally connect two members is to form a connection between them where a point of the connection is moveable, or can transition, with respect to the member at which that connection or attachment point is formed.
In the present specification and in the appended claims, the term “fluid chamber” refers a portion of a print head assembly that retains printing fluid. Specifically, the fluid chamber retains the printing fluid prior to the printing fluid being expelled by the nozzles. In an example, once the printing fluid is expelled by the nozzles, printing fluid from an external printing fluid supply or air flows into the fluid chamber to regulate the pressure inside of the print head assembly.
In the present specification and in the appended claims, the term “rocker valve” means a mechanism used to regulate pressure inside a print head assembly. The rocker valve transitions between an open position and a closed position by pivoting or rocking.
In the present specification and in the appended claims, the term “valve seat” means a component of a valve with an opening that is selectively covered by the valve. When the valve is not seated in the valve seat, the opening allows fluid to flow into the fluid chamber of the print head assembly. The fluid may be a liquid such as such a printing fluid or a gas such as air. A rocker valve selectively engages with a valve seat such that fluid is allowed to flow, or is prevented from flowing, through the opening in the valve seat into the fluid chamber of the print head assembly.
In the present specification and in the appended claims, the term “regulator bag” refers to a mechanism inside the fluid chamber that inflates or deflates in response to a difference in pressure. Specifically, the regulator bag inflates and deflates based on a change in the pressure relative to a location inside of a fluid chamber and a location outside of the fluid chamber. The regulator bag inflates when a pressure inside the fluid chamber decreases relative to a pressure outside of the fluid chamber (i.e. a pressure that is not desired and/or optimal). The regulator bag deflates when the pressure inside the fluid chamber increases relative to the pressure outside of the fluid chamber (i.e. until a negative pressure that is optimal is reached).
In the present specification and in the appended claims, the term “body” means a portion of a print head assembly. The body forms a fluid chamber to house a number of components for regulating pressure inside the print head assembly.
Further, as used in the present specification and in the appended claims, the term “a number of” or similar language is meant to be understood broadly as any positive number comprising 1 to infinity; zero not being a number, but the absence of a number.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present systems and methods. It will be apparent, however, to one skilled in the art that the present apparatus, systems, and methods may be practiced without these specific details. Reference in the specification to “an example” or similar language means that a particular feature, structure, or characteristic described in connection with that example is included as described, but may not be included in other examples.
Referring now to the figures,
A body (104) of the print head assembly (100) defines a portion of a fluid chamber (122) that houses a number of components. The fluid chamber (122) retains printing fluid, other printable material, air, or combinations thereof. For example, the fluid chamber (122) holds printing fluid that is to be delivered to nozzles of the print head assembly (100) for deposition on to a print medium.
In an example, a negative pressure is created and maintained inside of the fluid chamber (122). Maintaining a negative pressure inside of the fluid chamber (122) serves a number of purposes. For example, the print head assembly (100) includes a number of nozzles that are connected to the fluid chamber (122) and are open to the exterior of the print head assembly (100). The nozzles are used to eject printing fluid or other printable material from the fluid chamber (122) onto the print medium to form an image. Since the nozzles of the print head assembly (100) are open to the exterior of the print head assembly (100) and may point downward, the printing fluid or other printable material can leak out of the print head assembly (100) via the nozzles due to the effects of gravity.
Further, the printing fluid or other printable material may leak out of nozzles due to temperature and/or atmospheric pressure changes, such as when the printer is transported from one location to another location. As a specific example, as the temperature rises, the air, printing fluid, or other printable material expands inside of the fluid chamber (122). This expansion may reduce the negative pressure such that the printing fluid or other printable material can leak out of the nozzles. While the surface tension of the printing fluid or other printable material resists air bubbles from penetrating into the fluid chamber (122), extreme changes in atmospheric pressure or altitude, can cause the air bubble inside the fluid chamber (122) to expand such that the printing fluid or other printable material can leak out of the nozzles. In other words, a pressure difference between the inside of the fluid chamber (122) and the outside of the fluid chamber (122) is based on changes in temperature, atmospheric pressure, altitude, or combinations thereof. In some examples, these events (i.e. temperature changes, atmospheric pressure changes, or altitude changes) cause the pressure regulating component to transition between an open position and a closed position.
The print head assembly (100) as described herein addresses these events. Specifically, the print head assembly accounts for environmental changes, because the second arm (110-2) of the spring (1-8) translates a small distance on the rails (224) before crossing a specific section on the rocker valve (118) such that the rocker valve (118) transitions to the open position. As will be described below, a number of components are used to regulate pressure in the print head assembly (100) such that the printing fluid or other printable material does not leak out of the nozzles.
The print head assembly (100) also includes a lid (102) that defines a portion of the fluid chamber (122). The lid (102) attaches to the body (104) to provide a sealed fluid chamber (122) so as to maintain the negative pressure inside the fluid chamber (122). To create this seal, the body (104) includes a first sealing component such as ridges (120-1, 120-2). The ridges (120) are sized to fit into corresponding sealing components in the lid (102), such as a slot that receives the ridges (120). In this fashion, a seal is maintained between the body (104) and the lid (102). In other examples, seals, rubber gaskets, or other sealing mechanisms may be used to provide a seal between the body (104) and the lid (102).
As will be described in other parts of this specification, the lid (102) includes a number of mounts (702), as depicted in
Disposed inside the fluid chamber (122) is a regulator bag (114) that inflates or deflates in response to a difference in pressure as indicated by the arrow (1301). In an example, the regulator bag (114) is located between a bottom portion of the body (104) and a bottom section (112) of a spring (108).
As will be described below, the regulator bag (114) is attached to a fitment (116) that has an opening (912). The opening (912), as depicted in
A spring (108) is used to further regulate the pressure inside the print head assembly (100). The spring (108) includes a bottom surface (112). The bottom surface (112) of the spring (108) is in contact with the regulator bag (114). As the regulator bag (114) inflates and deflates, the bottom surface (112) of the spring (108) moves, as indicated by arrow 1302, such that the arms (110-1, 110-2) of the spring (108) deflect. The first arm (110-1) is securely connected to a mount on the lid (102) such that as the regulator bag (114) interacts with the spring (108), the first arm (110-1) does not move at an attachment point to the lid (102).
By comparison, the second arm (110-2) is disposed between rails (of a rocker valve (118), as depicted in
In other words, the regulator bag (114) inflates as fluid is drawn out of the fluid chamber (122) and the pressure in the fluid chamber (122) becomes more negative (i.e. the pressure decreases). Eventually the regulator bag's inflation translates the second arm (110-2) of the spring (108) as identified by arrow 1303 across the rails (224) to transition the rocker valve (118) from the closed position to the open position. As the regulator bag (114) deflates resulting from fluid flowing into the fluid chamber (122). In this example, the pressure in the fluid chamber (122) becomes less negative (i.e. the pressure increases). Eventually the regulator bag's deflation translates the second arm (110-2) of the spring (108) across the rails (224) to transition the rocker valve (118) from the open position to the closed position.
As descried above, the rocker valve (118) pivots, between an open position and a closed position as indicated by the arrow 1304 based on the inflation or deflation of the regulator bag (114). In the open position, the rocker valve (118) does not engage with a valve seat (106). This allows fluid such as air and/or printing fluid to flow into the fluid chamber (122) via the opening (506) in the valve seat (106). In the closed position, the rocker valve (118) engages with the valve seat (106). This prohibits fluid such as air and/or printing fluid to flow into the fluid chamber (122) via the opening (506) in the valve seat (106). As a result, the rocker valve (118) selectively engages with the valve seat (106) to regulate pressure within the fluid chamber (122).
In an example, the opening (506) in the valve seat (106) is sized such that the fluid is admitted at a pressure and flow rate suitable for printing and such that a desired negative pressure is maintained in the fluid chamber (122). In an example, the pressure is between 3 to 15 inches of water of negative pressure. However, depending on the design of the print head assembly (100) and the intended purpose of the printer, the pressure could be between 0 and 30 inches of water of negative pressure. In this example, the flow rate is between 20 to 25 cubic centimeters per minute. However, depending on the design of the print head assembly (100) and the intended purpose of the printer, the flow rate could be less than 20 cubic centimeters per minute or greater than 25 cubic centimeters per minute.
While this example has been described with reference to the components being located in specific locations within the print head assembly (100), the components can be located in any suitable location. For example, instead of the valve seat (106) and rocker valve (118) being located in the lid (102), the valve seat (106) and rocker valve (118) could be located in the body (104) as long as the spring (108) and regulator bag (114) are located appropriately within the print head assembly (100) such that the desired functions described above are maintained.
The rocker valve (118) is made of any material compatible with the fluid retained inside the fluid chamber (122). In other words, the rocker valve (118) is made of any material that does not degrade, erode, corrode, or otherwise deform when it comes in contact with the fluid in the fluid chamber (122). For example, the rocker valve (118) may be made out of plastic, such as polyoxymethylene. In another example, the rocker valve (118) is made out of a metal. Further, the rocker valve (118) may be made out of both a plastic and a metal. In some examples, the rocker valve (118) can be coated with a non-stick material to allow for a smoother pivot between the open position and the closed position. An example of such a non-stick material is a synthetic compound of fluoropolymer of tetrafluoroethylene such as polytetrafluorethylene.
The first side (222-1) of the rocker valve (118) selectively engages with a valve seat (106) based on a position of the second arm (110-2) of the spring (108) relative to the first side (222-1) of the rocker valve (118). The surface of the first side (222-1) of the rocker valve (118) may be smooth such that when the first side (222-1) of the rocker valve (118) engages with the valve seat (106), a seal is made between the first side (222-1) of the rocker valve (118) and the valve seat (106). As a result, fluid such as air and/or printing fluid cannot flow into the fluid chamber (122) when the rocker valve is in the closed position.
The second side (222-2) of the rocker valve (118) may be similar to the first side (222-1) of the rocker valve (118), in that it is smooth. However, the second side (222-2) of the rocker valve (118) is positioned at an angle (230) relative to a first side (222-1) of the rocker valve (118). In an example, the angle (230) is less than 90 degrees. In another example, the angle (230) is between 5 to 40 degrees. In another example, the angle (230) is 10 degrees. This angle (230) allows the rocker valve (118) to pivot between the closed position and the open position. For example, in the open position, a gap is created between the first side (222-1) of the rocker valve (118) and the opening (506) of the valve seat (106) to allow the fluid to flow into the fluid chamber (122). In the closed position, the first side (222-1) of the rocker valve (118) is flush against the valve seat (106) such that the fluid is prohibited from flowing into the fluid chamber (122).
The pivot arms (220) of the rocker valve (118) pivot the rocker valve (118) between a closed position and an open position.
In some examples the pivot arms (220) are triangular in shape as illustrated in
In an example the rocker valve (118) is symmetrical with respect to the dashed line in
As illustrated, in some examples, the rocker valve (118) includes a number of rails (224-1, 224-2). The rails (224) are used to guide the second arm (110-2) of the spring (108) along the rocker valve (118) such that the second arm (110-2) actuates the rocker valve (118). For example, the rails (224) guide the second arm (110-2) as it transitions between the first side (222-1) of the rocker valve (118) and the second side (222-2) of the rocker valve (118) based on the regulator bag (114) interacting with the spring (108) as described above.
As depicted in
While
Further,
Further, the valve seat (106) includes a material that has a predefined level of durometer or stiffness. Durometer is one of several measures of the hardness of a material and may be defined as a material's resistance to permanent indentation. By selecting the proper material durometer for the valve seat (106), the sealing function of the valve seat (106) may be optimized. For example, a relatively low durometer (i.e. soft material) may best function as to sealing the interface between the first side (222-1) of the rocker valve (118) and the valve seat (106).
The valve seat (106) includes a thin portion (508). The thin portion (508) is located between the dart head seat (504) and a seal face (514). The diameter of the thin portion (508) is smaller than the diameter of the dart head seat (504) and the seal face (514). This allows the valve seat (106) to be compression fitted into the opening (706) in the lid (102) such that the valve seat (106) is securely attached to the lid (102).
The valve seat (106) includes the seal face (514). The seal face (514) is located on the opposite end of the dart head seat (504). The top portion (512) of the seal face (514) sits flush with the top of the lid (102).
As illustrated, the valve seat (106) includes an opening (506). The opening (506) allows fluid to flow into the void fluid chamber (122) as described above.
While this example has been described with reference to the valve seat (106) being compression fitted into the lid (102), the valve seat's design could be altered such that the valve seat (106) isn't compression fitted into the lid (102). For example, the valve seat (106) and the materials of the valve seat (106) may be such that a volcano orifice is molded into the lid (102) and the seal includes an elastomer material attached to or co-molded into the rocker valve (118). As a result, the orientation of the valve seat (106) is reversed when the valve seat (106) is a volcano orifice is molded into the lid (102) instead of being compression fitted into the lid (102).
The spring (108) includes a bottom surface that interacts with the regulator bag (114). For example, as the regulator bag (114) inflates, the regulator bag (114) presses against the bottom surface (112) to compress the spring (108). In some examples, the spring (108) is not attached to, but rests on the regulator bag (114).
The spring (108) also includes a first arm (110-1), which as described above, is fixedly mounted to the lid (102).
By comparison, the second arm (110-2) of the spring (108) is free to move and is guided in movement along the rocker valve (118) via rails. The second arm (110-2) moves between a first side (222-1) of the rocker valve (118) and a second side (222-2) of the rocker valve as the spring (108) compresses and decompresses. This motion causes the rocker valve (118) to pivot, via the pivot arms (220), between the open position and the closed position as described above.
The spring force of the spring (108) is determined, at least in part, based on the operating pressure of the print head assembly (100). For example, if a print head assembly (100) is designed to operate at low pressures, the spring force of the spring (108) may be relatively low. However, for a print head assembly (100) that is designed to operate at extreme negative pressures, the spring force of the spring (108) may be relatively high. The spring force of the spring (108) may be defined by the following equation:
F=k*x Eq. 1
where F is the spring force, k is the spring constant of the spring (108) and x is the deformation of the arms (110) needed to transition the second arm (110-2) from a first side (222-1) of the rocker valve (118) to the second side (222-2) of the rocker valve (118). As a result, the spring constant can be adjusted based on the needs of the print head assembly (100) to maintain a desired negative pressure.
In some examples, the lid (102) includes a number of mounts (702) to securely attach the first arm (110-1) of the spring (108) to the lid (102) such that the first arm (110-1) of the spring (108) does not move when the spring (108) is compressed or decompressed. An example of the mount (702) is provided below in connection with
The lid (102) includes an opening (706) to house the valve seat (106). As mentioned above, the shape (e.g., the contour) of the opening (706) corresponds to the shape of the valve seat (106) such that the valve seat (106) can be compression fit into the opening (706).
In some examples, the lid (102) includes a number of assist stops (704) and a number of spring stops (814). The assist stops (704) prevent the second arm (110-2) of the spring (108) from moving past a certain point during assembly. In other words the assist stops (704) prevent the second arm (110-2) from coming off of the rails (224) during. Additional detail regarding the assist stops (704) and spring stops (814) is now provided connection with
Specifically,
The spring stops (814) are used during assembly to align the spring (108), specifically the second arm (110-2), to a desired position within the print head assembly (100). Once the lid (102) and the body (104) are assembled, the second arm (110-2) does not contact the spring stops (814) again. For example, the travel of the second arm is governed by a vertical height within the fluid chamber (122). In other words, the bottom section (112) collapses the regulator bag (114) against the lid (102) until further travel is limited by the lid (102). This happens before the second arm (110-2) contacts the spring stops (814).
In some examples, the lid (102) includes a number of assist stops (704-1, 704-2) to align the second arm (110-2) to the rails (224) of the rocker valve (118). Once the print head assembly (100) is assembled, the top portions (804) of the assist stops (704) prevent the bottom section (112) from contacting the rocker valve (118) when the spring (108) is at maximum compression. Without the assist stops (704), the bottom section (112) may contact the rocker valve (118) and push the rocker valve (118) to the closed position when the rocker valve (118) is supposed to be the open position.
Although
A second retainer (806-2) and a third retainer (806-3) of the first mount (702-1) allow limited movement of the first arm (110-1) in a second direction (810). For example, the first arm (110-1) can move in the second direction (810), until the portion (808) of the first arm (110-1) makes contact with the second retainer (806-2) or the third retainer (806-3).
In some examples, the chamber interface (116) includes a bag alignment stake (914). The bag alignment stake (914) is used to align the chamber interface (116) to the regulator bag (114) during assembly.
In some examples, the shape and size of the chamber interface (116) is similar to corresponding opening in the body (104) such that the chamber interface (116) is compression fit into the opening of the body (104).
With a threshold pressure created relative to a location inside of a fluid chamber (122) and a location outside of the fluid chamber (122), the regulator bag (114) inflates as indicated by arrow 1301-1. In this example, the threshold pressure is less than 3 inches of water of negative pressure. Further, the spring constant of the spring (108) may be such that as soon as the pressure inside of the fluid chamber (122) exceeds the threshold pressure, the regulator bag (114) starts to inflate and compresses of the spring (108).
As the regulator bag (114) inflates, the regulator bag (114) compresses a spring (108) as indicated by arrow 1302-1. When the spring compresses (108), the second arm (110-2) of the spring (108), which is transitionally attached to a rocker valve (118), transitions from a first side (222-1) of the rocker valve (118) to the second side (222-2) of the rocker valve (118) as indicated by arrow 1303-1 to actuate the rocker valve (118).
This allows the rocker valve (118) to transition from a closed position as depicted in
With a the rocker valve (118) in the open position, fluid is allowed to flow into the fluid chamber (122) to deflate the regulator bag (114) as indicated by the arrow 1301-2 and to (114) decompress the spring (108) as indicated by the arrow 1302-2. This allows the second arm (110-2) to transition from the second side (222-2) of the rocker valve (118) to the first side (222-1) of the rocker valve (118) as indicated by the arrow 1303-2. As a result, the rocker valve (118) actuates from the open position of
As the regulator bag (114) deflates, the regulator bag (114) decompresses the spring (108) and the second arm (110-2) of the spring (108) transitions from the second side (222-2) of the rocker valve (118) to the first side (222-1) of the rocker valve (118). This transitional motion pivots the rocker valve (118) to transition from the open position to the closed position. As a result, a desired negative pressure is restored within the fluid chamber (122) such that the printing fluid does not leak out of the fluid chamber (122) via the nozzles.
The preceding description has been presented to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/028695 | 4/21/2016 | WO | 00 |