The present invention relates generally to segments for camshafts as well as a method for their manufacture, more in detail it relates to the fixing of segments such as cam lobes on camshafts.
Generally, camshafts and their manufacture are well known in the art. Two types of camshaft designs dominate the market: solid camshafts and modular camshafts. Of these, solid camshafts generally provide a more durable design for high load applications but are more expensive and time-consuming to manufacture. Modular camshafts are more cost efficient as they provide a lightweight solution and facilitate high volume production. However, the cam lobes and other segments on a modular camshaft have to be fixed with a certain accuracy on the shaft.
EP 0 282 166 discloses a camshaft with an odd number of lobes on the inside of the lobes towards the shaft in contact with the shaft. The numbers in the paragraph refer to the figures in EP 0 282 166. Openings 15 are axially aligned, on a hollow tubular shaft 11 expanded into interference engagement with all of the element openings 15, wherein each of said non-round axial opening 15 has an odd number of regularly spaced lobes 16, said odd number being at least three, the periphery 20 of said opening 15 being primarily defined by joined outwardly-convex arcs 22, 23.
U.S. Pat. No. 5,826,461 discloses cam lobes that are attached by expanding the shaft.
US 2015/0026977 discloses that the cam lobe is shrunk onto the shaft by cooling the shaft and heating the segment.
DE 10 024552 discloses non solid camshaft lobes to be put on a shaft.
US 2010/0088890 discloses camshafts where the attachment is concentric.
DE 15 00 727 discloses fastening of machine parts having a non-round cross section on cylindrical surfaces.
It is still a problem in the art how to simplify the manufacture of camshafts 1 and make lighter and less expensive camshafts.
It is an object of the present invention to obviate at least some of the disadvantages in the prior art and provide an improved segment for a camshaft, a camshaft comprising such an improved segment and methods for their manufacture of for camshafts as well as a method for manufacture of a camshaft comprising such an improved segment.
In a first aspect there is provided a segment adapted to be mounted on a shaft to form a camshaft, wherein the segment comprises a through hole adapted to receive the shaft, and wherein the shape of the hole in the segment is adapted to the cross section of the shaft in such a way that when mounted, the segment has a strain causing it to exert a radial load on the shaft in at least two contact points, wherein an inner surface of the hole has at least one deviation to create at least three contact points between the segment and the shaft, wherein the at least three contact points are positioned asymmetrically about the circumference of the hole.
In a second aspect there is provided a camshaft comprising such an improved segment.
In a third aspect there is provided a method for the manufacture of a segment adapted to be mounted on a shaft to form a camshaft, comprising the steps of:
In a fourth aspect there is provided a method for the manufacture of a camshaft comprising at least one segment comprising the steps of:
Further aspects and embodiments are defined in the appended claims, which are specifically incorporated herein by reference.
One advantage is that lighter camshafts can be manufactured. Further the manufacturing process becomes easier. Another advantage is that the camshaft is simple and inexpensive to manufacture. Yet another advantage is that a higher precision in positioning and maintaining the position of the segment on the camshaft can be achieved.
A further advantage is that the segment is able to compensate for yielding of the material. If or when the material, in particular at the contact points between the segment and shaft yield with time, the pre-strain in the segment make the segment to act as a spring keeping a radial load on the shaft and thus compensating for the yielding.
The invention is now described, by way of example, with reference to the accompanying drawings, in which:
Before the invention is disclosed and described in detail, it is to be understood that this invention is not limited to particular configurations, method steps, substrates, and materials disclosed herein as such configurations, method steps, substrates, and materials may vary somewhat. It is also to be understood that the terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting since the scope of the present invention is limited only by the appended claims and equivalents thereof.
It must be noted that, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise.
If nothing else is defined, any terms and scientific terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains.
A deviation denotes a cavity or an indentation on the inner part of the segment. The deviation is a deviation from for instance a circular shape of the hole in the segment.
A segment denotes an object fixed on a shaft to form a camshaft. Examples of segments include but are not limited to a cam lobe 10, a gear 30 and a bearing journal 20.
In a first aspect there is provided a segment 10; 20; 30 adapted to be mounted on a shaft 2 to form a camshaft 1 as shown in
The segment is made such that the hole 11 is slightly different from the cross section of the shaft 2 onto which it is intended to be fixed. The hole 11 in the segment does not match the cross section of the shaft 2. In order to position the segment on the shaft 2, the segment is subjected to a clamping such that it deflects or is deformed and the hole 11 changes shape. When the segment is subjected to a radial clamping of suitable magnitude, the hole 11 changes shape such that the hole 11 matches the cross section of the shaft 2 and such that it is possible to insert the shaft 2 in the hole 11 in the segment. This is possible to achieve when designing shape of the segment. The segment may be subjected to a clamping of predetermined magnitude to deform the segment to a predetermined clamping distance in order to obtain the correct shape such that the cross section of the hole 11 matches the cross section of the shaft 2.
The clamping is in one embodiment applied radially to the segment. The clamping is typically applied such that the segment is pressed between two surfaces. In one embodiment the surfaces are adapted to match the shape the outer surface of the segment.
When the clamping is released the segment strives to change its shape back, but since the shape of the hole 11 in the segment and the cross section of the shaft 2 do not match, the segment will exert a radial load on the shaft 2 in at least two contact points. This radial load will hold the segment in the correct position on the shaft 2. The shape of the hole 11 in the segment and the cross section of the shaft 2 only match when a clamping is applied to the segment. Preferably, the clamping should be of a particular magnitude to deform the segment to a predetermined clamping distance. That way, the clamping action and thus deformation of the segment will be reproducible. If no clamping is applied to the segment it strives to revert to its original, equilibrium shape. This equilibrium shape is different and the cross section of the hole 11 does not match the cross section of the shaft 2. It is conceived that the match between the cross section of the shaft 2 and the shape of the hole 11 in the segment, when deformed to the predetermined clamping distance is such that the hole 11 in the segment is slightly larger than the cross section of the shaft 2 such that the segment easily can be put on the shaft 2. This margin can in the light of the description be determined by a skilled person for each application.
One example is depicted in
The cam lobe 10 acts as a spring, with a tendency to return to a shape of the hole 11 in the cam lobe 10 which is different from the cross section of the shaft 2, thereby creating a radial load on the shaft 2. This radial load holds the cam lobe 10 in the correct position.
In one embodiment the radial load exerted by the cam lobe 10 on the shaft 2 in the at least two contact points 12a, 12b is induced by the cam lobe 10 acting as a spring. The cam lobe 10 with load on the shaft 2 can be viewed as a spring clamping onto the shaft 2.
The inventors have found that the radial load to maintain the position of the segment on the shaft 2 is more effective with at least three contact points between the segment and the shaft 2 non-uniformly distributed about the circumference of the hole 11 in the segment; the optimal number of contact points is three. This is achieved by providing a deviation 13 on the inner surface 12 of the segment, i.e. by machining the segment to remove material such that the shape of the hole 11 departs from a circular or oval shape. One embodiment with a deviation 13 in a circular hole 11 is depicted in
The at least three contact points 12a; 13a, 13b are non-uniformly distributed about the circumference of the hole 11 in the segment. That is, the arc length between adjacent contact points along the circumference of the hole 11 is not equal for all contact points. In one embodiment, the arc length between at least one pair of adjacent contact points is different from the arc lengths between remaining adjacent pairs of contact points. In one embodiment the deviation 13 is substantially aligned with the minor axis b of the oval shape of the hole 11, i.e. opposite one of the two initial contact points 12a, 12b. In this case, the placement of the contact points 12a; 13a, 13b is symmetrical about the minor axis b of the oval hole 11, whereas the arc length between the two contact points 13a, 13b created by the deviation 13 is considerably smaller than the arc length between any of the two contact points 13a, 13b created by the deviation 13 and the opposite initial contact point 12a. Such a placement of the contact points 12a; 13a, 13b will lead to a self-locking effect of the segment on the shaft 2 when a torsional load is applied to the segment at a given point of action. Tests have shown that the radial load exerted by the segment on the shaft 2 at the contact points 12a; 13a, 13b increases with increased applied torque, thus maintaining the position of the segment on the shaft 2. The increased radial load results from the spring clamping effect of the segment striving to return to its original shape in combination with the non-uniform distribution of the contact points 12a; 13a, 13b.
In yet another embodiment there are four contact points, achieved by two deviations 13; 14 in the inner surface 12 of the hole 11 of the segment. Such an embodiment is depicted in
According to the invention the segments are made such that the segments exert a load on the shaft 2 holding the segments in place. The deformation (extension or contraction) of the segment is relatively small compared to the overall dimensions of the segments, but the segments can nevertheless be viewed as springs. When mounted on the shaft 2 the deformations of the segments are well below the elastic limit in one embodiment. Compared with a camshaft where the segments are pressed onto the camshaft through plastic deformation, the present invention offers segments acting a springs with a larger interval of possible deformation (extension or contraction) of the segment. This larger movement possibility gives a tolerance forgiving property to the segments and camshaft 1.
In one embodiment at least one of the shaft 2 and the circumference of the hole 11 in the at least one segment comprises grooves. In one embodiment at least one of the shaft 2 and the segment comprises at least one pattern selected from the group consisting of groves, ribs, flutes, serrations, and ridges. At least the part of the segment intended to be in contact with the shaft 2 comprises the pattern. In case additional securing of the segment on the shaft 2 would be necessary some kind of pattern on at least one of the shaft 2 and the circumference of the hole 11 in the segment is present. Examples of such a pattern includes but is not limited to groves, ribs, flutes, serrations, and ridges.
In one embodiment the at least one segment is made from one selected from the group consisting of a tube, a bar, and a forged object. In one embodiment the segments are made from a tube.
In one embodiment, the surfaces of the segment and/or the shaft 2 to be brought into contact are non-uniform before or after mounting of the segment on the shaft 2. This aids in creating distinct contact points to increase the torsional strength.
In one embodiment the segments are made from a tube which has the desired cross section. In one embodiment the tube has near the desired cross section. In one embodiment the cross section of the tube does not deviate more than 2% from the desired cross section of the segment. The tube with the desired cross section is then cut into segments, such as but not limited to cam lobes. The advantage is the ease of manufacture in large scale.
The camshaft 1 may comprise any material suitable for a camshaft. A skilled person can determine which materials are suitable for camshafts with regard to properties including but not limited to temperature resistance, wear resistance, strength and so forth. It is conceived that the shaft 2 and the at least one segment may comprise different materials or the same material. For instance, the shaft 2 is in one embodiment made of a first material, a segment which is a cam lobe 10 is made of a second material, a segment which is a gear 30 is made of a third material, and a segment which is a bearing journal 20 is made of a fourth material. In one embodiment the camshaft 1 comprises at least one composite material. In one embodiment the camshaft 1 comprises at least one composite material comprising a ceramic material and a steel. In one embodiment the camshaft 1 comprises at least one type of steel. In one embodiment the steel is of any grade manufactured with any method. In one embodiment the at least one segment comprises steel. In one embodiment the camshaft 1 comprises at least one engineering steel including but not limited to a through hardening steel, a case hardening steel, a quench and tempering steel and a micro alloyed steel. In one embodiment the camshaft 1 comprises at least one steel found in any one of the standards selected from EN 10083, EN 10084, EN 10085 and ISO 683-17.
In one embodiment the at least one segment is additionally fixed to the shaft 2 using at least one method selected from the group consisting of fixing with a mechanical lock, and fixing with bonding. Bonding includes but is not limited to welding and adhesive bonding. In one embodiment the additional fixing of the segment to the shaft 2 includes at least one selected from the group consisting of welding, brazing, soldering, riveting, and bolting. In one embodiment the at least one segment is additionally fixed to the shaft 2 using at least one method selected from the group consisting of fixing with a mechanical lock, fixing with welding, and fixing using an adhesive. Fixing with a mechanical lock includes but is not limited to fixing with a pin. If an additional securing of the segment would be necessary at least one of these methods can be used. It is also encompassed to use any other method known to a skilled person in order to additionally secure the segment. In many embodiments additional securing is not necessary.
In a third aspect of the invention there is provided a method for the manufacture of a segment adapted to be mounted on a shaft 2 to form a camshaft 1, comprising the steps of:
The segment is manufactured using any suitable method giving the pre-defined shape. The shape of the segment has to be designed to give the correct attachment strain. The design and cross section of the shaft 2 has to be considered when designing the segment. The hole 11 in the segment shall be large enough to allow the shaft 2 to be inserted when a clamping is applied to the segment. When the clamping is released the segment should allow appropriate fixing of the segment on the shaft 2.
In order to achieve reproducible results with high precision when manufacturing segments, the segment is preferably subjected to a controlled clamping to deform the segment to a predetermined dimension. This predetermined dimension is then also used when mounting the segment on the shaft to achieve a substantially identical cross-sectional shape of the hole 11 as when the hole 11 was formed during manufacture.
In one embodiment, the segment comprises a preformed hole 11 before the segment is subjected to clamping, as shown in
In one embodiment, the step of forming the deviation 13; 14 may be carried out before the step of forming the hole 11. For example, the deviation 13; 14 may be formed in the segment without any clamping applied. Subsequently, the hole 11 is formed with clamping applied. The deviation 13; 14 does not require applied clamping since the deviation 13; 14 does not need to be adapted to the cross section of the shaft.
In one embodiment the method further comprises the step of hardening the segment.
In one embodiment the cross sectional shape of the hole 11 when the clamping is applied is circular. In one embodiment the cross sectional shape of the hole 11 when the clamping is applied is circular with at least one deviation, as shown in
It is conceived that the clamping applied to the segment is adapted to deform the segment to a predetermined dimension, i.e. a specific, predetermined clamping distance. The clamping distance varies depending on the material and shape of the segment.
In one embodiment the hole 11 in the segment is made by clamping the segment radially and thereafter creating the hole 11. In one embodiment there is a preformed hole 11 in the segment and during clamping of the segment the hole 11 is made. In one embodiment a segment with a small hole is clamped, and thereafter a circular hole 11 is drilled in the segment while the clamping is still applied. Preferably, clamping is applied to deform the segment to a predetermined dimension. This will result in a segment with a hole 11 that is non-circular when no clamping is applied and which is circular when a clamping to deform the segment to the predetermined dimension is applied.
In a fourth aspect there is provided a method for the manufacture of a camshaft 1 comprising at least one segment comprising the steps of:
It is conceived that the clamping may be applied such that the segment is deformed to a predetermined dimension, substantially identical to the dimension of the segment during forming of the hole therein, such that the segment takes the desired shape to fit onto the cross section of the shaft 2.
The segment is positioned in the correct position on the shaft 2 and then the clamping is released such that the segment is fixed in the correct position.
In one embodiment the clamping distance is adapted such that the deformation of the segment is below the yield point such that the material in the segment does not deform plastically, but only deforms elastically when the clamping is applied. In an alternative embodiment the clamping distance is adapted such that the material in the segment deforms plastically when the clamping is applied. In both embodiments it is conceived that the segment at least to some extent shall be able to strive to change its shape such that a load from the segment into the shaft 2 is achieved.
In one embodiment the method further comprises the step of finishing the segment. Examples of finishing includes but are not limited to polishing, grinding, and milling.
In one embodiment the shaft is solid. In an alternative embodiment the shaft 2 is at least partially hollow. In one embodiment the shaft 2 is made from a tube.
In one embodiment the at least one segment is fixed to the camshaft 1 with at least one additional method.
The principle of attaching a segment such as a cam lobe 10 on a camshaft 1 is not only applicable to cam lobes, but also to other segments and objects to be attached to a shaft 2. On a camshaft 1 also other segments can be attached by using the same principle. Examples of such segments include but are not limited to bearing journals 20 and gears 30, as depicted in
All the described alternative embodiments above or parts of an embodiment can be freely combined without departing from the inventive idea as long as the combination is not contradictory.
Other features and uses of the invention and their associated advantages will be evident to a person skilled in the art upon reading the description and the examples.
It is to be understood that this invention is not limited to the particular embodiments shown here. The embodiments are provided for illustrative purposes and are not intended to limit the scope of the invention since the scope of the present invention is limited only by the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
16154290.7 | Feb 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/052457 | 2/3/2017 | WO | 00 |