The present invention relates to separation matrices, and more particularly to a separation matrix useful in antibody separation. The invention also relates to a method of separating antibodies on the matrix.
In the manufacturing of therapeutic monoclonal antibodies (mAbs), affinity chromatography on matrices comprising coupled Staphylococcus Protein A (SpA) or variants of SpA is commonly used as a first separation step to remove most of the contaminants. As the demand for therapeutic mAbs is increasing there is a strong driving force for improving the efficiencies of the separation processes and several approaches are under evaluation.
Multicolumn continuous chromatography processes are available, where the feed is applied to a first column and is then diverted to one or more subsequent columns as the first columns approaches saturation and the first column is eluted and regenerated to be loaded again during elution and regeneration of the subsequent column(s). Such processes can be denoted periodic countercurrent chromatography (PCC) or simulated moving bed (SMB) and are of considerable interest for separation of therapeutic mAbs, see e.g. U.S. Pat. No. 7,901,581, US20130248451, US20130280788 and U.S. Pat. No. 7,220,356, which are hereby incorporated by reference in their entireties. PCC/SMB processes can significantly increase the productivity, but it appears that the full potential cannot be reached with currently available separation matrices, which are designed for conventional batch chromatography.
Accordingly there is a need for new separation matrices specifically designed for continuous chromatography processes and for processes using such matrices.
One aspect of the invention is to provide a separation matrix allowing continuous separation of mAbs with high productivity. This is achieved with a matrix as defined in claim 1.
One advantage is that the matrix has a high binding capacity at very short residence times.
A second aspect of the invention is to provide a chromatography column allowing continuous separation of mAbs with high productivity. This is achieved with a column as defined in the claims.
A third aspect of the invention is to provide a multicolumn chromatography system allowing continuous separation of mAbs with high productivity. This is achieved with a system as defined in the claims.
A fourth aspect of the invention is to provide an efficient method of separating antibodies. This is achieved with a method as defined in the claims. One advantage is that the method allows very short residence times with high binding capacity.
Further suitable embodiments of the invention are described in the dependent claims.
In one aspect, illustrated by
The porous particles may comprise a crosslinked polysaccharide, which provides a large hydrophilic surface for coupling of the ligands, with minimal risk of non-specific interactions between mAbs or contaminants and the particles. The polysaccharide suitably has zero or very low (e.g. <5 micromol/ml) content of charged groups to prevent non-specific interactions. The crosslinking increases rigidity and chemical stability and can be achieved by methods known in the art, in particular by epoxide crosslinking, using e.g. epichlorohydrin or a diepoxide as crosslinker. Examples of polysaccharides can be dextran, cellulose and agarose. Agarose has the particular advantage that highly porous, rigid gels can be achieved by thermal gelation of aqueous agarose solution. The agarose can suitably be crosslinked by the methods described in U.S. Pat. No. 6,602,990, U.S. Pat. No. 7,396,467 or U.S. Pat. No. 8,309,709, which are hereby incorporated by reference in their entireties. Agarose crosslinked by these methods, so called high flow agarose, has a particularly advantageous combination of high rigidity and high porosity/pore volume, allowing high flow rates and rapid mass transport. High rigidity is particularly important for matrices having small particle sizes, to allow high flow rates without collapse of the matrix. The agarose can e.g. be allylated with reagents like allyl glycidyl ether or allyl halides before gelation, as described in U.S. Pat. No. 6,602,990. To allow for high binding capacities and rapid mass transport, the particles can advantageously have a large volume of pores accessible to macromolecular species like IgG antibodies. This can be determined by inverse size exclusion chromatography (SEC) as described in “Handbook of Process Chromatography, A Guide to Optimization, Scale-Up and Validation” (1997) Academic Press, SanDiego, Gail Sofer & Lars Hagel eds. ISBN 0-12-654266-X, p. 368. A suitable parameter for the accessible pore volume is the gel phase distribution coefficient, KD, determined for a probe molecule of defined size. This is a column-independent variable calculated from the retention volume VR for the probe molecule, the interstitial void volume of the column V0 and the total liquid volume of the column Vt according to KD=(VR−V0)/(Vt−V0). The porous particles can suitably have a KD value in the range of 0.6-0.8, such as 0.65-0.75 or 0.65-0.70, for dextran of molecular weight 110 kDa as the probe molecule.
The ligands can e.g. be derived from antibody-binding bacterial proteins, such as SpA (Protein A), Peptostreptococcus Protein L or Streptococcus Protein G. They may bind to antibodies such that the KD value of the interaction is at most 1×10−6 M, for example at most 1×10−7 M, such as at most 5×10−8 M. They can comprise an Fc-binding protein, such as SpA or and SpA variant, which binds to the Fc part of IgG molecules. They can comprise monomers, dimers or multimers of native or mutated Protein A Fc-binding domains. The native Protein A Fc-binding domains E, D, A, B and C are shown in
The ligands may additionally comprise one or more linker sequences of 1-10 amino acid residues, e.g. VDNKFN, ADNKFN, VDAKFD, AD or FN, suitably between the individual domains. In addition, the ligands may comprise a coupling moiety, e.g. a cysteine or a plurality of lysines at the C-terminus or N-terminus of the ligand, suitably at the C-terminus. The ligands may also comprise a leader sequence at the N-terminus, e.g. a scar or a residue after cleavage of a signal peptide and optionally also a copy of a linker sequence. Such a leader sequence may e.g. be a 1-15 amino acid (e.g. a 1-10 amino acid) peptide, e.g. AQ, AQGT, AQVDAKFD, AQGTVDAKFD or AQVDNKFN. Hence, a typical structure of a ligand may e.g. be Leader (Domain-Linker)n-1-Domain Coupling moiety. n may e.g. be 1-7, such as 1, 2, 3, 4, 5, 6 or 7.
In a second aspect, illustrated by
In a third aspect, illustrated by
In a fourth aspect, the invention discloses a method of separation of antibodies by affinity chromatography. This method comprises the steps of:
a) conveying a process feed through at least a first chromatography column as disclosed above, to adsorb antibodies from the feed. The process feed may e.g. comprise at least 4 mg/ml antibodies, such as 4-15, 4-10, or 4-5 mg/ml and/or the residence time in this step may e.g. be less than 2 min, such as 0.3-1 min or 0.3-0.8 min;
b) optionally washing the first chromatography column;
c) conveying an eluent through the first chromatography column to elute antibodies; and
d) recovering the eluent with antibodies.
The method can suitably be carried out in the chromatography system 10 disclosed above.
In certain embodiments of the method, in step a) an effluent from the first chromatography column 11 is passed through a second chromatography column 12 packed with the same separation matrix as the first column;
after step a), in a step a′), the process feed is redirected to the second chromatography column 12 and an effluent from the second chromatography column is passed through a third chromatography column 13 packed with the same separation matrix as the first and second columns;
after step a′), in a step a″), the process feed is redirected to the third chromatography column 13 and an effluent from the third chromatography column is passed through the first chromatography column 11;
step c) is performed before step a″);
after step a′), in a step c′), the eluent is conveyed through the second chromatography column 12 to elute antibodies;
after step a″), in a step c″), the eluent is conveyed through the third chromatography column 13 to elute antibodies; and
the sequence of steps a), a′), a″), c), c′) and c″) is optionally repeated one or more times.
The residence time in steps a), a′) and a″) may e.g. be less than 2 min, such as 0.3-1 min or 0.3-0.8 min.
The method may further, after steps c), c′) and c″) respectively, comprise steps e), e′) and e″), each comprising conveying a cleaning liquid through said first, second and third chromatography columns respectively. The cleaning liquid can be an aqueous alkali solution comprising at least 0.1M (e.g. 0.1-1M or 0.1-0.5 M) alkali. The alkali may e.g be NaOH, but can also be e.g. KOH. The cleaning (also called cleaning in place-CIP) step ensures that any residual feed components are removed from the columns before repetition of the binding and elution steps. Suitable, the ligands are capable of withstanding repeated alkali treatments, e.g. as discussed above where the matrix retains at least 95% of its original IgG-binding capacity after 5 h incubation with 0.5 M NaOH.
After steps e), e′) and e″) respectively, the method may also comprise equilibration steps f), f) and f′) to reequlibrate the columns for steps a), a′) and a″) respectively.
Columns: Three HiTrap 5 mL plastic columns (internal diameter 7.0 mm) packed with highly crosslinked spherical agarose beads to a bed height of 3.0 cm. The beads contained 11 mg/ml SpA variant ligands (tetramers of Zvar), covalently coupled via a C-terminal cysteine to high rigidity (crosslinked according to the procedure described in U.S. Pat. No. 6,602,990) agarose beads of 52 micrometers volume-weighted median diameter (d50,v), having a porosity corresponding to a KD value of 0.66 for dextran of Mw 110 kDa.
Feed: Clarified CHO cell supernatant containing 4.0 g/L of a monoclonal IgG antibody, filtered through a 0.22 micrometer filter. 752 g feed was mixed with 1253 g PBS buffer pH 7.4 to give a mAb concentration of 1.5 g/L before loading on the columns. The UV absorbance (300 nm) of this mixture was 695 mAu.
Chromatography: The columns were mounted in an AKTA™ PCC (GE Healthcare Bio-Sciences AB, Sweden) system with flowpaths similar to
The column turn-around time, including pump washes, was 14.5 min. The mAb concentration in the eluate was determined by measuring the 280 nm UV absorbance in cuvettes and calculating from a predetermined calibration curve.
Chromatograms from the experiment are shown in
At steady state, the dynamic capacity was on the average 43 g/L, at 45% breakthrough and 0.5 min residence time. The productivity, calculated as mAb concentration/(residence time*number of columns), with the residence time in h, was 60 g/L h.
This 3-column PCC experiment was run with the undiluted 4.0 mg/L supernatant of Example 1 as the feed. The residence time during loading was 2.5 min and the conditions as listed in Table 3. In this experiment, the UV absorption after each column was measured and used to automatically switch columns at 5% breakthrough.
The average amount of mAb in each column eluate was 270 mg and the dynamic binding capacity was on the average 54 g/L.
The dynamic binding capacity (10% breakthrough, Qb10) for mAb from the cell supernatant of Example 1 on columns of the same type as in Example 1 was determined as a function of residence time using standard methodology. The measurements were made a) on the same matrix as in Example 1 (Prototype) and b) on a matrix with larger bead size (Reference). In the latter case the matrix contained 10.5 mg/ml SpA variant ligands (tetramers of Zvar), covalently coupled via a C-terminal cysteine to high rigidity (crosslinked according to the procedure described in U.S. Pat. No. 6,602,990) agarose beads of 85 micrometers volume-weighted median diameter (d50,v), having a porosity corresponding to a KD value of 0.69 for dextran of Mw 110 kDa. The results are plotted in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims. Any patents or patent applications mentioned in the text are hereby incorporated by reference in their entireties, as if they were individually incorporated.
Number | Date | Country | Kind |
---|---|---|---|
1515339.8 | Aug 2015 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/069557 | 8/18/2016 | WO | 00 |