The invention relates to a sheet conveyor assembly, a sheet printer comprising such an assembly, a method for transferring sheets between conveyors, a computer-readable storage medium storing instructions, and a memory for storing data.
In a sheet printer an endless belt conveyor may be positioned over a suction chamber and facing a print assembly to provide a moveable sheet support surface during printing. The conveyor may comprise detectors for sensing the speed, position, and/or orientation of the belt and actuators which actively control the belt to maintain its position constant with respect to the print head assembly. The sheet is generally transferred to the belt in a predetermined position suitable for printing, which position was determined by means of a sheet registration device upstream of the belt conveyor. When transferring the sheet to the belt, undetected displacement may occur between the sheet and the belt, such that the position of the sheet on the belt is uncertain or unknown. The sheet may for example slip over the belt and trail behind its intended position. This could result in misalignment of the image printed on the sheet, as accurate knowledge of the sheet's position is required to timely start the jetting of ink droplets onto the sheet. It is known to eliminate such uncertainty by providing the print head assembly with means for directly sensing the position of the sheet irrespective of the belt. This may reduce productivity as a correction of the sheet's and/or belt's position has to be performed prior to printing. Direct sensing of the sheet may further be difficult to achieve in cases wherein the sheet is transparent or has a similar color and/or material as that of the belt. Additionally, such sensors require additional components, resulting in greater costs.
It is an object of the invention to provide an alternative sheet conveyor assembly, which allows for accurate transfer of the sheet between conveyors.
In accordance with the present invention, a sheet conveyor for a printer according to claim 1, a sheet printer according to claim 14, a method according to claim 15, and a computer-readable storage medium storing instructions according to claim 17. The sheet conveyor assembly for a printer comprises:
More specific optional features of the invention are indicated in the dependent claims.
In an embodiment, the sheet conveyor assembly further comprises a registration device for adjusting a lateral position and/or orientation of the sheet, such that the sheet is transferred from the second conveyor to the first conveyor in the lateral position and/or orientation determined by the registration device. The registration device is configured to position the sheet in a predetermined position with respect to the belt and/or a print head assembly for printing an image on the sheet. The registration device is configured to laterally shift and/or rotate the sheet. To avoid misalignment of the printed image on the sheet, the lateral position and/or orientation of the sheet should be maintained as the sheet is transferred onto the first conveyor. The longitudinal position of the sheet in the transport direction is further accurately tracked to time the arrival of the leading edge of the sheet with the start of the printing of the image, as the sheet moves synchronously with the first conveyor after release.
In an embodiment, the controller is configured to control the release of the sheet from the second conveyor after the holding force of the first conveyor is sufficient to prevent displacement of the sheet with respect to the first conveyor, preferably during and/or after transfer. Displacement of the sheet with respect to the first conveyor is avoided ensuring accurate tracking of the sheet's position by the controller. The sheet's lateral position and orientation have been determined by the registration device and the sheet is transferred to the first conveyor while maintaining said lateral position and orientation. Further, the longitudinal position of the sheet, i.e. its position in the transport direction, was determined and/or set by the registration device. In order to allow the controller to track further progress of the sheet without direct sensing, the sheet should be transported further in a controlled manner. While held by the second conveyor, the longitudinal position of the sheet may be tracked by and/or derived from transport information from the second conveyor. The controller may for example compare a speed of the second conveyor to an elapsed time since last determining the sheet's longitudinal position, for example in the registration device to determine the sheet's current longitudinal position. Similarly, the controller may track progress of the sheet on the first conveyor in a similar manner. This requires the sheet to be controllably handed over from the second to the first conveyor, without the sheet slipping or otherwise moving over the first conveyor after the second conveyor has released the sheet. Preferably the controller controls the first and second conveyors, such that the sheet moves synchronously with the first conveyor. This achieved by suitably timing the release of the second conveyor on or after the moment at which a secure holding of the first conveyor on the sheet is known to have been achieved. This moment may vary for different media types, dependent on their dimensions and materials. The controller's memory thereto stores suitable means for determining this release time upon selection of the applied media type. These means may include a look-up table and/or algorithm which yields a release timing upon selecting and/or inputting a certain media type for a sheet.
In an embodiment, the sheet is positioned on both the first and second conveyors when the controller controls the second conveyor to release the sheet. The release is performed while the sheet is still partially on or over the second conveyor. The second conveyor comprises preferably a holding device for actively holding the sheet, for example a transport pinch formed of opposing rollers, which can be moved apart from one another to release the sheet. At the moment of the release timing, the controller controls the holding device to release the sheet, which at that time is securely held by the first conveyor, such that the sheet is further transported synchronously with the first conveyor. It will be appreciated that dependent on the distance between the holding device of the second conveyor and the first conveyor certain shorter sheets may have passed or exited the holding device of the second conveyor before the determined release timing. Therefore, the holding device of the second conveyor is preferably adjacent or near the first conveyor.
In an embodiment, the controller comprises release timing determining means to derive the release timing from the selected media type parameter. The release timing determining means yield a release timing when a media type parameter is input or selected. The media type parameter has been determined when the sheet arrives the second conveyor. The media type parameter may be input via the user interface or as part of a print job prescribing the use of a certain media type. The release timing determining means apply the media type parameter to determine or derive the release timing belonging to a sheet of the respective media type. In another embodiment, the release timing determining means comprise a predetermined release timing or length parameter for each of media type in the media catalogue and/or an algorithm configured to derive release timing parameter from other predetermined, prestored characteristics for each of media type in the media catalogue, preferably a sheet dimension characteristic and/or a sheet air permeability characteristic. The release timing determining means may comprise a look-up table or list storing predetermined release timing properties per media type, for example as part of the media catalogue. Selection of the media type then automatically includes a selection of the respective release timing properties via the look-up table. The releases timing properties may be expressed as a point or position on the first conveyor, a time or distance measured from e.g. the arrival of the sheet at the first conveyor or any other suitably point, etc. The release timing determining means may further comprise an algorithm which determines or calculates a value for the release timing parameter for a media type based on one or more media characteristics in the media catalogue.
In an embodiment, the release timing determines a coverage of the sheet over the first conveyor, preferably wherein the coverage is proportional to a sheet dimension characteristic and/or a sheet air permeability characteristic. The holding force of the first conveyor is proportional to its coverage by the sheet. A sheet with a greater air permeability but similar dimensions will in most cases require a larger coverage to achieve the same secure holding on the first conveyor as a sheet with lower or zero air permeability. Sheets of the same material but with different dimensions may require different release timings to achieve sufficient coverage for a secure holding on the first conveyor.
In an embodiment, the sheet conveyor assembly further comprises a detector assembly for sensing the transport of the first conveyor, preferably a belt tracking sensor assembly. The progress of the sheet, specifically its arrival at the print head assembly, is determined by the controller from transport information generated by the detector assembly, specifically by the belt tracking sensor assembly. Since the handover of the sheet between the first and second conveyor was performed with accurate knowledge of the sheet's position, it is possible to determine the sheet's arrival at the print head assembly by detecting the movement of the belt. This allows the print head assembly to be controlled with the correct timing to position the image on the intended position on the sheet. The detector assembly may be formed of an optical detector configured to detect markers on or in the belt at different positions and/or comprise one or more encoders positioned at the belt, at one or more of its rollers, and/or at its drive
In another embodiment, the first conveyor comprises on the belt a moveable sheet support surface onto which the sheet is at least partially held while on the first conveyor. The belt forms a sheet support surface and the holding device is provided for holding the sheet against the belt. Such holdings means may be pressing means or electrostatic attractors, or preferably a suction chamber connected to a suction source for drawing in air through through-holes in the belt.
In an embodiment, the second sheet conveyor comprises a releasable holding device having a first state, wherein the sheet is actively held against a support surface of the second conveyor and a second state wherein the sheet is freely supported on the support surface of the second conveyor. The second conveyor comprises a holding device such as a pressing means, a suction source, electrostatic attractors, etc. which can controlled to whether or not actively hold the sheet against the support surface. The second conveyor comprises a transport pinch comprising at least one roller moveable in a direction perpendicular to a plane of the sheet away from the sheet on the second conveyor for releasing the sheet from the second conveyor. The roller can be moved to a remote position away from the support force to bring the holding device in the second state. In the first state the roller presses the sheet onto the support surface, which may be formed by one or more rollers, a support plate, etc. Preferably, the roller is part of the registration device, wherein the roller is opposite one or more independently driveable wheels or rollers for adjusting a lateral position and/or orientation of the sheet.
The present invention further relates to a sheet printer comprising the sheet conveyor assembly according to the present invention, wherein a print head assembly is positioned over the first conveyor and further comprising a detector assembly for sensing the transport of the first conveyor and a controlled configured to control the print head assembly to commence printing the sheet based on transport information from the detector assembly. The printer is preferably an inkjet printer with a controller which is able to accurately track further progress of the sheet beyond a point upstream of the first conveyor, at which point the sheet's position was determined or known. No additional direct sensing of the sheet beyond that point is required, since the sheet is controllably transferred to the first conveyor, such that the current position of the sheet can be accurately derived from the transport information from the detector assembly.
The present invention further relates to a method for transferring sheets having a predetermined position and/or orientation from a second conveyor to first conveyor, comprising the steps of:
When a sheet is transferred between two conveyors, the holding force of the first conveyor should be sufficiently large to prevent slippage between the sheet and the first conveyor before the second conveyor releases the sheet. On the second conveyor progress of the sheet is determined by the first conveyor, which allows the sheet's position to be determined based on transport information from the second conveyor. Further progress of the sheet on the first conveyor can only be accurately tracked from transport information of the first conveyor if the sheet is controllable transferred between the conveyors, i.e. without displacement of the sheet with respect to the first conveyor after the second conveyor releases the sheet. This is ensured by determining a suitable release timing for each media type applied. This determination is preferably performed by the printer's controller based on the input or selection of a certain media type. The sheet is released from the second conveyor on or after the determined release timing, for example after passing a predetermined length from the upstream end of the first conveyor. The release timing for each media type is selected, such that the holding force of the first conveyor is sufficiently great to prevent displacement or slippage between the sheet and the first conveyor after release. This allows the progress of the sheet towards the print head assembly to be accurately derived from the transport information of the first and second conveyors, such that the print head assembly can be controlled based thereon to position the image on the sheet at the intended position.
In an embodiment, the method further comprises the step of determining the release timing comprises determining a parameter corresponding to a minimal coverage of the sheet over the first conveyor, and wherein the second conveyor is controlled to release its holding on the sheet when said minimal coverage has been exceeded and/or reached. As indicated above, the release timing is a measure for the minimum amount of coverage a sheet of a certain media has to attain on the first conveyor to achieve secure holding.
The present invention further relates to a computer-readable storage medium storing instructions that when executed by a computer cause the computer to perform a method for using a computer system to print an image on a sheet, the method comprising:
The instructions instruct the computer to determine a release timing for a sheet of a certain media type based on said media type. The media type parameter is selected in correspondence to the media type of the applied sheets for a print job. The sheet is transferred from the second conveyor to the first conveyor with a predetermined position. By determining an appropriate release timing for releasing the sheet from the second conveyor, it is prevented that the position of the sheet shifts with respect to the first conveyor. The further progress of the sheet can then be derived from position transport information of the first conveyor in combination with the determined position of the sheet at the moment of release. This allows the sheet's progress towards the print head assembly to be tracked without directly sensing the sheet itself. Based on said progress, the print head assembly is controlled to timely commence printing on the sheet in order to correctly position the image on the sheet.
The present invention further relates to a memory for storing data for access by an application program being executed on a data processing system, comprising: a data structure stored in the memory, the data structure including information resident in a database used by the application program and including:
a first data object configured to identify a media type for a plurality of different media types for a sheet to be printed in a printer;
a second data object configured to upon selection of the media type of the first data object determine a release length or timing for, while transferring a sheet between two conveyors in a printer, controlling the upstream conveyor to release its holding force on the sheet in accordance with the release timing or length, thereby allowing the downstream conveyor to determine further progress of the sheet. The data structure includes a media catalogue, which comprises data objects that allow a media type of sheet top be determined or selected. The data structure further comprises a corresponding release timing or length data object for each media type object.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the present invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
The present invention will now be described with reference to the accompanying drawings, wherein the same reference numerals have been used to identify the same or similar elements throughout the several views.
The output section 5 comprises a first output holder 52 for holding printed image receiving material, for example a plurality of sheets. The output section 5 may comprise a second output holder 55. While 2 output holders are illustrated in
The output section 5 is digitally connected by means of a cable 60 to the print engine and control section 3 for bi-directional data signal transfer.
The print engine and control section 3 comprises a print engine and a controller 37 for controlling the printing process and scheduling the plurality of sheets in a printing order before they are separated from input holder 44, 45, 46.
The controller 37 is a computer, a server or a workstation, connected to the print engine and connected to the digital environment of the printer, for example a network N for transmitting a submitted print job to the printer 1. In
The controller 37 comprises a print job receiving section 371 permitting a user to submit a print job to the printer 1, the print job comprising image data to be printed and a plurality of print job settings. The controller 37 comprises a print job queue section 372 comprising a print job queue for print jobs submitted to the printer 1 and scheduled to be printed. The controller 37 comprises a sheet scheduling section 373 for determining for each of the plurality of sheets of the print jobs in the print job queue an entrance time in the paper path of the print engine and control section 3, especially an entrance time for the first pass and an entrance time for the second pass in the loop in the paper path according to the present invention. The sheet scheduling section 373 will also be called scheduler 373 hereinafter.
The sheet scheduling section 373 takes the length of the loop into account. The length of the loop corresponds to a loop time duration of a sheet going through the loop dependent on the velocity of the sheets in the loop. The loop time duration may vary per kind of sheet, i.e. a sheet with different media properties.
Resources may be recording material located in the input section 4, marking material located in a reservoir 39 near or in the print head or print assembly 31 of the print engine, or finishing material located near the print head or print assembly 31 of the print engine or located in the output section 5 (not shown).
The paper path comprises a plurality of paper path sections 32, 33, 34, 35 for transporting the image receiving material from an entry point 36 of the print engine and control section 3 along the print head or print assembly 31 to the inlet 53 of the output section 5. The paper path sections 32, 33, 34, 35 form a loop according to the present invention. The loop enables the printing of a duplex print job and/or a mix-plex job, i.e. a print job comprising a mix of sheets intended to be printed partially in a simplex mode and partially in a duplex mode.
The print head or print assembly 31 is suitable for ejecting and/or fixing marking material to image receiving material. The print head or print assembly 31 is positioned near the paper path section 34. The print head or print assembly 31 may be an inkjet print head, a direct imaging toner assembly or an indirect imaging toner assembly.
While an image receiving material is transported along the paper path section 34 in a first pass in the loop, the image receiving material receives the marking material through the print head or print assembly 31. A next paper path section 32 is a flip unit 32 for selecting a different subsequent paper path for simplex or duplex printing of the image receiving material. The flip unit 32 may be also used to flip a sheet of image receiving material after printing in simplex mode before the sheet leaves the print engine and control section 3 via a curved section 38 of the flip unit 32 and via the inlet 53 to the output section 5. The curved section 38 of the flip unit 32 may not be present and the turning of a simplex page has to be done via another paper path section 35.
In case of duplex printing on a sheet or when the curved section 38 is not present, the sheet is transported along the loop via paper path section 35A in order to turn the sheet for enabling printing on the other side of the sheet. The sheet is transported along the paper path section 35 until it reaches a merging point 34A at which sheets entering the paper path section 34 from the entry point 36 interweave with the sheets coming from the paper path section 35. The sheets entering the paper path section 34 from the entry point 36 are starting their first pass along the print head or print assembly 31 in the loop. The sheets coming from the paper path section 35 are starting their second pass along the print head or print assembly 31 in the loop. When a sheet has passed the print head or print assembly 31 for the second time in the second pass, the sheet is transported to the inlet 53 of the output section 5.
The input section 4 may comprise at least one input holder 44, 45, 46 for holding the image receiving material before transporting the sheets of image receiving material to the print engine and control section 3. Sheets of image receiving material are separated from the input holders 44, 45, 46 and guided from the input holders 44, 45, 46 by guiding means 42, 43, 47 to an outlet 36 for entrance in the print engine and control section 3. Each input holder 44, 45, 46 may be used for holding a different kind of image receiving material, i.e. sheets having different media properties. While 3 input holders are illustrated in
The local user interface 7 is suitable for displaying user interface windows for controlling the print job queue residing in the controller 37. In another embodiment a computer N1 in the network N has a user interface for displaying and controlling the print job queue of the printer 1.
The belt 74 is provided with a matrix of through-holes to draw in air through the belt 74. The belt 74 is positioned above a suction chamber 76 which is connected to a suction source 77, such as a pump or fan, via line 78. It will appreciated that the suction source 77 may be positioned remote from the suction chamber 76 by extending the line 78. To achieve good image quality the sheet 41 should be flatly positioned below the print head assembly 31. This prevents any irregularities in the sheet 41 from resulting in print artifacts. It further allows for a narrow print gap between the print head assembly 31 and the sheet 41, which allows for more accurate ink droplet positioning. Means for holding the sheet 41 onto the belt 74 other than suction may be applied for holding the sheet 41 onto the belt 74, such as mechanical pressing means, electrostatic charges, etc. A different conveyor type may further be applied instead of the endless belt 74, for example a plurality of stationary rollers, wheels, or other low friction transport devices combined with e.g. suction chambers, which allow for transport while holding the sheet 41 in its relative position.
Upstream of the first conveyor 70, the second conveyor 80 is positioned. The second conveyor 80 is formed of a transport pinch 82 in combination with a sheet guide, which in
The second conveyor 80 further comprises a registration 84 device for laterally shifting and/or rotating the sheet 41. In
As shown in
The controller 37 has determined a media type parameter (90A in
It will be appreciated that the media catalogue 90 in
Although specific embodiments of the invention are illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations exist. It should be appreciated that the exemplary embodiment or exemplary embodiments are examples only and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing at least one exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope as set forth in the appended claims and their legal equivalents. Generally, this application is intended to cover any adaptations or variations of the specific embodiments discussed herein.
It will also be appreciated that in this document the terms “comprise”, “comprising”, “include”, “including”, “contain”, “containing”, “have”, “having”, and any variations thereof, are intended to be understood in an inclusive (i.e. non-exclusive) sense, such that the process, method, device, apparatus or system described herein is not limited to those features or parts or elements or steps recited but may include other elements, features, parts or steps not expressly listed or inherent to such process, method, article, or apparatus. Furthermore, the terms “a” and “an” used herein are intended to be understood as meaning one or more unless explicitly stated otherwise. Moreover, the terms “first”, “second”, “third”, etc. are used merely as labels, and are not intended to impose numerical requirements on or to establish a certain ranking of importance of their objects.
The present invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
21175416.3 | May 2021 | EP | regional |