The present invention relates to a stack of two materials with different thermal expansion coefficients having a ratchet structure at the interface between the two materials.
A bimetallic strip is a stack of two materials with different thermal expansion coefficients, which is well known in the art as an element for converting thermal changes into mechanical changes. A bimetallic strip, which is used in various fields such as switching, is designed to utilize temperature-dependent changes in the degree of bending of the stack. When a bimetallic strip is cooled after being heated, the stack returns to the original shape as the temperature returns to the original level, so that the thermal change during the heating-cooling process is not stored as a mechanical change in shape.
The present inventors have found a structure capable of storing repeated cycles of heating and cooling as a mechanical change in shape.
An object of the present invention is achieved by the following aspects.
1. A stack comprising two members with different thermal expansion coefficients, the two members including a first member and a second member being on each other, the stack having a ratchet structure at an interface between the first member and the second member, wherein the first member has a thermal expansion coefficient greater than that of the second member.
2. The stack according to aspect I, wherein the ratchet structure satisfies formulas 1 to 3 below. Formula 1 for conditions for movement in the in-plane direction:
Formula 2 for conditions for movement in the thickness direction:
Formula. 3 for locking conditions:
θF>θB p1=t×tan θF p2=t×tan θB p=p1+p2 [Math 3]
In the formulas, each symbol means as follows,
[Math 4]
the entire length of the first member
l
thickness of the first member
h
[Math 5]
the thermal expansion coefficient in the in-plane direction of the first member
αLD
the thermal expansion coefficient in the thickness direction of the first member
αTD
the thermal expansion coefficient of the second member
α2 [Math 6]
the amount of change in temperature
ΔT
forward angle
θF
backward angle
θB [Math 7]
the length of projection of a movable-side inclined surface of resin (the first member)
p1
the length of projection of a lockable-side inclined surface of resin (the first member)
p2 [Math 8]
the working pitch in a micro ratchet structure
p
the working depth in a micro ratchet structure
3. The stack according to aspect 1 or 2, wherein the first member comprises a resin, and the second member comprises a metal.
The present invention makes it possible to store repeated cycles of heating and cooling as a mechanical change in shape. Moreover, the change in shape can be stored in the form of stress, namely, dynamic quantity.
Hereinafter, the present invention will be described in detail.
The stack according to the present invention includes two members, a first member and a second member, having different thermal expansion coefficients. The stack according to the present invention has a rachet structure at the interface between the first and second members being on each other.
As used herein, the term “thermal expansion coefficient” refers to a linear expansion coefficient per 1 K (×10−6/K) at a temperature of 23° C. to 55° C. In the present invention, materials with a thermal expansion coefficient of 10 or more are preferably used. The present invention can bring about advantageous effects as long as the two materials (first and second members) have different thermal expansion coefficients. Practically, the difference between the thermal expansion coefficients of the two materials may be 5 to 250 (×10−6/K), and preferably 20 to 200 (×10−6/K).
Examples of the resin include those having a thermal expansion coefficient of 60 to 250 (×10−6/K), such as polyethylene, polypropylene, nylon 6, acrylonitrile butadiene styrene (ABS) resin, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, liquid crystal polymer, and cycloolefin polymer. The resin may contain an inorganic filler for adjusting the thermal expansion coefficient.
Examples of the metal include those having a thermal expansion coefficient of 4 to 50 (×10−6/K), such as aluminum, chromium, titanium, iron, nickel, brass, copper, and alloys thereof such as stainless steel.
Examples of inorganic materials other than metal include those having a thermal expansion coefficient of 3 to 15 (×10−6/K), such as glass and ceramics. Examples of materials other than the above include composite materials such as carbon fiber reinforced plastics (CFRP) and glass fiber reinforced plastics (GFRP). For such composite materials, the fiber content or the fiber orientation angle may be adjusted for adjustment of the thermal expansion coefficient.
Examples of the combination of the two materials include a combination of resins, a combination of metals, a combination of a resin and a metal, a combination of a resin and a ceramic, and a combination of a resin and a composite material, which may be selected as appropriate. Among them, a combination of a resin and a metal is preferred.
In the ratchet structure at the interface between the two members of the stack according to the present invention, the first member and the second member play roles like a gear and a ratchet respectively (see
In present invention, the ratchet structure preferably satisfies formulas 1, 2, and 3 below as illustrated in
Formula 2 for conditions for movement in the in-plane direction:
Formula 3 for locking conditions:
θF>θB p1=t×tan θF p2=t×tan θB p=p1+p2 [Math 11]
In the formulas, each symbol means as follows.
[Math 12]
the entire length of the first member
l
the thickness of the first member
h [Math 13]
the thermal expansion coefficient in the in-plane direction of the first member
αLD
the thermal expansion coefficient in the thickness direction of the first member
αTD
the thermal expansion coefficient of the second member
α2 [Math 14]
the amount of change in temperature
ΔT
forward angle
θF
backward angle
θB [Math 15]
the length of projection of a movable-side inclined surface of resin (the first member)
p1
the length of projection of a lockable-side inclined surface of resin (the first member)
p2 [Math 16]
the working pitch in a micro ratchet structure
p
the working depth in a micro ratchet structure
t
Formula 1 defines conditions for movement in the thickness direction. Formula 2 defines conditions for movement in the in-plane direction, specifically, in the in-plane longitudinal direction. Formula 3 defines conditions for preventing return to the original state during cooling after heating.
In the present invention, thermal expansion and contraction should occur within the range of elastic deformation. During expansion (in the thickness and in-plane directions) of the whole of the first member with a greater thermal expansion coefficient, locking should be established if at least one of all in-plane pitches of the stack meshes with a portion different from the original portion of the micro ratchet structure. The stack satisfying formulas 1 to 3 can store repeated cycles of heating and cooling as a mechanical change in shape.
Referring to
The micro ratchet structure preferably has a working depth t equal to 0.05 to 2.3%, more preferably 0.1 to 1.0%, even more preferably 0.15 to 0.5%, and further more preferably 0.18 to 0.3% of the thickness of the first member. The actually measured value of the working depth t is preferably 1 to 160 μm, more preferably 2 to 100 μm, even more preferably 3 to 50 μm, and further more preferably 5 to 20 μm. The first member preferably has a thickness h of 1 to 10 mm, more preferably 1.5 to 8 mm, and even more preferably 2 to 6 mm.
The stack according to the present invention may have any shape. The shape of the stack may be such that the two members are both desired molded articles, such as sheets, or such that one of them is a cylinder and the other has a shape provided around the cylinder.
Number | Date | Country | Kind |
---|---|---|---|
2018-152268 | Aug 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/031636 | 8/9/2019 | WO | 00 |