The present invention generally relates to transaction devices, and more particularly, to a system and method for permanently or temporarily affixing a Radio Frequency operable transaction device to any article.
Like barcode and voice data entry, Radio Frequency identification (“RFID”) is a contactless information acquisition technology. RFID systems are wireless, and are usually extremely effective in hostile environments where conventional acquisition methods fail.
Companies that provide consumers with transaction accounts are looking for ways to permit RFID transaction completion. Because of its diminutive size, RFID technology may be incorporated in transaction devices that are dimensionally smaller than traditional smartcards or credit cards and the like. RFID technology, therefore, is better suited for securing against loss or theft. For example, companies have embodied the RFID technology in form factors that consumers are accustomed to keeping track of, such as a key chain, fob or tag. The key chain fob may be easily secured because of its diminutive size and because it is frequently handled by consumers as compared to traditional smart cards and transaction cards.
RFID transaction devices have the additional advantage of being more convenient to present for transaction completion than traditional transaction cards. For example, when using an RFID transaction device attached to a fob, the consumer need only present the RFID transaction device in proximity to an RFID reader instead of surrendering physical control of the transaction device which must be done with traditional credit cards and smartcards.
By providing an RFID transaction device (e.g., fob) as described above, transaction account providers are able to attract account consumers in increasing numbers. The account consumers often prefer account providers which offer the RFID transaction device option because of the convenience of use and the increased security using an RF transaction fob provides. As such, because of the increased popularity and benefits associated with RFID transaction devices, many banking and financing institutions, department stores, petroleum companies and other organizations have developed their own RFID transaction devices for use by the organization's consumers.
Key chain or fob form factors have a major drawback in that the form factors are still susceptible to being lost or misplaced by the fob owner. Additionally, the key chain or fob form factors are sometimes inconvenient in that the consumer must still handle the form factor to present it for transaction completion.
The present invention relates to a system and method for securing RFID transaction device and methods of using the same. Specifically, the system includes an RFID transaction device that may be secured to a consumer's person enabling transaction completion without the need for the consumer to manually present the transaction device.
An RFID transaction device is attachable to an article worn or carried by the consumer. In an exemplary embodiment, the RFID transaction device includes an RFID module for sending transaction account information in response to an interrogation signal provided by an RFID reader. The RFID module may be secured in an RFID module carrier housing that has an attachment apparatus for attaching the carrier housing to an article, such as a consumer's apparel, clothing, or an article transported by the consumer. In one embodiment, the attachment apparatus may be an adhesive pad affixed to the RFID module carrier housing for adhering the carrier housing to the article. The adhesive pad may include a glue or Velcro®, or the like, useful for permanently or temporarily affixing the carrier housing to a cloth, leather, or other textile surface.
In another exemplary embodiment, the attachment apparatus is an elastic band affixed to the RFID module carrier housing that is used to attach the carrier housing to a consumer's person, clothing, or any article carried by the consumer. The elastic band includes a first band end affixed to the carrier housing and the second band end affixed to a second opposing end of the carrier housing such that the band forms a loop including the carrier housing. Since the band is elastic the size of the loop may be adjusted by placing tension on the band to enlarge the loop permitting the consumer to insert an article between the elastic band and the carrier housing. Once the tension on the band is relaxed, the band surrounds and grips the article, affixing the carrier housing to the consumer, or to an article worn or carried by the consumer.
In yet another exemplary embodiment, the attachment apparatus includes an attachment apparatus housing having a torsion spring attached to a band for retracting a portion of the band into the attachment housing. The band is attached to the spring at a first band end and attached to the carrier housing at a second opposing band end so that a loop is formed between the band and the carrier housing. The size of the loop is adjusted by applying a force to the first band end attached to the torsion spring to remove a portion of the band from the attachment housing. The carrier housing is attached to an article by inserting the article in the loop and permitting the spring to place a force on the band to retract the band into the carrier housing, thereby reducing the size of the loop to constrict over the article.
In still another embodiment, the attachment apparatus includes a first string attached to a first end of the carrier housing and a second string attached to a second opposing end of the carrier housing. The first and second strings may be placed in proximity one to the other near the distal ends of the strings using a slideable string fastener, such that the first and second strings form a loop between the fastener and the carrier housing. The string fastener is operable to adjust the size of the loop for inserting an article in the loop between the fastener and the carrier housing. The carrier housing is affixed to the consumer, or to an article carried or worn by the consumer by sliding the fastener along the first and second string in proximity to the article, the fastener thereby promoting the constricting action of the loop around the article.
In still another embodiment, the attachment apparatus is a single continuous string where the first end of the string is attached to a first portion of the RFID module carrier housing and the second end of the string is attached to a second opposing portion of the RFID module carrier housing, such that the string forms a loop including the carrier housing. The continuous string is pinched along the loop by a string fastener forming a first smaller loop away from the carrier housing between the fastener and the carrier housing and a second larger loop. The string fastener is slideable for adjusting the size of the larger loop. The fastener is slid along the string and nearer to the carrier housing, thereby reducing the circumference of the larger loop permitting the loop to be constricted around an article. The constricting action secures the housing to a consumer, consumer's clothing, or to an apparatus carried by the consumer, as before.
Finally, another embodiment of the attachment apparatus includes a spring biased clamp affixed to the carrier housing. The spring biased clamp includes opposing jaws that are opened to permit an article worn or carried by the consumer to be inserted therein. The opposing jaws are permitted to close so that the clamp grips the article securing the carrier housing thereto.
The RFID module uses RFID technology to initiate and complete financial transactions. In that regard, the module includes an RF transponder, processor and antenna (“RFID components”) in the module body. The RFID components are typically included during the RFID module fabrication. The RFID module is a passive module, in that it transmits transaction account information when interrogated by an interrogation signal. That is, the interrogation signal operates to power the RFID components for transaction completion. Thus, the system in which an RFID transaction device, including the RFID module, is used includes an RFID reader operable to provide the interrogation signal for powering the RFID components, receiving an RF signal from the RFID module that includes RFID module identifying information, and providing the RFID module identifying information to a point-of-interaction device for transaction completion. The RFID reader is configured to send a standing interrogation signal that may be continuously or intermittently transmitted from the RFID reader via radio frequency (or electromagnetic) propagation. In an exemplary operation, the RFID module is placed within proximity to the RFID reader such that the interrogation signal interrogates the RFID module for transaction completion.
Additional features and advantages of the present invention are described in, and will be apparent from, the detailed description of the present exemplary embodiments and from the drawings.
A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, where like reference numbers refer to similar elements throughout the Figures, and:
The present invention includes a system and method for securing an RFID transaction device to an article. The RFID transaction device in accordance with this invention is operable to complete a transaction in a contactless environment using RFID technology. An exemplary transaction device useful with the invention includes a conventional RFID operable transponder system capable of receiving an interrogation signal and providing RFID transponder system identifying data for transaction completion. As used herein, the circuitry supporting the RFID operation of the transaction is called “RFID module” for consistency.
In general, the operation of system 100 may begin when RFID module 102 is presented for transaction completion. The transaction proceeds when RFID reader 104 provides an interrogation signal for powering RFID module 102, thereby providing the necessary power for activating the RFID components. Once RFID module 102 is activated, module 102 provides a transponder identifier and/or account identifier to RFID reader 104. RFID reader 104 then provides the identifier to merchant system 130 for transaction completion. More particularly, RFID reader 104 provides the identifier to POS device 110, which provides the identifier to account provider 140 via network 112 for transaction processing. Details for the operation of an exemplary RFID transaction completion system is found in U.S. patent application Ser. No. 10/192,488, entitled “SYSTEM AND METHOD FOR PAYMENT USING RADIO FREQUENCY IDENTIFICATION IN CONTACT AND CONTACTLESS TRANSACTIONS,” and its progeny which are hereby incorporated by reference.
RFID module 102 includes any conventional RFID operable device, and as such, will only be briefly described with reference to
RFID reader 104 includes any conventional RFID reader configured to provide an interrogation signal and receive a transaction account identifier from an RFID transaction device. RFID reader 104 communicates with RFID module 102 via an antenna 106. Antenna 106 may be configured as an external and/or internal antenna. Additionally, RFID reader 104 is in communication with a merchant system 130 via a suitable data link for providing the transaction account identifier thereto. In one exemplary embodiment, merchant system 130 includes a POS device 110 in communication with an RFID reader 104 (via a data link), for receiving the transaction account identifier.
POS 110 is any device capable of receiving transaction account information from RFID reader 104 and forwarding the information to an account provider for transaction completion. In this regard, POS 110 is any point-of-interaction device or transaction device acceptance device as is known in the art.
POS 110 receives the transaction account identifier and provides the transaction account identifier to an account provider 140 via a network for transaction completion. Account provider 140 includes any entity facilitating completion of a transaction using an RFID module, and includes systems permitting transaction completion using at least one of a preloaded and non-preloaded account. Typical account providers may be, for example, American Express®, MasterCard®, Visa®, Discover®, and the like.
A transaction account identifier, as used herein, includes any identifier for an account (e.g., credit, charge, debit, checking, savings, reward, loyalty, or the like) which is maintained by a transaction account provider (e.g., payment authorization center) and which is used to complete a financial transaction. A typical account identifier (e.g., account data) is correlated to a credit or debit account, loyalty account, or rewards account maintained and serviced by the typical account provider noted above.
A transaction account identifier includes, for example, a sixteen-digit credit card number, although each transaction account provider has its own numbering system, such as the fifteen-digit numbering system used by American Express®. The transaction account identifier is stored on database 1906 as Track 1 and Track 2 data as defined in ISO/IEC 7813, and further is made unique to RFID module 102. In one exemplary embodiment, the transaction account identifier includes a unique module serial number and consumer identification number, as well as specific application applets. Database 1906 is configured to store multiple account identifiers issued by the same or different account providing institutions. Where the account identifier corresponds to a loyalty or rewards account, the database 1906 is configured to store the attendant loyalty or rewards points data.
One advantage of RFID technology is that the technology can be embodied in a diminutive form factor that is easily secured. For example, RFID technology may be embodied in an RFID module 102 of about one inch by one inch. In one embodiment, RFID module 102 is secured in an RFID module carrier housing 200 shown in
In one exemplary embodiment, RFID module 102 is fabricated to securely snap into carrier housing 200 using mating grooves on recess side walls 204 and RFID module side walls 103.
In an alternate embodiment shown in
According to another embodiment, an RFID transaction device 300 includes an attachment apparatus enabling a consumer to affix device 300 to an article. “Attachment apparatus” includes any device enabling RFID transaction device 300 to be securely affixed to an article worn or carried by a consumer or to the consumer's person.
Suitable adhesive pad 600 includes an adhesive that permanently affixes RFID transaction device 300 to an article. Alternatively, pad 600 includes an adhesive that removably affixes RFID transaction device 300 to the article. In such an embodiment, pad 600 is a two-sided tape. The adhesive included in pad 600 includes a pull strength in the range of about 4 oz./sq. in. to about 64 oz./sq. in. The pull strength of the adhesive is sufficient to hold RFID transaction device 300 attached to an article, but is not so adhering that a consumer needs to apply an extraordinary force to intentionally remove RFID transaction device 300 from the article. The adhesive may be such that the adhesive substantially covers the entire surface of pad 600 contacting the article, but covers sufficient surface to firmly bond RFID transaction device 300 to the article.
In an alternate embodiment, adhesive pad 600 is replaceable, such as, when the adhesive character of pad 600 is diminished through use or damage. In such an embodiment, adhesive pad 600 is removed and replaced with a replacement adhesive pad as desired. A consumer need only remove pad 600 from carrier housing 200 and replace pad 600 with a substantially unused pad 600 of similar construction. This embodiment is useful when pad 600 comprises a two-sided tape construction.
In an alternate embodiment, adhesive pad 600 is comprised of a Velcro®-like material. In this instance, RFID transaction device 300 is affixed to an attachment surface having an irregular pattern to support Velcro® mating properties. For example, RFID transaction device 300 is affixed to a terry cloth, wool, or other material with a surface that has a surface capable of being hooked by the Velcro® materials. The adhering properties of Velcro® in this regard are well understood and will not be discussed herein in detail.
To secure the RFID transaction device of
With reference to
Band 802 is removed from channel 822 by exerting a force on a portion of band 802 outside channel 822 in a direction away from spring 804, and is retracted into channel 822 by spring 804 when the removing force is partially or fully released. When band 802 is removed thusly, loop 820 between attachment apparatus housing 810 and band 802 increases in circumference, and spring 804 stores elastic energy as the coils of spring 804 are tightened. The elastic energy causes spring 804 to exert a force on band 802 relative to the amount of the removing force. A consumer inserts an article in loop 820 and releases the removing force resulting in band 802 grasping the article inserted in loop 820. Notably, band 802 may be elastic, thereby increasing the overall elastic energy in the attachment apparatus.
A second end 1008 of first string 1002 and a second end 1012 of second string 1004 is threaded through a slideable string fastener 1014 capable of immovably locking a portion of first string 1002 and second string 1004 in proximity to each other. In this position, a loop 1030 is defined by RFID transaction device 300, first string 1002, second string 1004, and fastener 1014. Suitable string fasteners useful with this invention include fasteners operable to immovably tighten along the length of string 1002 and 1004 at any desired location. Exemplary fasteners include a drawstring tightening member, drawstring clamp or cord lock fastener, and/or the like as are found in the art. The operation of such fasteners are well known and will not be discussed in detail herein.
Briefly, string fastener 1014 is locked such that fastener 1014 tightens at any desired position along the length of first string 1002 and second string 1004. In one instance, fastener 1014 is configured to tighten in proximity to first string end 1008 and second string end 1012, thereby increasing the circumference of loop 1030 between RFID transaction device 300 and fastener 1014. To attach RFID transaction device 300 to an article, fastener 1014 is tightened along the length of first string 1002 and second string 1004 in proximity to carrier housing 200 with the article interposed in loop 1030 such that first string 1002 and second string 1004 tighten around the article.
Although the embodiment described with respect to
In an alternate embodiment, clamp 1202 is a single molded clamp (e.g., clamp 1402) as is shown in
Finally,
In another embodiment, RFID transaction device 300 is embedded into other form factors, for example, such as form factors 1502, 1506, 702, 1802 an/or the like illustrated in
With respect to an exemplary embodiment depicted in
The present invention may be described herein in terms of functional block components, screen shots, optional selections and various processing steps. Such functional blocks may be realized by any number of hardware and/or software components configured to perform to specified functions. For example, the present invention may employ various integrated circuit components (e.g., memory elements, processing elements, logic elements, look-up tables, and the like), which may carry out a variety of functions under the control of one or more mircroprocessors or other control devices. Similarly, the software elements of the present invention may be implemented with any programming or scripting language such as C, C++, Java, COBOL, assembler, PERL, extensible markup language (XML), JavaCard and MULTOS with the various algorithms being implemented with any combination of data structures, objects, processes, routines or other programming elements. Further, it should be noted that the present invention may employ any number of conventional techniques for data transmission, signaling, data processing, network control, and the like. For a basic introduction on cryptography, review a text written by Bruce Schneier entitled “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” published by John Wiley & Sons (second edition, 1996), herein incorporated by reference.
In addition, many applications of the present invention could be formulated. The exemplary network disclosed herein may include any system for exchanging data or transacting business, such as the internet, an intranet, an extranet, WAN, LAN, satellite communications, and/or the like. It is noted that the network may be implemented as other types of networks, such as an interactive television network (ITN).
Further still, the terms “Internet” or “network” may refer to the Internet, any replacement, competitor or successor to the Internet, or any public or private inter-network, intranet or extranet that is based upon open or proprietary protocols. Specific information related to the protocols, standards, and application software utilized in connection with the Internet may not be discussed herein. For further information regarding such details, see, for example, Dilip Naik, Internet Standards and Protocols (1998); Java 2 Complete, various authors, (Sybex 1999); Deborah Ray and Eric Ray, Mastering HTML 4.0 (1997); Loshin, TCP/IP Clearly Explained (1997). All of these texts are hereby incorporated by reference.
By communicating, a signal may travel to/from one component to another. The components may be directly connected to each other or may be connected through one or more other devices or components. The various coupling components for the devices can include but are not limited to the Internet, a wireless network, a conventional wire cable, an optical cable or connection through air, water, or any other medium that conducts signals, and any other coupling device or medium.
Where desired, the system consumer may interact with the system via any input device such as, a keypad, keyboard, mouse, kiosk, personal digital assistant, handheld computer (e.g., Palm Pilot®, Blackberry®), cellular phone and/or the like. Similarly, the invention could be used in conjunction with any type of personal computer, network computer, work station, minicomputer, mainframe, or the like running any operating system such as any version of Windows, Windows NT, Windows 2000, Windows 98, Windows 95, MacOS, OS/2, BeOS, Linux, UNIX, Solaris or the like. Moreover, although the invention may frequently be described as being implemented with TCP/IP communications protocol, it should be understood that the invention could also be implemented using SNA, IPX, Appletalk, IPte, NetBIOS, OSI or any number of communications protocols. Moreover, the system contemplates the use, sale, or distribution of any goods, services or information over any network having similar functionality described herein.
A variety of conventional communications media and protocols may be used for data links providing physical connections between the various system components. For example, the data links may be an Internet Service Provider (ISP) configured to facilitate communications over a local loop as is typically used in connection with standard modem communication, cable modem, dish networks, ISDN, Digital Subscriber Lines (DSL), or any wireless communication media. In addition, the merchant system including a merchant Point-of-Sale (POS) device and host network may reside on a local area network which interfaces to a remote network for remote authorization of an intended transaction.
The preceding detailed description of exemplary embodiments of the invention makes reference to the accompanying drawings, which show the exemplary embodiment by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments may be realized and that logical and mechanical changes may be made without departing from the spirit and scope of the invention. Thus, the preceding detailed description is presented for purposes of illustration only and not of limitation, and the scope of the invention is defined solely by the appended claims and their legal equivalents when properly read in light of the preceding description. For example, although the present description illustrates the invention as embodied in a rectangular or square carrier housing, the invention is not so limited. That is, the present invention contemplates the incorporation of RFID technology into any diminutive form factor presentable for transaction completion. Additionally, the present invention contemplates attaching an RFID module to an article using any of the attachment methods described herein without the use of a carrier housing.
This application is a continuation-in-part of, and claims priority to, U.S. application Ser. No. 10/746,781, entitled “A SYSTEM AND METHOD FOR MANUFACTURING A PUNCH-OUT RFID TRANSACTION DEVICE,” filed Dec. 24, 2003. This application is also a continuation-in-part of, and claims priority to, U.S. patent application Ser. No. 10/192,488, entitled “SYSTEM AND METHOD FOR PAYMENT USING RADIO FREQUENCY IDENTIFICATION IN CONTACT AND CONTACTLESS TRANSACTIONS,” filed Jul. 9, 2002 (which itself claims priority to U.S. Provisional Patent Application No. 60/304,216, filed Jul. 10, 2001). The application is also a continuation-in-part of and claims priority, to U.S. patent application Ser. No. 10/340,352, entitled “SYSTEM AND METHOD FOR INCENTING PAYMENT USING RADIO FREQUENCY IDENTIFICATION IN CONTACT AND CONTACTLESS TRANSACTIONS,” filed Jan. 10, 2003 (which itself claims priority to U.S. Provisional Patent Application No. 60/396,577, filed Jul. 16, 2002). The entire contents of each of these applications is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60304216 | Jul 2001 | US | |
60396577 | Jul 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10746781 | Dec 2003 | US |
Child | 11161105 | Jul 2005 | US |
Parent | 10192488 | Jul 2002 | US |
Child | 11161105 | Jul 2005 | US |
Parent | 10340352 | Jan 2003 | US |
Child | 11161105 | Jul 2005 | US |