This invention relates generally to heating, ventilation and cooling systems for use in buildings. In particular, the invention relates to systems for supplying air to a room.
When supplying fresh air to a room for comfort purposes (improvement of air quality and/or modification of room temperature), it is desirable that occupants in the room do not perceive the air flow as an uncomfortable draft. For this purpose, the shape and size of the opening through which the air is supplied to the room is critical.
Often, one makes use of the so-called “Coanda effect” for securing draft-free conditions. In brief, the Coanda effect is the tendency of a fluid jet to be attracted to a nearby surface, or vice versa. In air conditioning, the Coanda effect is exploited to increase the throw of e.g. a ceiling mounted diffuser. Because the Coanda effect causes air discharged from the diffuser to “stick” to the ceiling, it has a longer throw and thus travels farther before dropping for the same discharge velocity than it would if the diffuser was mounted in free air without the neighbouring ceiling. Lower discharge velocity means lower noise levels and, in the case of variable air volume (VAV) air conditioning systems, allows for use of lower air volumes. The fundamental principle is to have fresh air, often sub-cooled, enter the room in a basically horizontal direction close to the ceiling. Resulting pressure and flow conditions ensure that a wall jet is formed that clings to the ceiling and travels the length of the room along the ceiling, despite higher density of the cooler inlet air.
It is also possible to have inlet air enter the room in a basically vertical direction upwards toward the ceiling. When the jet hits the ceiling, it will change direction and follow the ceiling, and the Coanda effect establishes itself. Using such basic principles, it is possible to ensure that 1) the whole room is supplied with fresh air, and 2) the velocity and temperatures of the jet are reduced to comfortable draft-free levels before the fresh air reaches the occupied zone, due to entrainment with room air. The horizontal distance from the inlet opening at which a certain air speed is established (typically 0.2 m/s) is commonly named the “throw” of the jet.
Flow rate and temperature of the supplied air are subject to controlled variation, such as is often encountered if the air-handling air conditioning device is “demand controlled”, i.e. controlled by the need for improving air quality or changing air temperatures. In such cases it is a challenge to ensure that the inlet air stream jet maintains comfortable draft-free conditions for the occupants and at the same time travels the full length of the room, meaning that the “throw” be kept at a level suitable for the room in question.
The problem solved by the invention is to ensure constant or near constant “throw” of the inlet air stream jet under variable conditions.
The invention solves the problem by providing a system for supplying air under the ceiling of a room, the system comprising a pair of air inlet openings arranged side by side at a horizontal distance from each other, each air inlet being configured to supply an air stream into the room in an air stream direction having a direction component parallel to the ceiling, wherein the pair of air inlet openings are controllable to assume
a first configuration where the supplied pair of air streams have first air stream directions spanning a first span angle and form a first angle with the ceiling, and the pair of air streams are substantially distinct air streams, and
a second configuration where the supplied pair of air streams have second air stream directions spanning a second span angle smaller than the first span angle and form a second angle with the ceiling and are directed lower than in the first configuration, and the pair of air streams combine to form a combined air stream.
In the first configuration the pair of air streams are given first and second air stream directions spanning a relatively large span angle whereby the air streams are relatively divergent and relatively independent of each other, and each air stream has a throw ensuring the desired distribution of the air. The air streams are directed somewhat upwards toward the ceiling whereby the air streams will spread horizontally below the ceiling. The first configuration is thus suitable for supplying relatively high volumes of air to the room while still ensuring the desired throw and distribution of air.
In the second configuration the pair of air streams are given first and second air stream directions spanning a relatively small span angle whereby the air streams are relatively convergent and combine, and the air streams are further directed more horizontally than in the first configuration whereby the Coanda effect is used to ensure a desired throw for the combined air stream. The second configuration is thus suitable for supplying relatively low volumes of air to the room while still ensuring the desired throw and distribution of air.
In an exemplary use of the system of the invention the pair of air inlet openings are controllable to assume the first configuration for supplying a relatively high air flow in divergent directions and with a direction component towards the ceiling, and the second configuration for supplying a relatively low air flow where the supplied pair of air streams have second air stream directions are non-divergent and do not have direction components towards the ceiling.
In
Each opening 10, 11 has a geometrical size that results in an essentially three-dimensional jet of the inlet air with e.g. a circular or oval cross section, as opposed to a mainly two-dimensional plane jet. The inlet openings 10, 11 are shown having a rectangular opening, but the openings may have any other suitable shape.
In
In
In
The positions of the baffles 12 are not limited to the first and second configurations shown here, but they can assume intermediate configurations and configurations beyond the interval defined by the above first and second configurations. The size and shape of the inlet openings can be different, and they can be controlled individually to obtain asymmetrical air flow conditions, if desired. The number of air inlet openings is not limited to two as shown here, but the ventilation apparatus can have three or more inlet openings according to need. The described change of direction of the air jets is intended to accompany a change in volume flow.
Jets are directed upwards and to the side to create two distinct jets which are essentially separate as illustrated in
The two separated jets are directed towards the ceiling, which in turn cause them to spread out across the ceiling in a radial pattern, forming a radial wall jet or planar jet instead of a circular jet.
This broad air stream has a large contact surface to the surrounding room air, which consequently is effectively entrained into the inlet jet causing air velocities to drop due to larger volumes of air being set in motion.
The end result of the separated radial flows is that the “throw” is kept relatively short in spite of the large flow rate considered.
Jets are directed e.g. straight ahead and horizontally as illustrated in
At intermediate flow rates, the directions of the two jets can be varied to intermediate positions between those of the first and second configurations.
By choosing appropriate opening sizes corresponding to the volume flow, this principle ensures that the throw is kept nearly constant at a large variety of volume flows.
It is also possible to use the vacation of jet direction to prevent down draft in the case of large temperature difference between the inlet jets and room air. Cold inlet air has a tendency to drop because of density difference, thus creating an uncomfortable down-draft. By forming a more concentrated jet this can be prevented. This can be regulated automatically by measuring inlet temperature and room temperature as well as volume flow. However, care must be taken that velocities are not too high.
Number | Date | Country | Kind |
---|---|---|---|
15157610.5 | Mar 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/054556 | 3/3/2016 | WO | 00 |