The invention belongs to the field of medical equipment, and specifically—data analysis of ultrasound images as well as ultrasound images using the contrast medium. This is a system and a method for the automatised early diagnostics of pancreatic pathology and pancreatic necrosis. This description presents a system and a method for the automatised early diagnostics of acute pancreatitis in humans.
The ultrasound examination of the pancreatic tissue and the ultrasound examination with a contrast medium is one of the most accessible, safest (not involving the ionising radiation) and cheapest imaging methods to assess the condition of pancreas as well as adjacent tissues and other abdominal organs. This method allows assessment of the changes characteristic for acute pancreatitis in the pancreas and other organs as well as pancreatitis-associated local complications. The contrast media used during the ultrasound examinations are considered the safest ones; differently from the contrast media used during CT and MRI scans, they are not associated with the nephrotoxic effect. Ultrasound examination with the contrast medium allows both qualitative and quantitative real-time assessment of tissue perfusion (dynamic examination).
Methods of automatised processing of medical image and data provide added value and information for diagnosis-related decision making.
The document of USA patent US2015/0201907 contains a description of the method indicated for automatised detection of fluid effusion in the diagnostic ultrasound images of human abdomen. Effusion of fluids occurs because of internal bleeding. The suggested method is intended for automatised detection of liver and kidney location as well as aggregates of effused fluids using the procedures for processing of digital ultrasound images.
Patent application WO2017/075509 has disclosed the application of the non-invasive diagnostics technologies based on different physical principles (including ultrasound) and the use of the classifier installed in the software for automatised detection of a breast neoplasm.
Patent EP3510917 mentions the application of artificial intelligence (machine learning) for the automatised detection of the informative area in the images of human optical coherence tomography.
The patent US2014/0185895 document describes automatised detection of the informative area contour of the abdominal tissues of the human foetus in the diagnostic ultrasound images. As well as creation of a statistical model, involving characteristic features of the ultrasound images.
The patent US2018/0276821 document discloses the automatised detection and classification of liver neoplasms in the contrast-enhanced ultrasound (CEUS) diagnostic images. An automated analysis of image informative area is carried out at time intervals and at a spatial resolution. In addition, provision of a clinical decision support functionality for diagnostics applying a classifier installed in the software.
Acute pancreatitis diagnostics algorithm and application of ultrasound technique has been described in the documents of patents RU2649528 and RU2622611.
The automated solutions for non-invasive diagnostics of human internal organs described in the above-mentioned document have certain limitations as compared with the solutions disclosed in this description:
Our invention describes a system and a method for automated analysis of diagnostic images and data of human pancreas affected by acute pancreatitis obtained by the ultrasound imaging technique with and without a contrast media. As a result of ultrasound examination with and without a contrast media an added value of automated clinical decision support is obtained involving automatised quantitative assessment of the viability pancreatic tissue and dynamics of perfusion in the examined pancreatic area.
The obtained quantitative information facilitates and accelerates the final clinical diagnosis making process for the acute pancreatitis and other pathologies as well as planning of possible surgical or radiological interventions or further treatment tactics. Up to now, such functionality during the ultrasound examination with and without a contrast medium for the diagnostics of pancreatic pathology was not available.
The described system and method intended to detect the signs of pancreatic pathology and pathologically altered pancreatic tissue, and more specifically—a system and a method for the collection and automated analysis of images and data of ultrasound and contrast ultrasound examination. The system consists of diagnostic ultrasound device with a software for the visualisation and processing of the information of a contrast ultrasound examination (2), carried out using the corresponding ultrasound transducers (1). Also, a database of a hospital information system (3), containing the collected and stored digital images and data of ultrasound examinations with and without a contrast medium. A workstation of the investigating physician for ultrasound image review or a diagnostic ultrasound device (4), designed for the review and analysis of digital images and data of ultrasound examinations and contrast ultrasound examinations with installed specialised software (5) and algorithms for the analysis of ultrasound images and data of human pancreas (collected in the database of hospital's information system (3)). Also, for automated assessment of informative quantitative parameters and automated comparison (using a classifier) with the database of characteristic images and parameters (6), for the assessment of estimates of pancreatic tissue damage and early diagnosis of acute pancreatitis. Classification result: no necrosis lesions, low, moderate or high-level necrosis lesions.
A system for analysis of ultrasound examination and contrast ultrasound examination images and data ensures early automated diagnosis of acute pancreatitis and detection of non-viable pancreatic tissues applying an artificial intelligence (different neural networks—mono-layer, multiple layer, deep learning, supervised, non-supervised etc.) and the classifier algorithms installed in the specialised software (5).
A system for the analysis of data and images of ultrasound examinations with and without a contrast media intended for the automated acute diagnosis of acute pancreatitis and pancreatic necrosis applying the algorithms of artificial intelligence (neural networks) described in this document has been designed for physicians-radiologists and professionals of other areas involved in such examinations. The system consists of the following devices (
1—An array of ultrasound traducers (1);
2—Diagnostic ultrasound system with a specialised software for the examinations with a contrast medium (2);
3—A hospital information system with a database for storing of ultrasound images (3);
4—A computer intended for the review and processing of the ultrasound images (4);
5—A specialised software for the processing of ultrasound images and data with and without a contrast medium (5);
6—A database of characteristic images and parameters (6);
A non-invasive imaging of the structure of pancreatic tissues is carried out suing a diagnostic ultrasound system (2) with an array of ultrasound transducers (1). The registered and digitalised ultrasound images and data are stored in the database of hospital information system (3). A computer (4) intended for the review and analysis of the digitised ultrasound images and data. A computer (4) with installed specialised software (5) and algorithms is intended for automated analysis of ultrasound images and data of the human pancreas (collected in the database of hospital information system (3)). The algorithms for automated early diagnostics of acute pancreatitis and pancreatic necrosis that are installed in the specialised software (5) are applied in the following main stages (
1. A diagnostic ultrasound system (2) with an array of ultrasound transducers (1) uploading the recorded images and data of the pancreatic ultrasound examinations with and without a contrast medium from the data base of hospital information system (3);
2. Detection of the informative area (C) in the diagnostic images (A) applying the algorithms of artificial intelligence (neural networks);
3. An automated detection and tracing of informative area in the diagnostic ultrasound images by adaptive correction of a contour of data selection area (D), aiming to eliminate the artefacts in the images caused by the physiological movements (e.g., patient's breathing, blood vessel pulsation) and positioning of the ultrasonic transducers array (such as movement by the investigating physician);
4. Establishment of spatial quantitative pancreatic tissue viability in the pancreatic volume using the ultrasound diagnostic images with a contrast medium (B). The detection and assessment is performed based on the wave reflection levels from the area of viable pancreatic tissues vs those from pathological tissue area (e.g. damaged by necrosis caused by acute pancreatitis or due to malignant neoplasm development). The adaptive thresholding algorithms are used to define the levels (Otsu et al.). The area (E) of necrosis region S1=X% and a set of quantitative parameters describing the region are calculated: Sp=[s1, s2, s3 . . . sN]. The area of healthy (viable) pancreatic tissues (F) S2=Y% and a set of quantitative parameters describing the region are also calculated: Sg=[s1, s2, s3 . . . sN];
5. A quantitative determination of perfusion dynamics in the viable pancreatic tissues in the ultrasound images with a contrast medium (B) by assessing the change in time of the amplitudes of the reflected ultrasound waves (integrated in the detected area of pancreatic contour) (G), after the injection of contrast medium. A normal log-distribution or other distribution model is used for the determination of the curve of perfusion dynamics. A position of peak value, ascending and descending curve slopes, dynamics of contrast medium inflow and outflow in the informative regions as well as other parameters are analysed. After obtaining the curve of perfusion dynamics (G), a comparison with perfusion dynamic in the viable part of the pancreas (if present) and in aorta and in superior mesenteric artery is carried out. A set of quantitative parameters describing the perfusion dynamics is also defined: Pg=[p1, p2, p3 . . . pN];
6. The pancreatic ultrasound images with and without a contrast medium and the defined set of quantitative parameters (S1, S2, Sp, Sg and Pg) are compared with the images characteristic for an acute pancreatitis and the parameters from the database (6);
7. Detection of the signs of acute pancreatitis as well as of viable and non-viable pancreatic tissues (necrosis) applying the classification algorithm installed in the specialised software (5). A database of characteristic images and parameters is used for algorithm training (6);
Number | Date | Country | Kind |
---|---|---|---|
LT2020 538 | Jul 2020 | LT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2021/056443 | 7/16/2021 | WO |