This invention relates to a compressible liner for impact protection, and to a method of impact protection using a compressible liner. The invention may be used in a helmet or the like.
Compressible liners are used in helmets to provide cushioning upon impact. Such liners may also be used wherever a structure or apparatus may be at risk from shock loading, for example in relation to motor vehicles; baby capsules; protective clothing, such as vests; packing materials and protection of valuable goods in transit.
WO2010/001230A discloses an example of a compressible liner having dual compressible layers with mutually engageable cone-shaped projections and recesses; the layers comprise foam materials of different compressibility.
Analysis of impacts, particularly helmet impacts, shows that typical impact forces are both translational and rotational. The translational force is generally orthogonal to the impact surface, and in the case of a helmet causes a rapid deceleration which is required to be cushioned in order to remove impact energy.
The rotational impact force is more complex, and in an oblique impact causes an acceleration due to frictional contact, for example between a helmet and the contact surface. It is desirable for the liner to minimize both this acceleration and the inevitable deceleration that follows, to the intent that, for example, energy imparted to the head and neck of a helmet wearer is minimized. Similar considerations apply to non-helmet applications undergoing an oblique impact.
What is required is a compressible liner which better accommodates an oblique impact.
According to the invention there is provided a compressible liner for impact protection, said liner comprising three substantially co-extensive layers mutually engaged by respective arrays of cone-like protuberances and corresponding cone-like recesses, the outer surface of the liner being substantially smooth and the intermediate layer having a different compressibility to that of an adjacent layer.
In the invention, an intermediate layer having portions of different compressibility is envisaged. Accordingly a portion of the intermediate layer may have a different compressibility to that of an adjacent layer, or the intermediate layer may be of uniform compressibility.
The invention is characterized by providing that the intermediate layer (or a portion thereof) is of a different compressibility to that of the inner and outer layers, or that the intermediate layer (or a portion thereof) is of a different compressibility to an adjacent layer. Alternatively the invention may be characterized by the intermediate layer (or a portion thereof) having a different density to that of the inner and outer layers, or by the intermediate layer (or a portion thereof) having a different density to that of an adjacent layer.
One configuration of the invention comprises an inner layer of low density, an intermediate layer of density greater than the inner layer and the outer layer density greater than the intermediate layer thereby producing an increasing density configuration from the inner layer to the outer layer (i.e. a compression or crushing gradient).
Another configuration of the invention comprises an inner layer of a certain density, an intermediate layer of density lower than the inner layer and an outer layer of density greater than the inner layer and the intermediate layer. The intermediate ‘softer’ layer would have a decoupling effect on the inner and outer layer and act as a ‘crumple zone’ between the two layers (i.e. the low density ‘softer’ intermediate foam layer would reduce the transfer of impact energy from the outer layer to the inner layer and vice versa).
Another configuration of the invention comprises an inner layer and an outer layer of low density foam and the intermediate layer made of higher density foam. This configuration is suitable for use in, for example, body vests for footballers exposed to different levels of impact tackling, where the three layered liner could be used to soften the blow to the body of the player wearing the vest (being tackled) and soften the blow to the body of the player (the tackler) coming in contact with the vest. The intermediate layer of the higher density foam will act like a decoupling zone between the two softer layers, allowing a small amount of shear with respect to the inner layer which remains stationary with respect to the head.
It will be understood that many additional combinations are possible, in addition to variation of the shape, size and spacing of the protuberances and recesses. The protuberances may have a base which is circular, triangular, square or having a greater number of sides. A symmetrical protuberance is preferred.
It will also be noted that the interlocking structure of the inner cones embedded within the cones of the overlying intermediate layer and the intermediate cones embedded within the thickness of the overlying outer layer produces a stronger shock absorbing liner that would prevent shearing effects of layers during oblique impacts.
A further feature of the invention is to allow the incorporation of segmentation/zoning of the inner and intermediate layers, and the outer layer constructed of one piece. The use of segmentation/zoning of the inner and intermediate layers allows the combinations of different density foams close to the vulnerable areas of the skull to be of different thicknesses and strengths. Typically such segmentation allows compressibility of four regions to be selected, namely front, back, top and sides.
The three layered shock absorbing liner of the invention can be used in all kinds of helmets and applications where it is required to absorb different levels of impact forces. The thickness thereof may be in the range 20-50 mm, according to the use for which the liner is intended.
The combination of lower density foams incorporated within the thickness of the three layers produces a lighter helmet thereby reducing rotational acceleration effects of the head during impacts (thus reducing the potential of focal and diffuse head injuries).
The combination of three different densities incorporated within the thickness of the three layers provides a liner to:
Other features of the invention will be apparent from the claims appended hereto.
Other features of the invention will be apparent from the following description of a preferred embodiment illustrated by way of example only in the accompanying drawings in which:
A helmet 112 comprises an outer shell 116, typically of a hard plastics material, within which is provided a double compressible layer 124, 128 and an optional soft internal comfort liner 120.
As best illustrated in
Particular details of the prior art construction can be obtained by reference to the description of WO 2010/001230A, and will not be further described here.
The invention will be described with reference to a helmet of the kind illustrated in
Each of the three layers 1124, 1128, 1160 typically comprises a shock absorbing expanded polystyrene material (or other suitable thick absorbing material as previously described). The layers may be respectively homogeneous. Adjacent layers are of different compressibility so as to permit greater variation in the compression and crushing gradients across the thickness of the liner 1110. As will be appreciated the invention permits three different densities of material in three different layers (i.e. a factorial three possibility) which provides many more potential combinations than the prior art, but maintaining a comparatively low manufacturing cost.
An alternative embodiment is illustrated in
In both embodiments of
In
The protuberance 1301 exhibits a resistance to compression which increases quickly over the tapering point 1303. The main body 1305 of the protuberance is of substantially constant section, and exhibits substantially increased stiffness. The shaft taper of the main body ensures a snug fit in the corresponding recess.
In
The protuberance 1401 exhibits a resistance to compression at the tapering point 1403 which is slight. The main body 1403 of the protuberance permits only further compression before the entire base thickness 1404 is engaged to resist compression. It will be appreciated that the protuberance 1401 squashes down more readily than the protuberance 1301.
In the variations disclosed in
The invention comprises layers whose comparative densities (or portions thereof) may be characterized as follows (‘a’ being the outer layer; ‘b’ being the intermediate layer, and ‘c’ being the inner layer):
a>b>c, or a>c>b, or b>a>c, or b>c>a, or c>b>a, or c>a>b, or (a=c)>b, or (a=c)<b.
It follows that the respective compressibilities are:
c>b>a, or b>c>a, or c>a>b, or a>c>b,
or a>b>c, or b>a>c, or (a=c)<b, or (a=c)>b.
Densities of the respective layers (or portions thereof) are in the following ranges:
a 35-110 kgm−3
b 15-100 kgm−3
c 15-90 kgm−3
In an embodiment of the invention, the materials of the respective layers are foam expanded polystyrene and/or a viscoelastic foam material. The material may be isotropic (having a material property that is identical in all directions) or anisotropic (having a material property that preferentially shears in one direction) to give a shearing in the direction substantially parallel to the layer direction.
Thicknesses of the respective layers in a helmet gives an overall thickness in the range 15-45 mm, but is typically in the range 20-30 mm. The three layers may each have a uniform thickness, which may not be equal between layers, or may have a varying thickness.
A comparative impact test using a variety of anvil shapes and ambient conditions has been carried out, with the following characteristics and results.
A ‘standard’ single layer liner had a thickness of 30 mm and consisted of expanded polystyrene foam with a density of about 60 kg/m3.
A triple layer liner according to the invention had an average thickness of 30 mm (25 mm to 35 mm) and consisted of expanded polystyrene foam having an outer layer density of 60 kg/m3. The middle layer had bigger cones than the inner layer. The density of the cones of the middle layer at the front, back and sides was 55 kg/m3, whereas on the top the density was 40 kg/m3. The density of the cones of the inner layer at the front, back and sides was 45 kg/m3, whereas on the top the density was 40 kg/m3 (the same as the corresponding cones of the middle layer).
The helmet angle is the rotational position of the impact, with respect to the anvil; front being 0°, rear being 180° and so on. The test helmet in which the comparative liners were tested at a standard impact, and included a dummy head of appropriate size and mass (about 5 kg in total). Impacts were in each case translational. For impacts where the helmet was dropped onto a flat steel anvil, the drop height was 1.92 m and for impacts onto hemispherical anvil, the drop height was 1.43 m.
It may be seen by comparison that the triple layer liner according to the invention provided a substantial percentage improvement (i.e. increased compression) over a single layer liner of the same thickness.
The comparative g-forces measured during the tests exemplified in Table 1 are as follows:
The substantial reduction in measured g-force can be clearly seen, and hence the effectiveness of the triple layer liner of the invention.
A comparative table of the mass of the respective helmets under test now follows:
This comparison clearly shows that the triple layer liner of the invention results in a lighter helmet, typically around 18% less mass.
By way of illustration an alternative triple layer liner of expanded polystyrene foam could have the following density characteristics:
Outer layer: uniform 70 kg/m3
Middle layer: top 50 kg/m3; front 55 kg/m3; back 60 kg/m3; side 65 kg/m3;
Inner layer: top 30 kg/m3; front 35 kg/m3; back 40 kg/m3; side 45 kg/m3.
Although the invention has been herein shown and described in what is conceived to be the most practical and preferred embodiments, it is recognized that departures can be made within the scope of the invention, which are not to be limited to the details described herein but are to be accorded the full scope of the appended claims so as to embrace any and all equivalent assemblies, devices and apparatus.
Number | Date | Country | Kind |
---|---|---|---|
GB1416556.7 | Sep 2014 | GB | national |
This application is a national phase application pursuant to 35 U.S.C. §371 of International Application No. PCT/US15/01526, filed Sep. 7, 2015, which claims priority to Great Britain Patent Application No. 1416556.7 filed on Sep. 19, 2014.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB15/01526 | 9/7/2015 | WO | 00 |