The present invention relates to a tube for heat transfer, in particular, to an inner-grooved tube for heat transfer with two types of fins in the inner surface thereof.
Seamless tubes, especially those made of materials of high heat-conductivity such as copper and aluminum, are used in heat exchangers to circulate heat-carrying fluid to transfer heat. Such tubes are internally grooved to increase the area of the inner surface for improve heat exchange area between the heat-carrying fluid and the inner surface of the tube and to generate turbulence, which improves heat exchange efficiency.
Employing an inner-grooved tube instead of one with a smooth inner surface in a heat exchanger significantly improves heat exchange efficiency and thus saves energy for environment protection. Notwithstanding the improved efficiency, previous inner-grooved tubes, due to the limitation of maximum hear transfer capacity, cannot satisfy the heat dissipation requirements for some large power equipment.
It is an object of the present disclosure to provide an inner-grooved tube with improved heat exchange efficiency.
The present disclosure is directed to a tube for heat transfer, the inner surface of the tube is grooved into a pattern, the pattern including a first fin and a second fin which have different shapes, wherein the first fin comprising a shaft and a head integrally formed, the shaft extending from the inner surface in a direction away from the inner surface, the head extending from the shaft in a direction away from the inner surface, in a transverse cross section of the tube, the circumferential width of the head is larger than that of the shaft.
The present inner-grooved tube for heat transfer, increases the heat transfer area and the capillary driving force, and thus improves the heat transfer capacity and heat transfer efficiency.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.
The inner surface of the tube 1 is grooved into a pattern, the pattern including a first fin 10 and a second fin 20. The first fin 10 and the second fin 20 each extend at an angle with respect to the longitudinal direction of the tube so as to form inner threads on the inner surface of the tube. The angle between the internal threads and the longitudinal axis of the tube is 0° to 60°, preferably 2° to 45°. The first fin 10 and the second fin 20 each have a constant transversal cross section along the longitudinal direction of the tube.
The first fin 10 and the second fin 20 have different shapes, wherein the first fin 10 comprises a shaft 102 (i.e., a ridge) and a head 101 integrally formed with the shaft 102. The shaft 102 extends from the inner surface in a direction away from the inner surface, and the head 101 extends from the shaft 102 in a direction away from the inner surface. In a transverse cross section of the tube, the circumferential width W1 of the head 101 is larger than that W2 of the shaft 102. The fin height in a radial direction of the first fin 10 is H1, wherein the height the head 101 is less than or equal to that of the shaft 102. Preferably, the width W1 in a circumferential direction of the head 101 either increases with the head extending away from the inner surface, or first increases with the head extending away from the inner surface and then decreases toward the tip of the head. The width W2 in a circumferential direction of the shaft 102 may be constant with the shaft extending away from the inner surface.
As shown in
The height in a radial direction of the second fin 20 is H2 which is lower than the height H1 of the first fin 10. Preferably, the height H2 of the second fin 20 is ⅓ to ½ of the height H1 of the first fin 10. The width at the top of the second fin 20, i.e. the addendum width, is narrower than the width at the bottom the second fin 20, i.e. the dedendum width. Preferably, the width in a circumferential direction of the second fin 20 decreases with the second fin 20 extending away from the inner surface. As shown in
In the embodiment shown in
The alternately arranged first fin 10 and second fin 20 can increase the area of the inner surface of the tube, increase the heat transfer area between heat carrying fluid and the inner surface of the tube, and provide higher heat transfer efficiency. In addition, the cavity forms between the first fin 10 and the second fin 20 improve the capillary effects of the tube, provide strong capillary driving force and thus improve the heat transfer performance
Moreover, provided that the addendum width is larger than the width at the half of the height of the first fin, the first fin 10 is not limited to the shape as shown in
In the preceding specification, various preferred embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various other modifications and changes may be made thereto, and additional embodiments may be implemented, without departing from the broader scope of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.
Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
201310301247.2 | Jul 2013 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/064939 | 7/11/2014 | WO | 00 |