Embodiments of the present invention relates to a valve for a urostomy appliance.
Urostomy appliances are well known in the field. They are typically attached to a patient via an adhesive wafer that extends around the patient's stoma with adhesive and provide a collecting chamber to collect waste (mostly liquid waste) exiting the stoma. A mechanism for draining the collecting chamber is often provided—typically, these are in the form of a tap or bung, which allow the patient to open an outlet from the urostomy appliance and drain the contents, for example, into a toilet.
According to a first aspect of the invention we provide a valve for a urostomy appliance including: a body for connection to the urostomy appliance, an inlet and an outlet, connected by a flow path, and a blocking member supported by the body and moveable between a closed position, in which the blocking member blocks the inlet, such that liquid cannot flow through the flow path to the outlet, and an open position in which the inlet is open, such that liquid is permitted to flow through the flow path to the outlet, and wherein the inlet is shaped such that as the blocking member is moved from a position in which a flow path is initially opened towards a fully open position, the rate of change of a permitted flow rate through the valve increases with non-linear proportionality as the blocking member moves.
According to a second aspect of the present invention we provide a valve for a urostomy appliance including: a body for attachment to the urostomy appliance, an inlet and an outlet, connected by a flow path, and a blocking member supported by the body and moveable between a closed position, in which the blocking member blocks the inlet, such that liquid cannot flow through the flow path to the outlet, and an open position in which the inlet is open, such that liquid is permitted to flow through the flow path to the outlet, and wherein the available cross-sectional area of the inlet through which liquid may flow changes depending on the position of the blocking member, wherein when the blocking member is in a positon in which the flow path is initially opened and is positioned at a distance x from its closed position, the available cross-sectional area is defined by f(x), and wherein when the blocking member is positioned at a distance 2x, the available cross-sectional area is defined by f(2x) and where f(2x)>2f(x).
According to a third aspect of the present invention we provide a combination of a urostomy appliance and a valve, the urostomy appliance including: a first wall and a second wall connected about their respective peripheries to define an internal waste collecting cavity, a stoma receiving opening which is positioned in the first wall and is in communication with the waste collecting cavity, and the valve according to any other aspect of the invention connected to one of the first and second walls.
Further features of the present invention are outlined by the appended claims.
a, b, c illustrate the available cross-sectional area of different inlet shapes, and
With reference to
A valve 10 (described in more detail below) is attached to the second wall 2b of the urostomy appliance 1. The valve 10 communicates with the waste collecting cavity 4 and has an open and a closed position, in which waste is or is not permitted to flow through the valve 10 (i.e. flow out of the waste collecting cavity 4).
In use, the patient attaches the adhesive wafer 6 around their stoma. Waste liquid (for example, urine and/or blood and/or other body fluids) exits the body, via the stoma, and flows through the stoma receiving opening 8 and is collected in the waste collecting cavity 4. The valve 10 is selectively used to permit the waste which is collected in the waste collecting cavity 4 to flow out of the appliance 1, through the valve 10 (so that, for example, the appliance 1 can be emptied of some/most/all of the contents).
Features of the valve 10 are shown in more detail in
In some embodiments (see particularly
In some embodiments, the inlet (or inlets) 14 are shaped in one of a tear-drop, egg/oval, trapezoidal, pentagonal or kite shape when viewed in a direction liquid passes therethrough.
In the illustrated embodiment, the body 12 also includes a channel 22. The channel 22 extends away from an entrance/exit of the body passage 20 and provides support for the blocking member 18 (the function of the channel 22 is described in more detail below).
The body 12 is connected to the urostomy appliance 1 by a heat weld (not shown) around the body 12, such that the inlet 14 communicates with the waste collecting cavity 4 (for example, the heat weld may extend across the base part 13 of the body 12, such that the narrowed end 11 and inlet 14 is in the urostomy appliance 1/waste collecting cavity 4). It should be appreciated that the body 12 need not be heat welded necessarily. The body 12 may be attached to the appliance 1 in another manner that permits the inlet 14 to communicate with the waste collecting cavity 4.
The embodiment illustrated in
In some embodiments, a main part of the body 12 (i.e. the top and wider base part forming the body passage 20 and the channel 22) is made of a first material. The body 12 also includes a guide channel 24 (see
The first material may be relatively pliable which means the body 12 is deformable and can be distorted reasonably easily. This allows the body 12 to be attached and sealed to the urostomy appliance 1 relatively easily but may make the body 12 more prone to damage if it is handled carelessly by a user (for example, if the valve 10 is squashed/distorted repeatedly). By including a second material to form a guide channel 24 that is more rigid than the rest of the body 12 may reduce distortion of the body 12 and may result in less damage being inflicted on the valve 10 during its useable life. It should be appreciated that this configuration may only be necessary if such the first material used for the body 12 is pliable/distortable. In some embodiments, the body 12 may be made from a first material that provides enough rigidity for the valve to operate as desired. It should also be appreciated that the first and second materials may be the same material but formed differently to provide different physical characteristics (e.g. two forms of PTFE).
It should be appreciated that the body 12 and the blocking member 18 may be manufactured using an overmoulding process. The blocking member 18 and/or the body 12 may be overmoulded with a rubber or rubber-like material.
The blocking member 18 is supported by the body 12 and is moveable between a closed position and an open position (as illustrated in
In the illustrated embodiments, the blocking member 18 includes a blocking portion 30 and a user operable part 32. A passage extends through the blocking member 18 (in this case, through both the blocking portion 30 and the user operable part 32) to connect to the outlet 16. In the present example, the opening extends substantially centrally, but this need not be the case.
When the valve 10 is assembled, and the blocking member 18 is in its closed position, the blocking portion 30 is received in the body passage 20 and the user operable portion 32 is received by the channel 22 (see
In some embodiments, the blocking member 18 is received and supported by the guide channel 24. The channel 24 prevents or at least inhibits movement of the blocking member 18 that is not generally linear with respect to the body 12. In some embodiments, the guide channel 24 inhibits non-coaxial movement of the blocking member 18 when the blocking member 18 is moved between its closed and open positions.
In some embodiments, the guide channel 24 includes a formation 26 (see
In some embodiments, the formation 26 of the guide channel includes one or more formations, each of which extends along the guide channel 24 in the direction of movement of the blocking member 18. The corresponding formation on the blocking member 18 includes at least one further formation. When the respective formations engage with each other (i.e. as the blocking member 18 moves), they inhibit any movement apart from generally linear movement of the blocking member 18. The formations could be axially extending projections/ridges and may be positioned on the base of the guide channel 24 or on each side of the guide channel 24, for example.
In some examples, the user operable portion 32 includes a depression 40 to aid user control. In some examples, the depression 40 also has a textured surface. These features aid user control by providing an area for a finger or thumb to be placed and provide the force required to slide open the valve 10.
In some embodiments, the valve 10 has an indicator that allows a user to feel when the valve 10 is in a fully open position. For example, the channel 22 may include an upward projection. When the blocking member 18 is moved to its open position (i.e. linearly outwards from the body 12) a part may pass over the projection and provide an indication that the blocking member 18 is in its fully open position. This allows the user to be confident that the valve 10 is fully open.
Likewise, another indicator could be used to inform the user when the valve 10 is in a closed position. This would allow a user to be confident that the valve 10 is closed and will not leak, for example.
In some embodiments, the valve 10 includes a cover member 50. The cover member 50 is moveable between an open position (see
In some embodiments, the cover member 50 pivots downwardly and towards a user wearing the urostomy appliance 1 when it is moved to its open positon when the cover member 50 is moved or moves to its open position. In other words, when the cover member 50 is in its open position it may be located between the user and the blocking member 18.
In some embodiments, the cover member 50 includes a holding formation (not shown) and the blocking member 18 includes a corresponding formation 52. When the holding formation engages the corresponding formation 52 the cover member 50 is held in its closed position (over the end of the blocking member 18 and sealing the outlet 16 in order to prevent or at least inhibit drips of liquid from exiting the outlet 16).
In some embodiments, the cover member 50 may be biased to its open position. In other words, once the holding formation and the corresponding formation 52 are disengaged from each other the cover member 50 may automatically move away from the outlet 16.
In some embodiments, the cover member 50 is moved due to movement of another part of the valve 10. In an example, as the blocking member 18 is moved towards its open position, the blocking member 18 effects movement of the cover member 50 to its open position. In such embodiments, the cover member 50 may have no biasing or may be biased towards a closed position (such that opening of the blocking member 18 controls the opening of the cover member 50).
The cover member 50 is attached to the body 12. In some embodiments, the cover member 50 includes a resiliently biased and flexible connection portion that extends to form the connection/attachment to the body 12.
Use of the valve 10 will now be discussed with reference to the features that have already been outlined above. In the closed position, the blocking member 18 blocks the inlet 14, such that fluid cannot flow through the valve 10. More specifically, when the valve 10 is in a closed position, the blocking portion 30 is positioned in the body passage 20 and closes off (i.e. seals) the inlet 14 (and liquid cannot flow through the inlet 14 and into the valve 10).
In the open position, the inlet 14 is open, such that fluid is permitted to pass through the valve 10. More specifically, when the valve 10 is in the open position, the blocking portion 30 is moved to an “outer” position, the inlet 14 communicates with the opening through the blocking member 18. In this configuration, liquid is permitted to exit the valve 10 via the outlet 16. It should be appreciated that such an “open” position refers to a fully open position in which the inlet 14 is open to its fullest extent (so the blocking portion 30 blocks the inlet 14 to the least extent possible) to allow a maximum flow rate of liquid to flow through the valve.
There is a range of partially open positions in which the blocking member 18 can be positioned which will result in a different flow rate of liquid being permitted to flow through the inlet 14 (due to it being partially open) and, thus, through the valve 10. In other words, the inlet 14 has a (total) cross-sectional area that is dictated by its size and shape. The inlet 14 also has an “available cross-sectional area” which is the available area (during use) through which liquid may flow. While the total cross-sectional area of the inlet 14 will not change substantially (it may change slightly through use of the valve 10 and general wear), the size of the available cross-sectional area depends on the position of the blocking member 18 (until the blocking member 18 reaches the fully open position and the entirety of the inlet 14 is open and available for liquid to flow through).
The inlet 14 is shaped such that as the blocking member is moved between a position in which a flow path is initially opened and a fully open position, the rate of change of the permitted flow rate of liquid permitted through the valve 10 increases with non-linear proportionality as the blocking member 18 is moved (although it should be appreciated that the rate of change of the permitted flow rate of the liquid through the inlet 14 may have both linearly proportional and non-linearly proportional portions). In other words, when considering the increase of the available cross-sectional area of the inlet 14 as the blocking member 18 is moved from initially open to fully open, the increase is non-linear.
For example, when the blocking member 18 is positioned at a distance x from its closed position, the available cross-sectional area is defined by a function (f(x)). When the blocking member 18 is positioned at a distance 2x from its closed position, the available cross-sectional area is defined by the same function (f(2x)). In this example, f(2x)>2f(x) (i.e. as the blocking member 18 is moved towards its open position from an initially open position, each unit of movement results in a small change in the available cross-sectional area of the inlet 14 and as the blocking member moves further the change in the available cross-sectional area becomes larger and larger until the fully open position).
In the present example, the inlet 14 is narrowed at one and becomes wider at an opposing end. The inlet 14 is oriented so that the narrower part becomes open first (as the blocking portion 30 moves outwards along the channel 20). As the blocking portion 30 moves further outwards, the wider parts of the inlet 14 become open. Thus, in this example the rate of change of the flow rate through the valve 10 will increase faster than it would for a rectangular or square inlet. In some embodiments, the inlet 14 has curved corners, which results in a different non-linear change in the flow rate.
The advantage of the inlet 14 being shaped in such a way that the flow rate of the liquid through the valve 10 is initially low and then increases more quickly (relative to a rectangular inlet 14, for example) is that a user can more easily control the direction of liquid flow when only a small amount of liquid is permitted to exit the valve 10. Once the user has established that the direction, etc. of the flow is acceptable they can continue to move the blocking member 18 towards its fully open position (which is reached more quickly due to the shape of the inlet 14). Thus, a valve 10 that has a low liquid flow rate initially (where the blocking member 18 is positioned at a distance x) and increases more quickly due to a wider part of the inlet 14 (where the blocking member is positioned at a distance that is greater than x) is an advantageous arrangement.
The functions that dictated the available cross-sectional area of different shaped inlets are illustrated generally in
In the illustrated example, the blocking member 18 “opens” the flow path for liquid through linear movement with respect to the body 12. It should be appreciated that the desired alteration of the flow rate could be achieved using a valve that includes a portion that rotates between its closed position and its open position (and vice versa). The inlet may be positioned on the rotating part and the available cross-sectional area may be increased/decreased as the rotating part rotates. In this case the “distance” that the rotating portion travels through is an arc rather than linear.
Before the valve 10 is opened to allow waste to flow out of the urostomy appliance 1, the user may connect a conduit or tube 100 to the valve 10, so that the waste flowing out of the urostomy appliance 1 flows into another, connected, receptacle. The receptacle could be a night drainage bag, for example, so that the user does not have to get up during the night to empty their urostomy appliance 1 as it is connected to another (bigger) volume.
Thus, a drainage system is provided by the combination of the urostomy appliance 1 (described above), valve 10 and a connector 102 that is connectable to the conduit 100. Features of the valve 10 that permit the connector 102 to connect to the valve 10 are described below. However, it should be appreciated that another urostomy appliance/valve combination could connect to the connector 102 as long as the valve provided the features outlined here in relation to connecting to the connector 102.
The valve 10 includes the outlet 16 that forms a first fitting having a recess and an internal surface 16a. In some embodiments, the first fitting includes a hollow cylinder, which provides at least part of a flow path out of the valve 10 and into/through the connector 102.
In some embodiments, the first fitting has a circumferentially extending flange portion 52 at or near an entrance to its recess which provides an end face. The flange portion 52 extends generally perpendicularly to an axis A that extends longitudinally through the valve 10.
An embodiment of the connector 102 is illustrated in
In some embodiments, the second fitting includes a hollow cylinder, which, in use, provides at least part of a flow path through the connector 102 to the connected conduit 100. In some embodiments, the second fitting has a circumferentially extending shoulder 116 that is spaced from its distal end 106b. The shoulder 116 extends generally perpendicularly to an axis B that extends longitudinally through the connector 102 (although it should be appreciated that this need not be the case as the shoulder may be angled other than at 90 degrees, e.g. generally transversely, to axis B and still provide its function).
In some embodiments, the connector 102 includes two holding formations 110 (although it should be appreciated that there may be more or fewer holding formations 110, as desired). The holding formations 110 are positioned on opposing sides of the main body 104 to each other (in the case of more than two holding formations, they may be spaced around the main body and in the case of one holding formation, it may be positioned to one side). Each holding formation 110 includes an elongate portion 110a that is attached to the main body 104 by an extension portion 110b. The elongate portion 110a extends generally parallel to the axis B and the extension portion 110b extends generally perpendicular to the axis B (away from the main body 104). The extension portion 110a connects to the main body 104 further away from the connector's distal end 106b than the shoulder 116. The elongate portion 110a extends beyond the shoulder 116, towards the distal end 106b, and overlies the second fitting (and, when connected to the valve 10, overlies the flange portion 52). The extension portion 110b connects the elongate portion 110a to the main body 104 with a degree of flexibility so as to provide a pivoting action that allows the elongate portion 110a to move out of general parallel alignment with the main body 104/axis B.
The elongate portion 110a includes a camming surface 110c. In the illustrated case, the camming surface 110c is positioned at one end of the elongate portion 110a, which is closest to the shoulder 116 (it should be appreciated that there are other arrangements that provide the same functionality). The camming surface 110c faces inwardly, towards the main body 104/second fitting. This allows the camming surface 110c to engage the flange portion 52 during use (described in more detail below).
The holding formation 110 or at least a part of the holding formation 110 is resiliently biased, so that it may be moved and/or deflected and return to its original position. In the present embodiment, the extension portion 110b provides a pivoting action that allows the elongate portion 110a to deflect outwards. However, it should be appreciated that the holding formation 110 in general is made of a plastics material that is resilient and, therefore, the elongate portion 110a is also able to deform in itself as well as in combination with the extension portion 110b. Thus, it should be appreciated that the extension portion 110b does not necessarily need to provide such a pivoting action in order for the holding formation 110 to function (i.e. hold the connector 102 to the valve 10).
In some embodiments, the second fitting includes a seal 112, which is provided on, connected to or forms part of the external surface 106a. The seal 112 is located in a position between the shoulder 116 and the distal end. In this illustrated case, the seal 112 extends continuously and in an annular shape in a plane that is perpendicular to axis B (but this may not be the case). In some embodiments, the seal 112 is formed using an overmoulding process.
In use, the second fitting (of the connector 102) is received in the first fitting (of the valve 10) when the connector 102 is connected to the valve 10. When the connector 10 is connected to the valve 10, the shoulder 116 engages the end face of the female fitting. Advantageously, the holding formations 110 engage the flange portion 52 such that the connector 102 and the valve 10 are held together and disconnection is inhibited or substantially prevented.
As the connector 102 is moved towards a “connected position”, the respective camming surfaces 110a of the holding formations 110 are (automatically) deflected outwards over the flange portion 52. It should be appreciated that if camming surfaces 110a are not provided then a latch formed from a projection maybe present and a user can manually deflect the holding formations 110 over the flange portion 52. Advantageously, if the holding formation 110 is resiliently biased, it moves back to its original position once the camming surfaces have moved past the flange portion 52.
Also when the connector 102 is connected to the valve 10, the seal 112 engages the internal surface 16a of the first fitting. Thus, liquid leakage around the first/second fittings is minimised/inhibited/substantially prevented.
To disconnect the connector 102 from the valve 10, the opposite end of the elongate portion 110a to the camming surface 110c is pressed towards the main body 104, so as to deflect the latch/camming surface 110c over the flange portion 52 (and the connector 102 can be disconnected from the outlet 16 of the valve 10).
It should be appreciated that the conduit 100 has a connector 102 attached at one or both ends for connection to the valve 10 and the night drainage bag, respectively.
The following clauses outline features of some embodiments of the valve 10. It should be appreciated that one or more or any combination of features described in the clauses can be combined with any one or more or any combination of features defined in the appended claims.
Clause 1. A valve for a urostomy appliance including: a body for connection to the urostomy appliance, an inlet and an outlet, connected by a flow path, and a blocking member supported by the body and generally linearly moveable between a closed position, in which the blocking member blocks the inlet, such that liquid cannot flow through the flow path to the outlet, and an open position in which the inlet is open, such that liquid is permitted to flow through the flow path to the outlet, and a cover member which is moveable between an open position, in which liquid is permitted to flow through the outlet, and a closed position, in which liquid is prevented or inhibited from flowing through the outlet, and wherein the cover member is biased towards its open position, and wherein the cover member includes a holding formation and the blocking member includes a corresponding formation, such that when the holding formation engages the corresponding formation the cover member is held in its closed position.
Clause 2. A valve for a urostomy appliance including: a body for connection to the urostomy appliance, an inlet and an outlet, connected by a flow path, and a blocking member supported by the body and generally linearly moveable between a closed position, in which the blocking member blocks the inlet, such that liquid cannot flow through the flow path to the outlet, and an open position in which the inlet is open, such that liquid is permitted to flow through the flow path to the outlet, and a cover member which is moveable between an open position, in which liquid is permitted to flow through the outlet, and a closed position, in which liquid is prevented or inhibited from flowing through the outlet, and wherein as the blocking member is moved to its open position, the blocking member effects movement of the cover member to its open position.
Clause 3. A valve according to clause 1 wherein as the blocking member is moved to its open position, the blocking member effects movement of the cover member to its open position
Clause 4. A valve according to clause 2 wherein the cover member is biased to its closed position.
Clause 5. A valve according to clauses 2 or 4 wherein the blocking member is moveable generally linearly with respect to the body between its open and closed position.
Clause 6. A valve according to any of clauses 1-5 wherein the cover member includes a resiliently biased and flexible connection portion connecting the cover member to the body.
Clause 7. A valve according to any of the preceding clauses wherein the cover member is connected to the body such that it pivots downwardly and towards a user wearing the urostomy appliance when it is moved or moves to its open position.
Clause 8. A valve according to clause 6 wherein as the blocking member moves to its open position, the blocking member moves in front of the cover member, such that the cover member is positioned between the user and the blocking member.
Clause 9. A valve according to any of the preceding clauses wherein the body has a body passage that forms part of the flow path and communicates with a passage in the blocking member.
Clause 10. A valve for a urostomy appliance including: a body for connection to the urostomy appliance, the body being formed from a first material and having an integrally formed guide channel which is formed from a second material, said second material being more rigid than the first material,
Clause 11. A valve according to clause 10 wherein the guide channel includes a formation which engages with a corresponding formation on the blocking member to guide the blocking member when moving between its open and closed positons.
Clause 12. A valve according to clauses 11 wherein the formation of the guide channel includes one or more formations, each of which extends along the guide channel in the direction of movement of the blocking member and the corresponding formation on the blocking member includes one or more corresponding formations which engage therewith as the blocking member moves.
Clause 13. A valve according to any of clauses 1-9 including any of the features of clauses 10-12.
Clause 14. A combination of a urostomy appliance and a valve, the urostomy appliance including:
Clause 15. A drainage system for a urostomy appliance including:
Clause 16. A drainage system according to clause 15 wherein the first fitting has a circumferentially extending flange portion at or near an entrance to its recess which provides an end face.
Clause 17. A drainage system according to clause 16 wherein the second fitting has a circumferentially extending shoulder spaced from its distal end, for engaging the end face of the female fitting when the connector and the valve are connected to each other.
Clause 18. A drainage system according to any of clauses 16 or 17 wherein the connector includes at least one holding formation that engages the flange portion when the first and second fittings are connected such that the connector and the valve are held together.
Clause 19. A drainage system according to clause 18 wherein the holding formation includes a ramming surface which allows the holding formation to deflect outwards over the flange portion as the connector is moved towards a connected position.
Clause 20. A drainage system according to clause 19 wherein the holding formation is resiliently biased.
Clause 21. A drainage system according to any of clauses 15 to 20 wherein the second fitting includes a seal provided on, connected to or as part of the external surface, at a position between the shoulder and the distal end, which seal engages the internal surface of the first fitting when the connector and the valve are connected.
Clause 22. A drainage system according to any of clauses 15 to 21 wherein the first and second fitting both include respective hollow cylinders.
Clause 23. A valve according to any of clauses 1-13 also including the features of any of the clauses 15 to 22.
Clause 24. A valve including the features of any of the clauses 15 to 22.
Clause 25. A connector including the features of any of clauses 15 to 22
When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
Number | Date | Country | Kind |
---|---|---|---|
1902745.7 | Feb 2019 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2020/050415 | 2/21/2020 | WO | 00 |