The present application relates to an exercise machine for exercising various muscle groups by employing a resistive force against a range of bodily movement. More particularly, the present application is a versatile exercise machine for exercising the main and lower abdominals, the internal and external obliques, the quadratus lumborum, and the triceps.
Many types of machines have been designed for exercising stomach, side, and lower back muscles. Some of these employ springs, bows, weights, elastic, and body weight as resistance and utilize stretching, pulling, twisting, bending, and tucking motions applied against this resistance to achieve the desired effect.
Generally, these machines are either unidirectional, enabling the user to work in only one plane of motion, or multi-directional, but with limited range of movement. Most often, adjustments are necessary to facilitate various modes of exercise, requiring the user to stop exercising in order to disconnect and reconnect the operative parts of the apparatus between modes.
In the drawings and description that follows, like elements are identified with the same reference numerals. The drawings are not to scale and the proportion of certain elements may be exaggerated for the purpose of illustration.
This application describes an exercise machine for exercising various muscle groups by employing a resistive force against a range of bodily movement.
As shown in
The seat 100 defines a forward direction F. In other words, in the illustrated embodiment, the seat 100 is configured to orient a user towards the forward direction F under normal operation of the exercise machine. As will be described in more detail below, most of the exercises performed on the exercise machine 100 require a user to sit in the seat 100 facing the forward direction F. In the illustrated embodiment, the seat 110 is a contoured seat mounted parallel to a floor surface. In alternative embodiments (not shown), the frame assembly may employ an oblong bench or any other known structure for supporting a user. In other alternative embodiments (not shown), the seat may be mounted to the upright member at an angle, or the angle of the seat may be adjustable to accommodate different preferences of a user or to allow a user to perform additional exercises. In yet another alternative embodiment (not shown), the height of the seat may be adjustable to accommodate users of different sizes.
With continued reference to
The exercise machine 100 further includes a pair of arm members 135 connected to a pivot assembly 140, such that the arm members 135 may be engaged by a user and pivoted in a first direction, a second direction, and the first and second directions concurrently, as will be described in more detail below. In the illustrated embodiment, the arm members 135 include ergonomically designed handlebars to provide a comfortable grip for a user. The arm members 135 are connected to each other via a rigid connection 145, such that both arm members must be moved together. In an alternative embodiment (not shown) the arm members may be connected to separate pivots so that each arm member may be moved independently of the other. In another alternative embodiment (not shown), the arm members may part of a unitary component.
The exercise machine 100 further includes at least one resistance mechanism, as will be further described below. In the illustrated embodiment, the exercise machine 100 employs a pair of piston and cylinder assemblies 150. The piston and cylinder assemblies may be adjustable or non-adjustable. In an alternative embodiment (not shown), the exercise machine employs a single piston and cylinder assembly. In other alternative embodiments (not shown), the exercise machine may employ elastic bands, springs, weights, or any other known resistance mechanisms.
The exercise machine 100 also employs a resistance adjustment mechanism 160, as will be described in more detail below. For example, in the illustrated embodiment, the resistance mechanism 160 is configured to adjust a distance X measured from the pivot assembly 140 to the pivoting connection 155b between the piston and cylinder assembly 150 and the arm members 135. As this distance X is increased, the user will have to move the piston and cylinder assembly 150 through a greater range of motion and thus feel more resistance. In other embodiments (not shown) the resistance may be adjusted by adjusting the internal resistance of a piston and cylinder assembly, or by adding or subtracting elastic bands, springs, weights, or other resistance members.
With continued reference to
In the illustrated embodiment, the pivot assembly 140 includes a first pivoting member, a second pivoting member, and a third pivoting member. For example, and as shown in
As shown in
As shown in
Thus, the omni-directional pivot assembly 140 allows a user to engage the arm members 135 and move the arms in a forward direction F, twist the arms in a sideways direction, or move the arms in a forward direction while simultaneously twisting the arms in a sideways and/or up-and-down direction. When the arm members are so moved, the piston and cylinder assemblies 150 provide resistance in all directions.
In the illustrated embodiment, the sleeve 180 is pivotally connected to the upright shaft 170 and the elongated shaft 185 is rigidly connected to the arm members 135. In an alternative embodiment (not shown), the sleeve 180 is rigidly connected to the arm members 135 and the elongated shaft 185 is pivotally connected to the upright shaft 170. In another alternative embodiment (not shown), the sleeve 180 is rigidly connected to the upright shaft 170 and the elongated shaft 185 is pivotally connected to the arm members 135. In yet another alternative embodiment, the sleeve 180 is pivotally connected to the arm members 135 and the elongated shaft 185 is rigidly connected to the upright shaft 170.
In an alternative embodiment (not shown), the exercise machine employs a pivot member having only the first and second pivoting members, such as an upright shaft and a pin. In this embodiment, the user could manipulate the arms to move them in a forward direction and a sideways direction.
In another alternative embodiment (not shown), the exercise machine employs separate, distinct pivots rather than a single pivot having multiple pivoting members.
The resistance adjustment mechanism 160 further includes a locking mechanism 190. The locking mechanism may be a pin, a plunger, or other appropriate locking device. The locking mechanism 190 is inserted into an aperture (not shown) in the sleeve 180 and is received in one of a plurality of spaced apart grooves 195 in the elongated shaft 185. Thus, the elongated shaft 185 can be moved to a desired position within the sleeve 180 and locked into position by the locking member 190. This changes the distance X between the pivot assembly 140 and the pivoting connection 155b between the piston and cylinder assembly 150 and the arm members 135, thereby adjusting the resistance provided by the piston and cylinder assembly 150.
In an alternate embodiment (not shown), in which the exercise machine only employs two pivoting members, an elongated member having a plurality of spaced apart apertures is inserted into the sleeve 180 such that it can be slidably moved within the sleeve 180 in a forward or backward direction. A locking mechanism can be inserted in on of the plurality of apertures to lock the elongated portion in a preferred position. In this embodiment, the elongated member does not rotate within the sleeve 180.
FIGS. 4A-E illustrate several exemplary modes of operation of the exercise machine 100. For example,
A user can perform all of the exercises illustrated in FIGS. 4A-E without making adjusting the exercise machine 100. Thus, a user may proceed from one mode to the next without delay, increasing the time effectiveness of the workout.
To the extent that the term “includes” or “including” is used in the specification or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “or” is employed (e.g., A or B) it is intended to mean “A or B or both” . When the applicants intend to indicate “only A or B but not both” then the term “only A or B but not both” will be employed. Thus, use of the term “or” herein is the inclusive, and not the exclusive use. See, Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995). Also, to the extent that the terms “in” or “into ” are used in the specification or the claims, it is intended to additionally mean “on” or “onto.” Furthermore, to the extent the term “connect” is used in the specification or claims, it is intended to mean not only “directly connected to,” but also “indirectly connected to” such as connected through another component or components.
While the present application has been illustrated by the description of embodiments thereof, and while the embodiments have been described in some detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the application, in its broader aspects, is not limited to the specific details, the representative apparatus, on the illustrative embodiments shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
This application claims the benefit of priority of U.S. Provisional Application No. 60/621,648 filed on Oct. 26, 2004.
Number | Date | Country | |
---|---|---|---|
60621648 | Oct 2004 | US |