a. Field of the Invention
The instant invention is directed toward a catheter with an electrode section including a fluid distribution structure for ablation of tissue. In certain embodiments, the electrode section may include structures, for example, mesh grating and porous materials, that evenly distribute conductive fluid for improved consistency in fluid flow from the catheter across the electrode section to effect a uniform virtual electrode.
b. Background Art
Catheters have been in use for medical procedures for many years. Catheters can be used for medical procedures to examine, diagnose, and treat while positioned at a specific location within the body that is otherwise inaccessible without more invasive procedures. During these procedures a catheter is inserted into a vessel near the surface of the body and is guided to a specific location within the body for examination, diagnosis, and treatment. For example, one procedure utilizes a catheter to convey an electrical stimulus to a selected location within the human body. Another procedure utilizes a catheter with sensing electrodes to monitor various forms of electrical activity in the human body.
Catheters are also used increasingly for medical procedures involving the human heart. Typically, the catheter is inserted in an artery or vein in the leg, neck, or arm of the patient and threaded, sometimes with the aid of a guide wire or introducer, through the vessels until a distal tip of the catheter reaches the desired location for the medical procedure in the heart.
A typical human heart includes a right ventricle, a right atrium, a left ventricle, and a left atrium. The right atrium is in fluid communication with the superior vena cava and the inferior vena cava. The atrioventricular septum separates the right atrium from the right ventricle. The tricuspid valve contained within the atrioventricular septum provides communication between the right atrium and the right ventricle.
In the normal heart, contraction and relaxation of the heart muscle (myocardium) takes place in an organized fashion as electro-chemical signals pass sequentially through the myocardium from the sinoatrial (SA) node, which comprises a bundle of unique cells disposed in the wall of the right atrium, to the atrioventricular (AV) node and then along a well-defined route, which includes the His-Purkinje system, into the left and right ventricles. The AV node lies near the ostium of the coronary sinus in the interatrial septum in the right atrium. Each cell membrane of the SA node has a characteristic tendency to leak sodium ions gradually over time such that the cell membrane periodically breaks down and allows an inflow of sodium ions, thereby causing the SA node cells to depolarize. The SA node cells are in communication with the surrounding atrial muscle cells such that the depolarization of the SA node cells causes the adjacent atrial muscle cells to depolarize. This results in atrial systole, wherein the atria contract to empty and fill blood into the ventricles. The atrial depolarization from the SA node is detected by the AV node which, in turn, communicates the depolarization impulse into the ventricles via the bundle of His and Purkinje fibers following a brief conduction delay. The His-Purkinje system begins at the AV node and follows along the membranous interatrial septum toward the tricuspid valve through the atrioventricular septum and into the membranous interventricular septum. At about the middle of the interventricular septum, the His-Purkinje system splits into right and left branches which straddle the summit of the muscular part of the interventricular septum.
Sometimes abnormal rhythms occur in the heart, which are referred to generally as arrhythmia. For example, a common arrhythmia is Wolff-Parkinson-White syndrome (W-P-W). The cause of W-P-W is generally believed to be the existence of an anomalous conduction pathway or pathways that connect the atrial muscle tissue directly to the ventricular muscle tissue, thus bypassing the normal His-Purkinje system. These pathways are usually located in the fibrous tissue that connects the atrium and the ventricle.
Other abnormal arrhythmias sometimes occur in the atria, which are referred to as atrial arrhythmia. Three of the most common atrial arrhythmia are ectopic atrial tachycardia, atrial fibrillation, and atrial flutter. Atrial fibrillation can result in significant patient discomfort and even death because of a number of associated problems, including the following: an irregular heart rate, which causes patient discomfort and anxiety; loss of synchronous atrioventricular contractions, which compromises cardiac hemodynamics, resulting in varying levels of congestive heart failure; and stasis of blood flow, which increases the likelihood of thromboembolism.
Efforts to alleviate these problems in the past have included significant usage of pharmacological treatments. While pharmacological treatments are sometimes effective, in some circumstances drug therapy has had only limited effectiveness and is frequently plagued with side effects, such as dizziness, nausea, vision problems, and other difficulties.
An increasingly common medical procedure for the treatment of certain types of cardiac arrhythmia is catheter ablation. During conventional catheter ablation procedures, an energy source is placed in contact with cardiac tissue to heat the tissue and create a permanent scar or lesion that is electrically inactive or noncontractile. During one procedure, the lesions are designed to interrupt existing conduction pathways commonly associated with arrhythmias within the heart. The particular area for ablation depends on the type of underlying arrhythmia. One common ablation procedure treats atrioventricular nodal reentrant tachycardia (AVNRT). Ablation of fast or slow AV nodal pathways is disclosed in Singer, I., et al., “Catheter Ablation for Arrhythmias,” Clinical Manual of Electrophysiology, pgs. 421-431 (1993).
Another medical procedure using ablation catheters with sheaths to ablate accessory pathways associated with W-P-W utilizing both a transseptal and retrograde approach is discussed in Saul, J. P., et al., “Catheter Ablation of Accessory Atrioventricular Pathways in Young Patients: Use of long vascular sheaths, the transseptal approach and a retrograde left posterior parallel approach,” Journal of the American College of Cardiology, Vol. 21, no. 3, pgs. 571-583 (1 Mar. 1993). Other catheter ablation procedures are disclosed in Swartz, J. F., “Radiofrequency Endocardial Catheter Ablation of Accessory Atrioventricular Pathway Atrial Insertion Sites,” Circulation, Vol. 87, no. 2, pgs. 487-499 (February 1993).
Ablation of a specific location within or near the heart requires the precise placement of the ablation catheter. Precise positioning of the ablation catheter is especially difficult because of the physiology of the heart, particularly because the heart continues to beat throughout the ablation procedures. Commonly, the choice of placement of the catheter is determined by a combination of electrophysiological guidance and fluoroscopy (placement of the catheter in relation to known features of the heart, which are marked by radiopaque diagnostic catheters that are placed in or at known anatomical structures, such as the coronary sinus, high right atrium, and the right ventricle).
The energy necessary to ablate cardiac tissue and create a permanent lesion can be provided from a number of different sources. Originally, direct current was utilized although laser, microwave, ultrasound, and other forms of energy have also been utilized to perform ablation procedures. Because of problems associated with the use of direct current, however, radio frequency (RF) has become the preferred source of energy for ablation procedures. The use of RF energy with an ablation catheter contained within a transseptal sheath for the treatment of W-P-W in the left atrium is disclosed in Swartz, J. F. et al., “Radiofrequency Endocardial Catheter Ablation of Accessory Atrioventricular Pathway Atrial Insertion Sites,” Circulation, Vol. 87, pgs. 487-499 (1993). See also Tracey, C. N., “Radio Frequency Catheter Ablation of Ectopic Atrial Tachycardia Using Paced Activation Sequence Mapping,” J. Am. Coll. Cardiol. Vol. 21, pgs. 910-917 (1993).
In addition to RF ablation catheters, thermal ablation catheters have been used. During thermal ablation procedures, a heating element, secured to the distal end of a catheter, heats thermally conductive fluid, which fluid then contacts the human tissue to raise its temperature for a sufficient period of time to ablate the tissue.
Conventional ablation procedures utilize a single distal electrode secured to the tip of an ablation catheter. Increasingly, however, cardiac ablation procedures utilize multiple electrodes affixed to the catheter body. These ablation catheters often contain a distal tip electrode and a plurality of ring electrodes.
To form linear lesions within the heart using a conventional ablation tip electrode requires the utilization of procedures such as a “drag burn.” The term “linear lesion” as used herein means an elongate, continuous lesion, whether straight or curved, that blocks electrical conduction. During a “drag burn” procedure, while ablating energy is supplied to the tip electrode, the tip electrode is drawn across the tissue to be ablated, producing a line of ablation. Alternatively, a series of points of ablation are formed in a line created by moving the tip electrode incremental distances across the cardiac tissue. The effectiveness of these procedures depends on a number of variables including the position and contact pressure of the tip electrode of the ablation catheter against the cardiac tissue, the time that the tip electrode of the ablation catheter is placed against the tissue, the amount of coagulum that is generated as a result of heat generated during the ablation procedure, and other variables associated with a beating heart, especially an erratically beating heart. Unless an uninterrupted track of cardiac tissue is ablated, unablated tissue or incompletely ablated tissue may remain electrically active, permitting the continuation of the stray circuit that causes the arrhythmia.
It has been discovered that more efficient ablation may be achieved if a linear lesion of cardiac tissue is formed during a single ablation procedure. The ablation catheters commonly used to perform these ablation procedures produce electrically inactive or noncontractile tissue at a selected location by physical contact of the cardiac tissue with an electrode of the ablation catheter. Conventional tip electrodes with adjacent ring electrodes cannot perform this type of procedure, however, because of the high amount of energy that is necessary to ablate sufficient tissue to produce a complete linear lesion. Also, conventional ring electrode ablation may leave holes or gaps in a lesion, which can provide a pathway along which unwanted electrochemical signals can travel.
During conventional ablation procedures, the ablating energy is delivered directly to the cardiac tissue by an electrode on the catheter placed against the surface of the tissue to raise the temperature of the tissue to be ablated. This rise in tissue temperature also causes a rise in the temperature of blood surrounding the electrode. This often results in the formation of coagulum on the electrode, which reduces the efficiency of the ablation electrode. With direct contact between the electrode and the blood, some of the energy targeted for the tissue ablation is dissipated into the blood. To achieve efficient and effective ablation, coagulation of blood that is common with conventional ablation catheters should be avoided. This coagulation problem can be especially significant when linear ablation lesions or tracks are produced because such linear ablation procedures conventionally take more time than ablation procedures ablating only a single location.
To address the coagulation concern, more recent designs of ablation electrodes transfer energy to the target tissue with a conductive fluid medium that passes over a standard metal electrode rather than contacting the standard electrode to the tissue. The fluid flow thus reduces the likelihood that coagulum will form on any of the surfaces of the electrode. These so-called “virtual electrodes” also help reduce tissue charring because the fluid, while energized, also acts as a cooling heat transfer medium. However, with present virtual electrode designs, the fluid flow is not often uniform, resulting in hot spots due greater energy transfer in areas with greater flow. Further, with present virtual electrode designs, the volume of fluid flow required to create a lesion is very high and thus introduces a significant amount of excess fluid into the patient's vasculature, which can significantly dilute the patient's blood volume and compromise pulmonary circulation capacity.
In some instances, stray electrical signals find a pathway down the pulmonary veins and into the left atrium of the heart. In these instances, it may be advantageous to produce a circumferential lesion at or near the ostium of one or more of the pulmonary veins. Desirably, such a circumferential lesion would electrically isolate a pulmonary vein from the left atrium, completely blocking stray signals from traveling down the pulmonary vein and into the left atrium. It is desirable to have a catheter with a distal portion for forming such circumferential lesions in tissue while avoiding problems with existing designs.
The information included in this background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is to be bound.
The present invention is directed to an ablation catheter with improved fluid distribution structures. An ablation section at a distal end of the catheter is designed to provide a more uniform fluid flow emanating from the catheter. By creating a uniform fluid flow, a more uniform tissue lesion results and the possibility of charring the tissue is reduced. A combination of mesh material layers, porous materials, and dispersion channels or openings are used to achieve the uniform flow. The amount of fluid used as a virtual electrode to ablate the tissue is greatly reduced with the present invention. Further, the catheter may be used to create a single, uniform linear lesion by successive application of energy to adjacent portions of the ablation section, thus reducing the power required to create the desired lesion.
In one embodiment of the invention, a catheter is composed of a proximal section and an ablation section at a distal end of the catheter. A catheter wall defines at least one fluid lumen extending from the proximal section to the ablation section. An electrode lead is positioned within the at least one fluid lumen extending within the ablation section. At least one dispersion opening is positioned within the catheter wall in the ablation section and is oriented longitudinally along a length of the ablation section. The at least one dispersion opening is in fluid communication with the at least one fluid lumen. A length of mesh material is generally coextensive with and positioned adjacent to the at least one dispersion opening on the opposing side of the at least one dispersion opening from the at least one fluid lumen.
In another embodiment of the invention, a catheter with a distal ablation electrode tip is again composed of a proximal section and an ablation section at a distal end of the catheter. A catheter wall defines at least one fluid lumen extending from the proximal section to the ablation section. At least one dispersion opening is formed within the catheter wall in the ablation section and is oriented longitudinally along a length of the ablation section. The at least one dispersion opening is in fluid communication with the at least one fluid lumen. An irrigation cavity is positioned within the ablation section of the catheter. An elongate opening is formed in an outside surface of the catheter wall in fluid communication with the irrigation cavity. The at least one dispersion opening provides fluid communication between the at least one fluid lumen and the irrigation cavity. A tube-shaped, conductive mesh material is generally coextensive with and positioned within the irrigation cavity. A porous material is positioned within and fills a lumen of the tube-shaped, conductive mesh material. An electrode lead is coupled with the tube-shaped, conductive mesh material.
In an alternate embodiment of the invention, a catheter with a distal ablation electrode tip is again composed of a proximal section and an ablation section at a distal end of the catheter. A catheter wall defines at least one fluid lumen extending from the proximal section to the ablation section. An irrigation cavity is formed by the distal end of the fluid lumen within the ablation section of the catheter. A tube-shaped, conductive mesh material is generally coextensive with and positioned within the irrigation cavity. The tube-shaped, conductive mesh material has a first outer diameter and a first inner diameter. The first outer diameter is sized to fit snugly within an inner diameter of the irrigation cavity. A tube-shaped porous material has a second outer diameter and a second inner diameter. The second outer diameter is sized to fit snugly within the first inner diameter of the first tube. An elongate opening is formed in an outside surface of the catheter wall in fluid communication with the irrigation cavity. An electrode lead is coupled with the tube-shaped, conductive mesh material.
In a further embodiment of the invention, a catheter with a distal ablation electrode tip is again composed of a proximal section and an ablation section at a distal end of the catheter. A catheter wall defines a first fluid lumen extending from the proximal section to the ablation section. A second fluid lumen extends from the proximal section to the ablation section. An irrigation cavity is positioned within the ablation section of the catheter. An insulating plug is positioned within the irrigation cavity and separates the irrigation cavity into a proximal portion and a distal portion. A first dispersion opening is formed within the catheter wall in the ablation section and is oriented longitudinally along a length of the ablation section. The first dispersion opening is in fluid communication with both the first fluid lumen and the proximal portion of the irrigation cavity. A second dispersion opening is formed within the catheter wall in the ablation section oriented longitudinally along a length of the ablation section. The second dispersion opening is in fluid communication with both the second fluid lumen and the distal portion of the irrigation cavity. An elongate opening is formed in an outside surface of the catheter wall in fluid communication with the irrigation cavity. The elongate opening is subdivided into a proximal opening and a distal opening, which are separated by a bridge member. The proximal opening is generally coextensive with the proximal portion of the irrigation cavity. The distal opening is generally coextensive with the distal portion of the irrigation cavity. The bridge member connects a top edge of the elongate opening to a bottom edge of the elongate opening. A first tube-shaped, conductive mesh section is generally coextensive with and positioned within the proximal portion of the irrigation cavity. A second tube-shaped, conductive mesh section is generally coextensive with and positioned within the distal portion of the irrigation cavity. The first tube-shaped, conductive mesh section is electrically insulated from the second tube-shaped, conductive mesh section by the insulating plug. A first porous material section is positioned within and fills the first tube-shaped, conductive mesh section. A second porous material section is positioned within and fills the second tube-shaped, conductive mesh section. The first porous material section is fluidly isolated from the second porous material section by the insulating plug. An electrode lead is coupled with the tube-shaped, conductive mesh material.
Another aspect of the invention is a method for creating a uniform flow of a fluid emanating from an ablation section at a distal end of a catheter. The method involves first flowing a conductive fluid through a lumen in the catheter. This creates a first pressure drop across the conductive fluid in the lumen between a proximal end of the catheter and the ablation section. Next the conductive fluid flows from the lumen through a porous material positioned in the ablation section. This creates a second pressure drop between a first surface of the porous material and a second surface of the porous material. The second pressure drop through the porous material is higher than the first pressure drop. Finally; the conductive fluid flows through a mesh electrode adjacent the porous material.
Other features, details, utilities, and advantages of the present invention will be apparent from the following more particular written description of various embodiments of the invention as further illustrated in the accompanying drawings and defined in the appended claims.
The present invention concerns an improved design for ablation catheters used, for example, in cardiac ablation procedures to produce linear lesions in cardiac tissue. The electrode structure on the distal end of the catheter of the present invention is generally termed a “virtual electrode” as ablation energy is primarily imparted to the target tissue via energy transfer through a conductive fluid medium escaping the distal end of the catheter rather than by actual contact of a traditional electrode with the tissue. The present invention is primarily directed to improving the uniformity of fluid flow from the electrode structure in order to achieve greater uniformity in lesions created in the target tissue.
As shown in
The proximal end 14 of the catheter 22 may include a catheter boot 10 that seals around several components to allow the introduction of fluids and control mechanisms into the catheter 22. For example, at least one fluid introduction valve 8 with an attached length of tubing 16 may be coupled with the catheter boot 10. An optional fluid introduction valve 8′ and correlative tube 16′ (shown in phantom) may also be coupled with the catheter boot 10, for example, for the introduction of fluid into a catheter with multiple fluid lumens if separate control of the pressure and flow of fluid in the separate lumens is desired. A handle interface 4 for connection with a control handle, a generator, and/or sensing equipment (none shown) may be coupled with the catheter boot 10 via a control shaft 24. The control shaft 24 may enclose, for example, control wires for manipulating the catheter 22 or ablation electrode section 20, conductors for energizing an electrode in the ablation electrode section 20, and/or lead wires for connecting with sensors in the ablation electrode section 20. The catheter boot 10 provides a sealed interface to shield the connections between such wires and fluid sources and one or more lumen in the catheter 22 through which they extend.
The distal end of the catheter may be straight or take on a myriad of shapes depending upon the desired application. The distal end 12 of one embodiment of a catheter 122 according to the present invention is shown in greater detail in
Each of the different sections of the catheter may be constructed from a number of different polymers, for example, polypropylene, oriented polypropylene, polyethylene, polyethylene terephthalate, crystallized polyethylene terephthalate, polyester, polyvinyl chloride, and Pellethane®. Alternatively, the different sections of the catheter may be composed, for example, of different formulations of Pebax® resins (AUTOFINA Chemicals, Inc. Philadelphia, Pa.), or other polyether-block co-polyamide polymers, which can be used to create desired materials stiffness within the different sections of the catheter. By using different formulations of the Pebax® resins, different mechanical properties (e.g., flexibility or stiffness) can be chosen for each of the sections along a catheter.
The catheter may also be a braided catheter wherein the catheter wall includes a cylindrical braid of metal fibers, for example, stainless steel fibers. Such a metallic braid may be included in the catheter to add stability to the catheter and also to resist radial forces that might crush the catheter. Metallic braid also provides a framework to translate torsional forces imparted by the clinician on the proximal end of the catheter to the distal end to rotate the catheter for appropriate orientation of the ablation electrode.
The straight section 30 is generally the portion of the catheter 122 that remains within the vasculature of the patient while a sensing or ablation procedure is performed by a clinician. As shown in
In addition to a particular form for the distal end of the catheter 122,
As shown to good advantage in
When the electrode 150 is energized the energy is transferred to the conductive fluid in the fluid lumen 152. The conductive fluid is forced by the fluid pressure within the fluid lumen 152 sequentially through the dispersion slot 146 in the catheter wall 144, then through the mesh material 142, and finally exits ablation electrode section 120 through the elongate aperture 140. The dispersion slot 146 and the mesh material 142 together act to evenly distribute the conductive fluid as it exists the ablation electrode section 120 portion of the catheter 122. In this manner, a uniform ablation lesion may be formed in tissue adjacent the elongate aperture 148 and the shrink tubing 138 where the energized conductive fluid exists the ablation electrode 120.
In the present embodiment, as well as in further embodiments described herein, the mesh material may have on the order of between 5 and 2,000 holes per linear inch. The mesh material is provided to improve the uniformity of distribution of the fluid along the length of the ablation electrode section, which enhances the uniformity of the corresponding tissue lesion. In one embodiment, the when using a catheter with a braided wall construction, the mesh material may even be the metallic braid in the catheter wall. As this suggests, the mesh material may additionally be a conductive material, for example, platinum, platinum/iridium, and gold. Alternatively, the mesh material may be a carbon fiber mesh. Braided metal wire, e.g., stainless steel wire, may also be used as the mesh material. Because the conductive fluid in the lumen is in contact with both the electrode lead and the conductive mesh material, the mesh material becomes a secondary electrode. The high electrical conductivity of the mesh material in such an embodiment, the voltage along the entire length of the mesh material is highly uniform, again contributing to greater uniformity in the tissue lesion. The uniform flow of the conductive fluid across the mesh material acts as a cooling medium as well, which, in conjunction with the constant voltage of the mesh material, helps to maintain a fairly uniform temperature along the length of the ablation electrode section, which further contributes to uniformity in the resulting tissue lesion. If may also be desirable to include a temperature sensor in the mesh material to monitor the temperature on the surface of the mesh material. Such temperature information can allow a clinician to adjust the power of the RF energy, the fluid flow, or both to provide greater control over the depth and uniformity of the resulting tissue lesion.
As depicted in
In one embodiment, the shape-retention wire 148 may be NiTinol wire, a nickel-titanium (NiTi) alloy, chosen for its exceptional shape-retention properties. NiTinol wire materials are super elastic—able to sustain a large deformation at a constant temperature—and when the deforming force is released they return to their original, undeformed shape. Thus a catheter 122 incorporating NiTinol shape-retention wire 148 may be inserted into the generally straight lengths of introducer sheaths to reach a desired location and upon emerging from the introducer, the shape-retention wire 148 will assume its “preformed” shape, forming the catheter 122 into the C-shaped curve of the ablation electrode section 120.
An alternate embodiment of the catheter 122 is depicted in
Another embodiment of the invention is depicted in
The catheter 222 again defines a fluid lumen 252 through which conductive fluid is transported to the distal end 12 of the catheter 222. An electrode 250 resides within the fluid lumen 252 and, when energized by a source of RF ablation energy, transfers the RF energy to the conductive fluid within the fluid lumen 252. The conductive fluid within the fluid lumen 252 is forced by fluid pressure through the dispersion portholes 246, through the mesh material 242, and exists the catheter 222 through the elongate aperture 240 in the shrink tubing 238. Again, in this manner the conductive fluid is more evenly distributed as it exists the catheter 222 and thus creates a more uniform lesion in the target tissue. As indicated before, although not shown in this embodiment, the electrode 250 may alternatively be directly attached to the conductive mesh material 242 to directly energize the mesh material 242. This arrangement would still energize the conductive fluid as it passes through the mesh material 242, but after the conductive fluid has already passed through the dispersion portholes 246. A shape-retention/shape-memory wire 248 may additionally reside within the catheter 222 in order to appropriately shape the distal end 12 of the catheter 222.
Another embodiment of the present invention is depicted in
A further embodiment of the present invention is depicted in
The elongate aperture 440 may have a measurable depth between the outer surface of the catheter 422 and surface of the mesh material 442. In such a design, there is a set-off distance between the mesh material 442 and the tissue surface to be ablated. The depth of the elongate aperture 440 formed in the catheter wall 444 acts as a fluid channel to uniformly distribute the conductive fluid as it flows through the porous material 454 and the mesh material 442. By increasing the uniformity of fluid distribution and creating a set-back for the mesh material 442 from the tissue to be ablated, the potential for charring the tissue is greatly reduced. In an alternative embodiment, the mesh material 442 may be positioned adjacent the outer surface of the ablation electrode section 420 of the catheter 422 to provide for actual contact between the mesh material 442 and the tissue to be ablated.
In the embodiments of
The porous material is provided as a buffer to reduce any impact of the pressure drop along the fluid lumen. In some applications, it is desirable to create such greater uniformity in fluid flow. In some instances, because of the pressure drop along the fluid lumen, a non-uniform flow of conductive fluid out of the ablation portion of the catheter causes part of a linear lesion to be under-ablated because of excessive cooling by the fluid while part of the linear lesion is over-ablated and charred because of too little fluid cooling. When porous material is added between the fluid lumen and the exit apertures in the ablation electrode section of the catheter, the pressure drop as the conductive fluid crosses the porous material is much higher than the pressure drop of the fluid in the fluid lumen. Further, the flow rate of conductive fluid exiting the catheter is significantly reduced. By reducing the significance of the pressure drop of the fluid in the fluid lumen and reducing the flow rate, a uniform distribution of fluid flow emerging from the ablation electrode section can be achieved.
An additional embodiment of the present invention is depicted in
An alternative to the embodiment of
An additional embodiment of the present invention is depicted in
In this embodiment, a series of elongate apertures 740a, 740b, 740c, separated by aperture bridges 758, are defined within the catheter wall 744. It may be desirable to section an elongate aperture within the catheter wall 744 with aperture bridges 758 in order to provide additional stability to the catheter 722 over the length of an extensive opening in the catheter wall 744. As in previous embodiments, the elongate apertures 740a, 740b, 740c expose a surface of the mesh tube 742 and allow for the exit of conductive fluid from the ablation section 720 of the catheter 722. Also, as in previous embodiments, a shape-retention/shape-memory wire 748 may be provided within the catheter 722 to appropriately shape the catheter 722. Additionally, because in this design the fluid lumen 752 is coaxial with the irrigation cavity 756, there may be additional room within the catheter 722 to provide alternate lumens 760, for example, for the provision of steering cables or sensing leads.
An alternate embodiment of the invention is depicted in
Similar to the embodiment of
The design of the ablation electrode section 820 of the catheter 822 allows for a first half of the ablation electrode section 820 to be energized for an initial period and then to separately energize the second half of the ablation electrode section 820 for a second period. It may be desirable to perform an ablation procedure in successive steps in a circumstance where the length of the desired lesion demands more power than potentially available from the source of RF ablation energy. The present design allows energy to be delivered to two or more sections of the ablation electrode 820 successively and sequentially. This embodiment further provides the option of delivering the conductive fluid to the first and second irrigation cavities 856a, 856b in the ablation electrode section 820 either continuously or successively and sequentially in combination with the delivery of the RF energy. If the aperture bridge 858 and plug 860 between the electrodes are sufficiently narrow, a single, uninterrupted lesion may be formed in the target tissue.
In one experiment, a catheter with an ablation section of the embodiment depicted in
The distal end of the ablation electrode section 20 is positioned adjacent to the ostium 90 of the left superior pulmonary vein 70 using known procedures. For example, to place the ablation electrode section 20 in the position shown in
While the ablation electrode 20 is in the left superior pulmonary vein 70, the ablation electrode section 20 may be energized to create the desired lesion in the left superior pulmonary vein 70. The RF energy emanating from the ablation electrode section 20 is transmitted through the conductive fluid medium, which flows through the fluid lumen, through the dispersion openings, through the porous material (depending upon the particular embodiment), through the mesh layer, and impacts the adjacent tissue. Thus, a lesion is formed in the tissue by the RF energy.
Although various embodiments of this invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. It is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative only of particular embodiments and not limiting. All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, front, back, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4641649 | Walinsky et al. | Feb 1987 | A |
4776334 | Prionas | Oct 1988 | A |
4860769 | Fogarty et al. | Aug 1989 | A |
4896671 | Cunningham et al. | Jan 1990 | A |
4934049 | Kiekhafer et al. | Jun 1990 | A |
4945912 | Langberg | Aug 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
5125895 | Buchbinder et al. | Jun 1992 | A |
5125896 | Hojeibane | Jun 1992 | A |
5178618 | Kandarpa | Jan 1993 | A |
5209229 | Gilli | May 1993 | A |
5228442 | Imran | Jul 1993 | A |
5231995 | Desai | Aug 1993 | A |
5239999 | Imran | Aug 1993 | A |
5242441 | Avitall | Sep 1993 | A |
5246438 | Langberg | Sep 1993 | A |
5255679 | Imran | Oct 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5269757 | Fagan et al. | Dec 1993 | A |
RE34502 | Webster, Jr. | Jan 1994 | E |
5277199 | DuBois et al. | Jan 1994 | A |
5279299 | Imran | Jan 1994 | A |
5281213 | Milder et al. | Jan 1994 | A |
5281217 | Edwards et al. | Jan 1994 | A |
5293868 | Nardella | Mar 1994 | A |
5311866 | Kagan et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5324284 | Imran | Jun 1994 | A |
5327889 | Imran | Jul 1994 | A |
5327905 | Avitall | Jul 1994 | A |
5330466 | Imran | Jul 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5354297 | Avitall | Oct 1994 | A |
5370644 | Langberg | Dec 1994 | A |
5383923 | Webster, Jr. | Jan 1995 | A |
5389073 | Imran | Feb 1995 | A |
5391147 | Imran et al. | Feb 1995 | A |
5395328 | Ockuly et al. | Mar 1995 | A |
5396887 | Imran | Mar 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5406946 | Imran | Apr 1995 | A |
5409000 | Imran | Apr 1995 | A |
5411025 | Webster, Jr. | May 1995 | A |
5415166 | Imran | May 1995 | A |
5423772 | Lurie et al. | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5445148 | Jaraczewski et al. | Aug 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5478330 | Imran et al. | Dec 1995 | A |
5487385 | Avitall | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5527279 | Imran | Jun 1996 | A |
5533967 | Imran | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5545161 | Imran | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5549581 | Lurie et al. | Aug 1996 | A |
5558073 | Pomeranz et al. | Sep 1996 | A |
5562619 | Mirarchi et al. | Oct 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5575772 | Lennox | Nov 1996 | A |
5578007 | Imran | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5588964 | Imran et al. | Dec 1996 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5611777 | Bowden et al. | Mar 1997 | A |
5626136 | Webster, Jr. | May 1997 | A |
5628313 | Webster, Jr. | May 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5643231 | Lurie et al. | Jul 1997 | A |
5656029 | Imran et al. | Aug 1997 | A |
5656030 | Hunjan et al. | Aug 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5676662 | Fleischhacker et al. | Oct 1997 | A |
5676693 | LaFontaine | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5722401 | Pietroski et al. | Mar 1998 | A |
5722963 | Lurie et al. | Mar 1998 | A |
5725524 | Mulier et al. | Mar 1998 | A |
5730128 | Pomeranz et al. | Mar 1998 | A |
5755760 | Maguire et al. | May 1998 | A |
5779669 | Haissaguerre et al. | Jul 1998 | A |
5779699 | Lipson | Jul 1998 | A |
5782239 | Webster, Jr. | Jul 1998 | A |
5782828 | Chen et al. | Jul 1998 | A |
5782899 | Imran | Jul 1998 | A |
5785706 | Bednarek | Jul 1998 | A |
RE35880 | Waldman et al. | Aug 1998 | E |
5792140 | Tu et al. | Aug 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5807249 | Qin et al. | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5814029 | Hassett | Sep 1998 | A |
5820568 | Willis | Oct 1998 | A |
5823955 | Kuck et al. | Oct 1998 | A |
5826576 | West | Oct 1998 | A |
5827272 | Breining et al. | Oct 1998 | A |
5836875 | Webster, Jr. | Nov 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5842984 | Avitall | Dec 1998 | A |
5843020 | Tu et al. | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5865800 | Mirarchi et al. | Feb 1999 | A |
5868733 | Ockuly et al. | Feb 1999 | A |
5868741 | Chia et al. | Feb 1999 | A |
5876340 | Tu et al. | Mar 1999 | A |
5876398 | Mulier et al. | Mar 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879296 | Ockuly et al. | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5885278 | Fleischman et al. | Mar 1999 | A |
5891027 | Tu et al. | Apr 1999 | A |
5891137 | Chia et al. | Apr 1999 | A |
5893885 | Webster, Jr. | Apr 1999 | A |
5895355 | Schaer | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5897529 | Ponzi | Apr 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5906605 | Coxum | May 1999 | A |
5908446 | Imran | Jun 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5913854 | Maguire et al. | Jun 1999 | A |
5913856 | Chia et al. | Jun 1999 | A |
5916158 | Webster, Jr. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5916214 | Cosio et al. | Jun 1999 | A |
5919188 | Shearon et al. | Jul 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5931811 | Haissaguerre et al. | Aug 1999 | A |
5935102 | Bowden et al. | Aug 1999 | A |
5935124 | Klumb et al. | Aug 1999 | A |
5938603 | Ponzi | Aug 1999 | A |
5938659 | Tu et al. | Aug 1999 | A |
5938660 | Swartz et al. | Aug 1999 | A |
5938694 | Jaraczewski et al. | Aug 1999 | A |
5944690 | Falwell et al. | Aug 1999 | A |
5951471 | de la Rama et al. | Sep 1999 | A |
5964796 | Imran | Oct 1999 | A |
5971968 | Tu et al. | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5987344 | West | Nov 1999 | A |
5993462 | Pomeranz et al. | Nov 1999 | A |
5997532 | McLaughlin et al. | Dec 1999 | A |
6001085 | Lurie et al. | Dec 1999 | A |
6002955 | Willems et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6010500 | Sherman et al. | Jan 2000 | A |
6012457 | Lesh | Jan 2000 | A |
6014579 | Pomeranz et al. | Jan 2000 | A |
6015407 | Rieb et al. | Jan 2000 | A |
6016437 | Tu et al. | Jan 2000 | A |
6016809 | Mulier et al. | Jan 2000 | A |
6023638 | Swanson | Feb 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6027473 | Ponzi | Feb 2000 | A |
6029091 | de la Rama et al. | Feb 2000 | A |
6032061 | Koblish | Feb 2000 | A |
6032077 | Pomeranz | Feb 2000 | A |
6033403 | Tu et al. | Mar 2000 | A |
6048329 | Thompson et al. | Apr 2000 | A |
6059739 | Baumann | May 2000 | A |
6063022 | Ben-Haim | May 2000 | A |
6063080 | Nelson et al. | May 2000 | A |
6064902 | Haissaguerre et al. | May 2000 | A |
6064905 | Webster, Jr. et al. | May 2000 | A |
6066125 | Webster, Jr. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6068653 | LaFontaine | May 2000 | A |
6071274 | Thompson et al. | Jun 2000 | A |
6071279 | Whayne et al. | Jun 2000 | A |
6071282 | Fleischman | Jun 2000 | A |
6076012 | Swanson et al. | Jun 2000 | A |
6078830 | Levin et al. | Jun 2000 | A |
6080151 | Swartz et al. | Jun 2000 | A |
6083222 | Klein et al. | Jul 2000 | A |
6090104 | Webster, Jr. | Jul 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6119041 | Pomeranz et al. | Sep 2000 | A |
6120476 | Fung et al. | Sep 2000 | A |
6120500 | Bednarek et al. | Sep 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6132426 | Kroll | Oct 2000 | A |
6138043 | Avitall | Oct 2000 | A |
6146338 | Gardeski et al. | Nov 2000 | A |
6156034 | Cosio et al. | Dec 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6168594 | LaFontaine et al. | Jan 2001 | B1 |
6169916 | West | Jan 2001 | B1 |
6171275 | Webster, Jr. | Jan 2001 | B1 |
6171277 | Ponzi | Jan 2001 | B1 |
6183435 | Bumbalough et al. | Feb 2001 | B1 |
6183463 | Webster, Jr. | Feb 2001 | B1 |
6198974 | Webster, Jr. | Mar 2001 | B1 |
6200315 | Gaiser et al. | Mar 2001 | B1 |
6203507 | Wadsworth et al. | Mar 2001 | B1 |
6203525 | Whayne et al. | Mar 2001 | B1 |
6210362 | Ponzi | Apr 2001 | B1 |
6210406 | Webster | Apr 2001 | B1 |
6210407 | Webster | Apr 2001 | B1 |
6214002 | Fleischman et al. | Apr 2001 | B1 |
6217528 | Koblish et al. | Apr 2001 | B1 |
6217573 | Webster | Apr 2001 | B1 |
6217574 | Webster | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6219582 | Hofstad et al. | Apr 2001 | B1 |
6221070 | Tu et al. | Apr 2001 | B1 |
6224587 | Gibson | May 2001 | B1 |
6233477 | Chia et al. | May 2001 | B1 |
6235022 | Hallock et al. | May 2001 | B1 |
6235025 | Swartz et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6241722 | Dobak et al. | Jun 2001 | B1 |
6241726 | Chia et al. | Jun 2001 | B1 |
6241727 | Tu et al. | Jun 2001 | B1 |
6241754 | Swanson et al. | Jun 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6251109 | Hassett et al. | Jun 2001 | B1 |
6254599 | Lesh et al. | Jul 2001 | B1 |
6264654 | Swartz et al. | Jul 2001 | B1 |
6287306 | Kroll et al. | Sep 2001 | B1 |
6290697 | Tu et al. | Sep 2001 | B1 |
6305378 | Lesh | Oct 2001 | B1 |
6308091 | Avitall | Oct 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6330473 | Swanson et al. | Dec 2001 | B1 |
6371955 | Fuimaono et al. | Apr 2002 | B1 |
6375654 | McIntyre | Apr 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6391024 | Sun et al. | May 2002 | B1 |
6402746 | Whayne et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6447507 | Bednarek et al. | Sep 2002 | B1 |
6454758 | Thompson et al. | Sep 2002 | B1 |
6454766 | Swanson et al. | Sep 2002 | B1 |
6466811 | Hassett | Oct 2002 | B1 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6503247 | Swartz et al. | Jan 2003 | B2 |
6522930 | Schaer et al. | Feb 2003 | B1 |
6540744 | Hassett et al. | Apr 2003 | B2 |
6605087 | Swartz et al. | Aug 2003 | B2 |
6692492 | Simpson et al. | Feb 2004 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6837886 | Collins et al. | Jan 2005 | B2 |
6858026 | Sliwa et al. | Feb 2005 | B2 |
6960207 | Vanney et al. | Nov 2005 | B2 |
7029471 | Thompson et al. | Apr 2006 | B2 |
20020026187 | Swanson | Feb 2002 | A1 |
20030125726 | Maguire et al. | Jul 2003 | A1 |
20040143255 | Vanney et al. | Jul 2004 | A1 |
20040143256 | Bednarek | Jul 2004 | A1 |
20040181189 | Roychowdhury et al. | Sep 2004 | A1 |
20050055019 | Skarda | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
WO 9510319 | Apr 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20060287650 A1 | Dec 2006 | US |