The subject matter described herein relates to an electrosurgical instrument for ablating tissue and, more particularly, to a bi-polar radio frequency, electrosurgical instrument for ablating tissue. More specifically, the subject matter has particular utility in forming lines of ablation in cardiac tissue. However, it is not limited to such application.
Atrial fibrillation (“AF”), is a cardiac rhythm disorder and is one of the most common types of heart arrhythmia. AF is understood to result from errant electrical impulses in the heart tissue, and one surgical treatment for AF involves creating lines of scar tissue in the heart that serve to block the pathways for the errant electrical impulses. Lines of scar tissue may be created by various ablation techniques, including surgically cutting the heart tissue, freezing the tissue with cryogenic probe, and heating the tissue with radio frequency (“RF”) energy.
Exemplary RF instruments for cardiac ablation and the methods of use of such instruments are disclosed in, e.g., U.S. Pat. Nos. 6,546,935, 6,899,710, 6,905,498 and 6,974,454, all of which are incorporated by reference herein. These patents are generally directed to bi-polar RF ablation instruments with opposed jaws, each jaw having an ablation element or RF electrode thereon, with the jaws being relatively moveable so as to clamp tissue therebetween. Such clamps can provide for generally consistent compression of the tissue held between the clamp jaws. resulting in good electrical contact and the targeted delivery of RF energy. A bi-polar RF ablation clamp such as those disclosed in the above-referenced patents is available from AtriCure, Inc. as the Isolator® Ablation Clamp.
In addition to the bi-polar clamps for ablation with the ablation electrodes on the opposed jaw members, such as those described above, it is also known to provide a bi-polar RF ablation instrument that has the ablation elements spaced apart and carried on a single working surface attached to the end of a semi-rigid shaft. Such an instrument may be used in the same procedure as the bi-polar clamps discussed above for making connecting ablation lines or lesions. See, e.g., U.S. Published Patent Applications Nos. 2006/0161149 and 2006/0161151, both published on Jul. 20, 2006, and 2008/0009853, published Jan. 10, 2008, which are incorporated herein by reference. Such instruments are commonly referred to as “pens”, and an exemplary bi-polar RF pen is also available from AtriCure, Inc. as the Isolator® Multifunctional Pen. This particular pen also includes pacing and sensing electrodes that permit the surgeon to confirm, during surgery, the creation of a transmural ablation with a single instrument.
Additionally, elongated probes and catheters have been used for mapping epicardial or endocardial signals to identify the locations of dysrhythmias and to ablate cardiac tissue. Such devices typically include a plurality of spaced electrodes along their length for receiving signals for mapping and delivering RF energy for ablation. See, e.g., U.S. Pat. No. 6,237,605, which discloses an epicardial ablation probe and U.S. Pat. Nos. 5,779,669 and 6,973,339, which disclose endocardial ablation catheters.
In general, bi-polar electrode devices apply RF energy directly to and through the surface of the tissue engaged by the electrode members. The electrodes, with the target tissue engaged thereby, form a conductive resistive circuit. When the electrodes are energized, the moisture in the tissue conducts the RF energy between the electrodes and the tissue begins to desiccate. As the tissue desiccates, it becomes more resistive. Tissue desiccation spreads laterally and inwardly from the surface of the tissue near the electrode-tissue contact area, where the current flux or density is greatest. Surface desiccation increases the resistance in the tissue and can make it more difficult to achieve good depth of penetration in underlying tissue without creating a larger than desired area of ablated tissue or excessive surface heating adjacent to the electrodes. Accordingly, techniques have been developed to overcome these undesirable surface tissue heating effects, including cooling or cryogenics and the selected positioning of electrodes. See, e.g., U.S. Pat. No. 6,413,253 to Koop et al., U.S. Pat. No. 6,629,535 to Ingle et al. and U.S. Pat. No. 7,022,121 to Stern et al. and U.S. Pat. No. 6,918,906 to Long, also incorporated by reference.
Nevertheless, a significant need still exists for improved electrosurgical devices for ablating tissue.
Pursuant to the present disclosure, a device for ablating target tissue is provided that comprises an end effector that has at least two generally elongated, parallel ablation electrodes. The ablation electrodes are adapted to be conductively attached to a source of RF energy such that, when activated, the electrodes are of opposite polarity. A fluid pathway is provided within the end effector, and the source of fluid in communication with the fluid pathway is provided such that fluid being circulated through the pathway cools the electrodes. The end effector also includes means for enhancing the contact between the ablation electrodes and the target tissue.
In the illustrated embodiments, the means for enhancing contact may be either an expandable member or a suction port that is adjacent the electrodes. If the means for enhancing contact is an expandable member, the expandable member is preferably in fluid communication with the source of fluid so as to be inflatable thereby.
Preferably, the fluid pathway is closed, that is, it forms a closed circuit, and an electrically-insulated material is provided to separate the electrodes from the fluid pathway, such that there is not direct contact between the fluid and electrodes. The end effector may be mounted to a rigid, malleable shaft, so as to be part of an RF pen, a flexible shaft, so as to be part of a catheter-based device, or to be free standing, and useable with a robotic system.
Other features and advantages of the device will become apparent upon reference to the accompanying drawings and following detailed description.
The exemplary embodiments of the present disclosure are described and illustrated below to encompass radio frequency or RF surgical instruments and, more particularly, to an RF ablation probe for creating lines of ablation on cardiac tissue for the treatment of cardiac arrythmias such as atrial fibrillation. Of course, it will be apparent to those of ordinary skill in the art that the preferred embodiments discussed below are exemplary in nature and may be reconfigured without departing from the scope and spirit of the present disclosure. However, for clarity and precision, the exemplary embodiments as discussed below may include optional steps, methods, and features that one of ordinary skill should recognize as not being a requisite to fall within the scope of the present disclosure. Hereinafter, the exemplary embodiments of the present disclosure will be described in detail with reference to the drawings.
Turning to
In keeping with one aspect of this description, the end effector 12 is fluid cooled. To this end, the ablation device 10 may be associated with a system that includes a source of fluid and means for circulating the fluid through the end effector 12. In the illustrated embodiment, such a system comprises a fluid reservoir/pump assembly, generally designated 18, that is housed separately from the hand piece 16. However, it is contemplated that the fluid reservoir/pump assembly 18 may also be housed within the hand piece 16.
Power for operating the pump assembly 18 and for activating the end effector 12 is introduced to the assembly 18 by means of an electrically-conductive cable 20. The pump assembly 18 is in fluid and electrical communication with the hand piece 16 by means of a combination fluid tubing/power cable 22 extending between the pump assembly 18 and the hand piece 16.
Turning to
In the illustrated embodiment, the electrodes 24 each include an elongated, relatively narrow tissue-engaging portion 24a that is adapted to extend through slots in the base 26, with the surfaces 24a protruding slightly beyond the surface of the base portion 26 (as best seen in
A thermister 29 may be carried in the housing between the electrodes 24 or at some other suitable location for monitoring the temperature of the end effector. The thermister allows the user to determine whether cooling fluid is circulating through the system. The system can be appropriately programmed so that if a threshold temperature (e.g.,50° C.-60° C.) is exceeded and detected by the thermister an alarm will go off, alerting the user and/or automatically terminating the current to the electrodes 24.
The electrodes 24 are made of electrically conductive material and may be made of copper, copper alloy, conductive polymer or other material. They may be coated or plated with any suitable material, e.g., gold, a release agent, or other. As illustrated, each electrode includes a fluid passageway 30 therethrough. In the illustrated embodiment, the electrodes 24 terminate with a boss 32 at their proximal end and with an aperture 34 at their distal end. The boss 32 of each electrode 24 facilitates the attachment of an insulative fluid tubing 36 to each electrode 24, while the apertures 34 are interconnected by an insulative tubular coupling 38 to complete a fluid flow path from the hand piece 16 through the shaft 14 (by means of the fluid tubing 36), serially through the electrodes 24, and then back through the shaft 14 to the hand piece 16.
In keeping with another aspect of this disclosure, if the cooling fluid is electrically conductive, the surfaces of the fluid cooling passages in the electrodes are provided with electrical insulation. The insulation may take any form that electrically insulates while also allowing heat transfer between the electrode and fluid flow in the passage. The coating prevents the cooling fluid, when circulated through the electrodes 24 of opposite polarity, from short circuiting the instrument 10 when activated by bi-polar RF energy. A preferred coating material is a polymer, such as parylene, which has a high dielectric and thermal conductivity, although other coating materials, such as quartz, may also be used. The coating thickness will depend on the material used. The coating, if parylene, is applied to the surfaces of the passageways 30 so as to have a thickness of from approximately 2 microns to approximately 10 microns and is preferably approximately 5 microns.
During use, it may be desirable to vary the alignment of the end effector 12 relative to the hand piece 16 in order to facilitate good contact between the tissue engaging surfaces 24a of the electrodes and the tissue to be ablated. One method for accomplishing this is to provide a malleable shaft, so that the shaft can be bent and/or twisted to orient the end effector 12 as desired. While malleable shafts for surgical instruments are generally known, the provision of such a shaft is complicated in the present device because of the potential for kinking or crimping the fluid tubing 36, which could obstruct the free circulation of the cooling fluid through the instrument. Thus, in accordance with another aspect of the disclosure, the shaft 14 is constructed so as to be both malleable and to inhibit the kinking of the fluid tubing 36 when the shaft 14 is bent or twisted. Specifically, the illustrated shaft 14 includes an internal, elongated stiffening element, described in greater detail below, that supports the fluid tubing 36 and spreads the localized stresses, which might otherwise buckle the tubings 26, over a larger area.
With reference to
The tubular housing 42 may be also provided with a heat shrink coating of a polymeric material, such as fluoropolymeric tubing as indicated by reference numeral 45 in
To provide for a greater degree of variability of the position of the end effector 12 relative to the hand piece 16, the end effector 12 may be secured to the distal end of the shaft 14 by an articulation joint, generally designated 46 (see
In the illustrated embodiment, a locating ring 52a, 52b is associated with each of the base portion 26 and cover portion 28. The locating rings 52a, 52b serve to reinforce the pivot connection. In addition, each base portion 26 and cover portion 28 defines a seat for a resilient ring 54a, 54b that provides some additional frictional engagement between the clevis and the end effector 12 to maintain the end effector 12 in position after it has been pivoted relative to the shaft 14.
As noted above, the ablation device 10 may be part of a system that includes a fluid reservoir/pump assembly, generally designated 18, for circulating cooling fluid through the electrodes 24. The fluid reservoir/pump may be part of the handle 16 or may be separate, as illustrated. With reference to
The fluid reservoir 60 and pump 62 are interconnected through a series of fluid tubing links 64, with the combination fluid tubing/power cable 22 connecting the reservoir/pump assembly to the hand piece 16 to form a closed fluid circuit with the fluid tubing 36 and the fluid passageways 30 in the electrodes 24. In the illustrated embodiment, the volume of the entire fluid circuit is fixed, and is approximately 25-30 cc.
The cooling fluid used in the present invention may essentially be any fluid having a viscosity greater than the viscosity of air. Suitable cooling fluids include tap water, saline, distilled water and de-ionized water. The system may be pre-filled with cooling fluid or cooling fluid may be introduced into the system, such as through a port 66, which may be a needleless injection port secured to the housing by a standard leur fitting. The fluid circuit also includes a small amount of air in order to prevent the pump from hydrostatically locking. A sufficient amount of air may be introduced into the system through the port 66 when the cooling fluid is introduced. However, if the amount of air introduced is insufficient to avoid locking, the assembly 18 includes one-way valve or stopcock 68 that may be opened to permit additional air to be introduced into the reservoir 60. The illustrated system 18 also includes a pressure relief valve 70 to release fluid from the system should excessive pressure build up due to, e.g., a blockage in the fluid circuit.
In the illustrated embodiment, the reservoir/pump assembly housing also contains a control module 72. The control module 72, which may also be located elsewhere, such as on the handle, controls the flow of power to the pump 62 and to the electrodes 24. The control module 72, which may include a programmable microprocessor programmed to carry out the functions of the module, also monitors the thermister 29, senses the current in the system, and actuates any signals indicating system status or alarms associated with the system, such as LEDs, that may be associated with the hand piece 16 or aural alarms.
As illustrated, the hand piece 16 is ergonomically configured so as to facilitate a comfortable and firm grip by the user, whether right-handled or left-handed. The handle or hand piece 16 may include a nose collar 74 at its distal end for permanently or removably securing the shaft 14 to the hand piece 16. The hand piece 16 also includes a flexible bend relief 76 at its proximal end, through which the fluid tubing/power cable 22 enters the hand piece 16.
In the illustrated embodiment, the hand piece 16 does not include any controls for operating the instrument, it being contemplated that power to the instrument for operating the pump and activating the electrodes be controlled through a foot pedal associated with a surgical generator (neither of which are shown). However, the hand piece 16 could include a button or switch or other controls for activating and otherwise controlling the instrument and its function.
While the instrument has been described as having a single pair of elongated, linear bi-polar electrodes along the length of the end effector, it is contemplated that additional electrodes may be employed, such as an additional pair of bi-polar electrodes mounted in the distal tip of the end effector. With reference to
The tip electrodes 178 are configured so that the fluid flow path goes serially through one of the linear electrodes 124, then through the tip electrode 178 located distally thereof, then laterally through the other tip electrode 178, and then through the linear electrode 124 located proximally thereto. Insulating fluid connectors are provided between the adjacent linear and tip electrodes, although the fluid path is not limited to this configuration. In the illustrated embodiment, the insulating connectors are in the form of O-rings 182 between each of the tip electrodes 178 and its corresponding linear electrode 124, and O-ring 184 between the two tip electrodes 178. A second pair of RF signal wires 186 is provided to carry current to the tip electrodes 178 to allow activation in any desired sequence.
In keeping with another aspect of the disclosure, the end effector or tool head is provided with a mechanism for enhancing contact between the electrodes and the target tissue, preferably along the entire length of the electrodes. To this end, the tool head, in one example, may be provided with at least one port or channel through which a vacuum or suction may be applied to draw the electrodes against the target tissue. As illustrated, the suction port is preferably substantially co-extensive with the electrodes along the length of the end effector, thus ensuring a good electrode to tissue contact along the entire length of the electrodes. Further, the suction port preferably comprises a single port so that, if contact between the suction port and the target tissue is broken anywhere along the length of the electrodes, the vacuum holding the tool head in contact with the target tissue is also broken and the tool head is released from the tissue. This helps to ensure that any ablation lines created by the tool head extend the full length of the electrodes. To better provide full-length ablation lines, the control system for the tool head may require sensing of the vacuum between the tool head and the target tissue before permitting activation of the electrodes.
The suction port or pocket is preferably configured so that when suction is applied to the tissue, the tissue is not drawn into the suction port to such an extent that tissue damage might occur or the tissue surface be unduly distorted. This is preferably accomplished by creating a plurality of suction regions that are sufficiently small so that, when the thickness and pliability of the target tissue is taken into account, the target tissue is unable to be unduly drawn into the interior of a suction port when a vacuum is applied. To accomplish this, the illustrated embodiment is provided with a suction port having an irregular configuration that creates, in effect, a plurality of substantially discrete suction regions.
Turning to
To enhance the electrode-tissue contact, the base 226 of the end effector 212 is configured to have a single, continuous vacuum port 290 (best seen in
In the illustrated embodiment, the vacuum port 290 extends generally axially between the electrodes 224. However, other locations in sufficient proximity to one or both of the electrodes may be employed to enhance tissue contact. The vacuum port 290 has a length dimension sufficient to assure that, when a vacuum or suction is applied to the port 290 to secure the end effector to target tissue, the target tissue is drawn into contact with the tissue contacting surfaces 224a of the electrodes 224 along substantially their entire length. As noted above, because only a single suction port is provided, it is more likely that full-length ablation lines will result. Specifically, if the vacuum between the end effector 212 and the target tissue is broken, the end effector will be released. Thus, there will be either substantially complete engagement of the electrode surfaces 224a with the target tissue, or the end effector will be completely released from the target tissue. There will be no partial engagement.
While it is desired that the end effector be firmly attached by the vacuum pressure to the target tissue so that good tissue/electrode contact is established, the attachment should not be such that the tissue between the electrodes is drawn into the vacuum port to such a degree that the tissue surface is injured or significantly distorted. Thus, instead of the suction port 290 presenting a single relatively large open central area, it is formed with a series of lands 298 (two shown) or other dividing surfaces intermediate the ends of the port to form a series of three smaller suction areas 290a, 290b, and 290c (as seen in
The end effector may also be provided with one or more sensors. As noted in the published applications identified above, ablation devices may be provided with sensors for sensing such characteristics as voltage, tissue impedance, electrical conductivity, conduction time, conduction voracity and signal phase angle. Sensors may also comprise a pacing or stimulating electrode and a monitoring electrode, so that the effectiveness of the line of ablation may be assessed.
With references to
The sensors can be configured to operate in monopolar or bipolar mode. During ablation, the sensors may be used in the monopolar modes and recordings taken to assess the progression of lesion formation and its overall quality. These sensors may be in the bipolar mode during lesion formation, such that when the amplitude of the signals received by the sensors has decreased by a significant amount, then the lesion may be deemed transmural. After lesion formation, the end effector may be rotated 90° so that the sensors 297a and 297b are located on opposite sides of the lesion. The sensors then may be used in the monopolar mode to determine the time delay in receipt of a pacing signal and, thus, the effectiveness of the lesion for blocking electrical impulses.
Turning to
With reference to
Also running proximally from each electrode is a conductive wire 324 adapted to be connected at its proximal end to a source of ablation energy, preferably RF energy. Preferably, the conductive wires 324 are secured to their respective electrodes 316, 318 such that the conductive wires 324 are located between the pad 320 and the balloon 314.
The ablation catheter 310 may also be used in conjunction with a sheath or guide tube 326, through which the ablation catheter 310 may be advanced once the distal end of the sheath 326 is located in the vicinity of the target tissue. Preferably, the sheath 326 is bidirectionally steerable, which facilitates the positioning and repositioning of the distal end of the ablation catheter once it is advanced through the sheath and assumes its deployed configuration. Various mechanisms and means for providing bidirectional steerability known in the art, and, thus, are not described in detail herein.
In order to be able to advance the ablation catheter 310 through the sheath or guide tube 326, the enlarged distal end 312 must be capable of compaction to an appropriate size and shape. Preferably, the enlarged distal end 312 is rolled into a generally cylindrical shape having a diameter less than the inside diameter of the sheath 326. See, e.g.,
As noted above, the number and configuration of the electrodes 316, 318 may be varied to provide the ablation catheter with multiple functionalities. Specifically, the number of electrodes and their arrangement may be selected to provide for the delivery of ablation energy to the target tissue, for performing electrophysiological mapping of the target tissue, for the delivery of stimulation/pacing pulses to the target tissue, and for sensing electrical pulses in either a bipolar or monopolar mode.
With reference to
With reference to
With reference to
As shown, the pad member 320 includes cut-outs 332 shaped to receive and position the electrodes. In this regard, and with reference to
Alternatively, the pad member 320 may be formed without cutouts for the electrodes, as shown in
The pad member 320 may not have sufficient structural integrity to resume its “unrolled” shape upon exiting the sheath 326. Thus, additional structural material or members may need to be associated with the distal end 312 to cause it to achieve its deployed shape. For example, and with reference to
Turning to
The device also includes two single lumen tubes 342, 344 disposed within an over-tubing 346. Tube 342 facilitates the introduction of inflation fluid into the balloon 314, with the space 348 between the over-tubing 346 and the two single lumen tubings 342, 344, one of the tubings serving as a return lumen for the inflation fluid, thus allowing circulation of the inflation fluid. Alternatively, as shown in
Thus, an ablation catheter has been disclosed that includes a pad for supporting the electrodes and an inflatable balloon that both facilitates contact between the electrodes and the target tissue (the epicardium) and ensures that energy is directed to the target tissue and not to surrounding structures (the esophagus or the phrenic nerve). The pad, electrodes, and balloon are compactable so as to be sized to advance through a sheath, with the sheath preferably being bidirectionally steerable for locating the electrodes relative to the target tissue. Inflation fluid is circulated through the balloon for cooling the electrodes, thus facilitating creation of deeper lesions, and for spacing the electrodes from adjacent structures, to lessening the likelihood of non-target tissue being damaged by the ablation energy. A through lumen allows for injection and/or withdrawal of various fluids from the intrapericardial space.
One benefit of the disclosed subject matter is that a surgical ablation device has been provided that reduces the surface tissue heating effects associated with prior art devices and, thus, allows resistive RF heating to penetrate more deeply into the target tissue, to more efficiently and effectively create transmural lines of ablation in the tissue.
Following from the above description and exemplary embodiments, it should be apparent to those of ordinary skill in the art that, while the foregoing constitute exemplary embodiments of the present disclosure, the disclosure is not necessarily limited to these precise embodiments and that changes may be made to these embodiments without departing from the scope of the invention as defined by the claims. Additionally, it is to be understood that the invention is defined by the claims and it is not intended that any limitations or elements describing the exemplary embodiments set forth herein are to be incorporated into the interpretation of any claim element unless such limitation or element is explicitly stated. Likewise, it is to be understood that it is not necessary to meet any or all of the identified advantages or objects of the disclosure discussed herein in order to fall within the scope of any claims, since the invention is defined by the claims and since inherent and/or unforeseen advantages of the present disclosure may exist even though they may not have been explicitly discussed herein
This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 61/172,554 filed Apr. 24, 2009, and is a continuation in part of U.S. application Ser. No. 12/337,820 filed Dec. 18, 2008, now U.S. Pat. No. 8,353,907, which claims the benefit of the filing date of U.S. Provisional Application Ser. No. 61/016,087, filed Dec. 21, 2007, the entire contents of each being incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1366231 | Winter et al. | Jan 1921 | A |
1789229 | Gebhard | Jan 1931 | A |
1938607 | Noyes | Dec 1933 | A |
2224575 | Montalvo-Guenard | Dec 1940 | A |
2395631 | Lew | Feb 1946 | A |
2655588 | Wadhams | Oct 1953 | A |
3469582 | Jackson | Sep 1969 | A |
3535597 | Kendrick | Oct 1970 | A |
3543084 | Michaelis | Nov 1970 | A |
3595234 | Jackson | Jul 1971 | A |
3595238 | Gavrilov et al. | Jul 1971 | A |
3610242 | Sheridan | Oct 1971 | A |
3640270 | Hoffmann | Feb 1972 | A |
3720433 | Rosfelder | Mar 1973 | A |
3828780 | Morrison, Jr. | Aug 1974 | A |
3858926 | Ottenhues | Jan 1975 | A |
3862627 | Hans, Sr. | Jan 1975 | A |
3906955 | Roberts | Sep 1975 | A |
3946349 | Haldenman, III | Mar 1976 | A |
3971170 | Coburn et al. | Jul 1976 | A |
3974833 | Durden, III | Aug 1976 | A |
3976055 | Monter et al. | Aug 1976 | A |
3994101 | Coburn et al. | Nov 1976 | A |
4047532 | Phillips et al. | Sep 1977 | A |
4096864 | Kletschka | Jun 1978 | A |
4326529 | Doss et al. | Apr 1982 | A |
4336765 | Coughlin | Jun 1982 | A |
4347842 | Beale | Sep 1982 | A |
4369793 | Staver et al. | Jan 1983 | A |
4479435 | Takeuchi et al. | Oct 1984 | A |
4523920 | Russo | Jun 1985 | A |
4556065 | Hoffmann | Dec 1985 | A |
4561687 | Bostrom | Dec 1985 | A |
4644951 | Bays | Feb 1987 | A |
4646747 | Lundback | Mar 1987 | A |
4718418 | L'Esperance, Jr. | Jan 1988 | A |
4735610 | Akkas et al. | Apr 1988 | A |
4736749 | Lundback | Apr 1988 | A |
4744297 | Sardella et al. | May 1988 | A |
4744360 | Bath | May 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
4832048 | Cohen | May 1989 | A |
4878407 | Harrison et al. | Nov 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4920980 | Jackowski | May 1990 | A |
4938218 | Goodman et al. | Jul 1990 | A |
4941093 | Marshall et al. | Jul 1990 | A |
4962758 | Lasner et al. | Oct 1990 | A |
4971067 | Bolduc | Nov 1990 | A |
4991578 | Cohen | Feb 1991 | A |
5009660 | Clapham | Apr 1991 | A |
5011469 | Buckberg et al. | Apr 1991 | A |
5084045 | Helenowski | Jan 1992 | A |
5108412 | Krumeich et al. | Apr 1992 | A |
RE33925 | Bales et al. | May 1992 | E |
5112346 | Hiltebrandt et al. | May 1992 | A |
5139245 | Bruns | Aug 1992 | A |
5171254 | Sher | Dec 1992 | A |
5176699 | Markham | Jan 1993 | A |
5184625 | Cottone, Jr. et al. | Feb 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5257635 | Langberg | Nov 1993 | A |
5275608 | Forman et al. | Jan 1994 | A |
5281213 | Milder et al. | Jan 1994 | A |
5281215 | Milder | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5282826 | Quadri | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5300087 | Knoepfler | Apr 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312407 | Carter | May 1994 | A |
5314445 | Heidmueller nee Degwitz et al. | May 1994 | A |
5318040 | Kensey et al. | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5342357 | Nardella | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5383876 | Nardella | Jan 1995 | A |
5405322 | Lennox et al. | Apr 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5423878 | Franz | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5437662 | Nardella | Aug 1995 | A |
5451223 | Ben-Simhon | Sep 1995 | A |
5456682 | Edwards et al. | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5472438 | Schmit et al. | Dec 1995 | A |
5487757 | Truckai | Jan 1996 | A |
5520684 | Imran | May 1996 | A |
5545123 | Ortiz et al. | Aug 1996 | A |
5545161 | Imran | Aug 1996 | A |
RE35330 | Malone et al. | Sep 1996 | E |
5553612 | Lundback | Sep 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5575772 | Lennox | Nov 1996 | A |
5575810 | Swanson | Nov 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5588203 | Bidefeld | Dec 1996 | A |
5607536 | Tikka | Mar 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5700262 | Acosta et al. | Dec 1997 | A |
5725524 | Mulier et al. | Mar 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728094 | Edwards | Mar 1998 | A |
5733283 | Malis et al. | Mar 1998 | A |
5735846 | Panescu et al. | Apr 1998 | A |
5746224 | Edwards | May 1998 | A |
5800428 | Nelson et al. | Sep 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5803911 | Inukai et al. | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5836311 | Borst et al. | Nov 1998 | A |
5853409 | Swanson et al. | Dec 1998 | A |
5891028 | Lundback | Apr 1999 | A |
5893885 | Webster, Jr. | Apr 1999 | A |
5902328 | LaFontaine et al. | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5906613 | Mulier et al. | May 1999 | A |
5927284 | Borst et al. | Jul 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5980516 | Mulier et al. | Nov 1999 | A |
5984854 | Ishikawa et al. | Nov 1999 | A |
5989249 | Kirwan | Nov 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6015378 | Borst et al. | Jan 2000 | A |
6016809 | Mulier et al. | Jan 2000 | A |
6053912 | Panescu et al. | Apr 2000 | A |
6056745 | Panescu et al. | May 2000 | A |
6063080 | Nelson et al. | May 2000 | A |
6063081 | Mulier et al. | May 2000 | A |
6064901 | Cartmell et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6081749 | Ingle et al. | Jun 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6168594 | LaFontaine et al. | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6210355 | Edwards et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238334 | Easterbrook, III et al. | May 2001 | B1 |
6241666 | Pomeranz et al. | Jun 2001 | B1 |
6251065 | Kochamba et al. | Jun 2001 | B1 |
6254525 | Reinhardt et al. | Jul 2001 | B1 |
6258118 | Baum et al. | Jul 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283987 | Laird et al. | Sep 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6325796 | Berube et al. | Dec 2001 | B1 |
6328688 | Borst et al. | Dec 2001 | B1 |
6334843 | Borst et al. | Jan 2002 | B1 |
6336898 | Borst et al. | Jan 2002 | B1 |
6348067 | Baum et al. | Feb 2002 | B1 |
6350262 | Ashley | Feb 2002 | B1 |
6364876 | Erb et al. | Apr 2002 | B1 |
6371906 | Borst et al. | Apr 2002 | B1 |
6394948 | Borst et al. | May 2002 | B1 |
6406476 | Kirwan, Jr. et al. | Jun 2002 | B1 |
6413253 | Koop et al. | Jul 2002 | B1 |
6413273 | Baum et al. | Jul 2002 | B1 |
6416491 | Edwards et al. | Jul 2002 | B1 |
6423051 | Kaplan et al. | Jul 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6458123 | Brucker et al. | Oct 2002 | B1 |
6464629 | Boone et al. | Oct 2002 | B1 |
6464630 | Borst et al. | Oct 2002 | B1 |
6471697 | Lesh | Oct 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6475179 | Wang et al. | Nov 2002 | B1 |
6482204 | Lax et al. | Nov 2002 | B1 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6488689 | Kaplan et al. | Dec 2002 | B1 |
6491710 | Satake | Dec 2002 | B2 |
6500175 | Gough et al. | Dec 2002 | B1 |
6503248 | Levine | Jan 2003 | B1 |
6506189 | Rittman, III et al. | Jan 2003 | B1 |
6511416 | Green, II et al. | Jan 2003 | B1 |
6514250 | Jahns et al. | Feb 2003 | B1 |
6514251 | Ni et al. | Feb 2003 | B1 |
6530888 | Smith et al. | Mar 2003 | B2 |
6530922 | Cosman et al. | Mar 2003 | B2 |
6533780 | Laird et al. | Mar 2003 | B1 |
6544264 | Levine et al. | Apr 2003 | B2 |
6558381 | Ingle et al. | May 2003 | B2 |
6558382 | Jahns et al. | May 2003 | B2 |
6558385 | McClurken et al. | May 2003 | B1 |
6571709 | Thomas | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6629535 | Ingle et al. | Oct 2003 | B2 |
6652518 | Wellman et al. | Nov 2003 | B2 |
6663622 | Foley et al. | Dec 2003 | B1 |
6689128 | Sliwa, Jr. et al. | Feb 2004 | B2 |
6695838 | Wellman et al. | Feb 2004 | B2 |
6701931 | Sliwa, Jr. et al. | Mar 2004 | B2 |
6719755 | Sliwa, Jr. et al. | Apr 2004 | B2 |
6733501 | Levine | May 2004 | B2 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6776779 | Roy et al. | Aug 2004 | B1 |
6805129 | Pless et al. | Oct 2004 | B1 |
6807968 | Francischelli et al. | Oct 2004 | B2 |
6821275 | Truckai et al. | Nov 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6836688 | Ingle et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6849075 | Bertolero et al. | Feb 2005 | B2 |
6858026 | Sliwa, Jr. et al. | Feb 2005 | B2 |
6887238 | Jahns et al. | May 2005 | B2 |
6893442 | Whayne | May 2005 | B2 |
6896666 | Kochamba | May 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6918906 | Long | Jul 2005 | B2 |
6923805 | LaFontaine et al. | Aug 2005 | B1 |
6929010 | Vaska et al. | Aug 2005 | B2 |
6939350 | Phan | Sep 2005 | B2 |
6942661 | Swanson | Sep 2005 | B2 |
6949095 | Vaska et al. | Sep 2005 | B2 |
6949096 | Davison et al. | Sep 2005 | B2 |
6960205 | Jahns et al. | Nov 2005 | B2 |
6971394 | Sliwa, Jr. et al. | Dec 2005 | B2 |
6972016 | Hill, III et al. | Dec 2005 | B2 |
7004942 | Laird et al. | Feb 2006 | B2 |
7022121 | Stern et al. | Apr 2006 | B2 |
7052491 | Erb et al. | May 2006 | B2 |
7063698 | Whayne et al. | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077842 | Cosman | Jul 2006 | B1 |
7113831 | Hooven | Sep 2006 | B2 |
7167757 | Ingle et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7226448 | Bertolero et al. | Jun 2007 | B2 |
7226458 | Kaplan et al. | Jun 2007 | B2 |
7237555 | Kochamba et al. | Jul 2007 | B2 |
7255696 | Goble et al. | Aug 2007 | B2 |
7264587 | Chin | Sep 2007 | B2 |
7303560 | Chin et al. | Dec 2007 | B2 |
7309328 | Kaplan et al. | Dec 2007 | B2 |
7318829 | Kaplan et al. | Jan 2008 | B2 |
7387627 | Erb et al. | Jun 2008 | B2 |
7399300 | Bertolero et al. | Jul 2008 | B2 |
20010025179 | Levine | Sep 2001 | A1 |
20010049523 | DeVore et al. | Dec 2001 | A1 |
20020002372 | Jahns et al. | Jan 2002 | A1 |
20020072739 | Lee et al. | Jun 2002 | A1 |
20020151889 | Swanson et al. | Oct 2002 | A1 |
20030009164 | Woloszko et al. | Jan 2003 | A1 |
20030212446 | Kaplan et al. | Nov 2003 | A1 |
20040010249 | Truckai et al. | Jan 2004 | A1 |
20040059324 | Francischelli et al. | Mar 2004 | A1 |
20040116923 | Desinger | Jun 2004 | A1 |
20040162551 | Brown et al. | Aug 2004 | A1 |
20040167517 | Desinger et al. | Aug 2004 | A1 |
20040176761 | Desinger | Sep 2004 | A1 |
20040186467 | Swanson et al. | Sep 2004 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050234444 | Hooven | Oct 2005 | A1 |
20050251134 | Woloszko et al. | Nov 2005 | A1 |
20050288666 | Bertolero et al. | Dec 2005 | A1 |
20060009759 | Chrisitian et al. | Jan 2006 | A1 |
20060015165 | Bertolero et al. | Jan 2006 | A1 |
20060100619 | McClurken et al. | May 2006 | A1 |
20060111709 | Goble et al. | May 2006 | A1 |
20060111710 | Goble et al. | May 2006 | A1 |
20060122593 | Jun | Jun 2006 | A1 |
20060129145 | Woloszko et al. | Jun 2006 | A1 |
20060161149 | Privitera et al. | Jul 2006 | A1 |
20060161151 | Privitera et al. | Jul 2006 | A1 |
20060178666 | Cosman et al. | Aug 2006 | A1 |
20060200124 | Whayne et al. | Sep 2006 | A1 |
20060206113 | Whayne et al. | Sep 2006 | A1 |
20060235381 | Whayne et al. | Oct 2006 | A1 |
20060259031 | Carmel et al. | Nov 2006 | A1 |
20060264929 | Goble et al. | Nov 2006 | A1 |
20060271031 | Desinger et al. | Nov 2006 | A1 |
20070010784 | Soykan | Jan 2007 | A1 |
20070043351 | Fleischman et al. | Feb 2007 | A1 |
20070049925 | Phan et al. | Mar 2007 | A1 |
20070156217 | Kaplan et al. | Jul 2007 | A1 |
20070156220 | Kaplan et al. | Jul 2007 | A1 |
20070167944 | Oyola et al. | Jul 2007 | A1 |
20070203554 | Kaplan et al. | Aug 2007 | A1 |
20070249991 | Whayne et al. | Oct 2007 | A1 |
20070250058 | Whayne et al. | Oct 2007 | A1 |
20080009853 | Martin et al. | Jan 2008 | A1 |
20080108945 | Kaplan et al. | May 2008 | A1 |
20080114354 | Whayne et al. | May 2008 | A1 |
20080114355 | Whayne et al. | May 2008 | A1 |
20080125795 | Kaplan et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
0856 292 | Aug 1998 | EP |
WO 9733526 | Sep 1997 | WO |
Entry |
---|
Shabetai et al., “Monophasic Action Potentials in Man”, Circulation, 1968, vol. 38, pp. 341-352. |
Waldo et al., “The P Wave and P-R Interval: Effects of the Site of Origin of Atrial Depolarization”, Circulation, 1970, vol. 42, pp. 653-671. |
Brenner et al., “Transvenous, Transmediastinal, and Transthoracic Ventricular Pacing: A Comparison after Complete Two-Year Follow-Up”, Circulation, 1974, vol. 49, pp. 407-414. |
Saksena et al., “Low-energy Transvenous Ablation of the Canine Atrioventricular Conduction System with a Suction Electrode Catheter”, Circulation, 1987, vol. 76, No. 2, pp. 394-403. |
Jackman et al., “Radiofrequency Current Directed Across the Mitral Anulus with a Biopolar Epicardial-Endocardial Catheter Electrode Configuration in Dogs”, Circulation, 1988, vol. 78, pp. 1288-1298. |
Lavergne et al., “Transcatheter Radiofrequency Ablation of Atrial Tissue Using a Suction Catheter”, Pace, Jan., 1989, Part 2, vol. 12, pp. 177-186. |
Aubert et al., “Efficiency and Safety of his Bundle Radiofrequency Ablation”, Abstract, Pace, Jul. 1989, Part II, vol. 12, p. 1167. |
Huang et al., “Chronic Incomplete Atrioventricular Block Induced by Radiofrequency Catheter Ablation”, Circulation, 1989, vol. 80, pp. 951-961. |
Huang, S., “Advances in Applications of Radiofrequency Current to Catheter Ablation Therapy”, Pace, Jan. 1991, vol. 14, pp. 28-42. |
Jackman et al., “Catheter Ablation of Atrioventricular Junction using Radiofrequency Current in 17 patients. Comparison of Standard and Large-Tip Catheter Electrodes”, Circulation, 1991, vol. 83, pp. 1562-1576. |
Ayers et al., “Comparison of the Damped Sine Wave to the Capacitor Discharge for Low-Energy Electrical Catheter Ablation of the AV Junction in Dogs”, Journal of Cardiovascular Electrophysiology, Aug. 1991, vol. 2, No. 4 pp. 279-287. |
Jansen et al., “Off-Pump Coronary Bypass Grafting: How to Use the Octopus Tissue Stabilizer”, Annals of Thoracic Surgery, 1998, vol. 66, pp. 576-579. |
Athanasiou et al., “Expanded Use of Suction and Stablization Devices in Cardiothoracic Surgery”, Annals of Thoracic Surgery, 2003, vol. 76, pp. 1126-1130. |
Himel IV, et al. “Translesion Stimulus-Excitation Delay indicates Quality of Linear Lesions produced by Radiofrequency Ablation in Rabbit Hearts”, Physiological Measurement, 2007, Vo. 28, pp. 611-623. |
Anh et al., “Epicardial Ablation of Postinfarction Ventricular Tachycardia with an Externally Irrigated Catheter in a Patient with Mechanical Aortic and Mitral Valves”, Heart Rhythm, 2007, vol. 4, pp. 651-654. |
Bailie et al., “Magnesium Suppression of Early Afterdepolarizations and Ventricular Tachyarrhythmias induced by Cesium in Dogs”, Circulation, 1988, vol. 77, pp. 1395-1402. |
Web page print out on Apr. 15, 2008 from , www.bostonscientific-international.com/procedure/ProcedureLanding.bsci?navRellD=1000.1002&me . . . , “Cardiac Ablation, Products for this Procedure” 1 page. |
Partial European Search Report, Application No. EP 08 25 4096, pp. 1-5, dated Sep. 25, 2009. |
European Search Report for EP 08 25 4096 dated Feb. 23, 2010. |
Number | Date | Country | |
---|---|---|---|
20100305562 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61172554 | Apr 2009 | US | |
61016087 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12337820 | Dec 2008 | US |
Child | 12767122 | US |