The present invention relates to a probe with its accessory devices employed to operate in conjunction with an ablation system to prevent the accidental injury of the esophagus during atrial ablation procedures, for example, to control the propagation and advancement of lesion formation.
A primary device for monitoring the live body intra-cavity tissue temperature and cooling and/or controlling the intra-cavity tissue is presented in U.S. Pat. Nos. 4,601,296 and 4,497,324, 4,375,220-4,010,795. A distal portion of the device includes a probe and/or catheter that can be inserted to an intra-body cavity or transvenously placed to a desired position of the heart or other organ. A distal portion of the probe/catheter commonly includes a temperature sensor (i.e. thermistors, thermocouples) and/or heat transfer member.
Typically, known cooling systems that are utilized to cool the intra-body cavity or tissue comprise a refrigerator, a pump, and a probe (U.S. Pat. No. 4,249,923 issued to Walda). The probes are commonly elongated, flexible, cylindrical bilumen tubes having a distal portion and a proximal end. A heat exchanger member is disposed and connected to the bilumens of the probe at the distal portion. One of the lumens is the inlet and other lumen is the outlet for fluid circulation from the fluid refrigerator to the heat exchanger member at the distal portion of the probe.
The proximal ends of the bilumen tube are connected to the fluid refrigerator and pump. The pump circulates the coolant fluid from the refrigerator to the heat exchanger member of the probe via the inlet and outlet of the probe lumens.
Temperature monitoring catheters typically comprise an elongated, flexible, cylindrical, and electrically non-conductive shaft having a distal end and a proximal end. Heat sensors (i.e. thermistors, thermocouples) are disposed in the wall of the catheter (see, for example, U.S. Pat. No. 4,497,324 issued to Sullivan).
The distal portion of the catheter—where the sensors are—is normally disposed and positioned to the body intra-cavity or transvenously to a desired location where the temperature needs to be monitored. Electrical wires are disposed within the catheter lumen longitudinally and extend to the proximal end. The electrical wires are connected to the sensor(s) in one end and extend to the proximal end of the catheter. The temperature of the body intra cavity can be measured and monitored via the electrical wires by a monitoring/recording device.
A need exists for an improved probe, and probe with accessory devices, to operate in conjunction with an associated ablation system to prevent accidental injury to the esophagus during atrial ablation procedures.
A device operates in conjunction with an ablation generator and system during the cardiac ablation procedures. The device controls the advancement of lesion formation and propagation. More specifically, the device protects a desired depth of viable myocardium tissue directly in front of lesion formation on the epicardial side.
Further, a probe operated by the device includes a sac at a distal portion. Fluid with desired temperature and pressure/volume will be circulated continuously in the sac from the device. The distal portion of the probe is positioned via the nasal cavity into the esophagus right behind the left atrium. The cooling fluid in the sac can protect the esophagus from the injury during the left atrium ablation procedure.
An accessory device can include an expandable heat exchanger sac (compliant or non-compliant) disposed at the distal portion of the probe. Fluid is circulated continuously in the sac from an external source (device) with the desired temperature and pressure/volume.
An external source of hot, cold, and reservoir fluid tanks provide continuous fluid circulation into the probe heat exchanger or sac.
A series of pumps connected in line with the external tanks (fluid sources) in the device and the probe provide desired pressure in the probe heat exchanger or sac for the non-compliant sac and desired volume for the compliant elastic sac with continuous fluid circulation.
A compliant heat exchanger sac is provided at the distal portion of the probe. Fluid is circulated continuously in the sac with desired volume and temperature from external tanks or fluid sources of the device.
A series of hydroelectrical valves are connected with external tanks or fluid sources, pumps, and probe heat exchanger sac.
A feedback control system such as a microprocessor receives information from the sensors of the device (e.g., pressure, temperature, volume) and probe, and sends commands to the hydroelectrical valves and the fluid circulating pumps and flow meters to ensure the desired pressure and temperature for the fluid in the probe heat exchanger sac.
A temperature control unit is provided for the sac.
The selected desired temperature of the fluid in the sac is correlated quantitatively with data collected from a series of experiments with the depth of the viable tissue adjacent to the probe heat exchanger or sac during ablation procedure (in vitro and/or in vivo).
Another embodiment uses an air probe positioned into the esophagus via a patient's nasal cavity and transfers cooling air or gas from external source to cool the desired segment of the esophagus and return the air/gas back from the esophagus to the external source to allow continuous flow of cooling air/gas in the specific region of the esophagus during atrial ablation procedure. The air probe includes at least three spaced sacs, platinum ring electrodes for use as radio-opaque markers, and temperature sensors at its distal portion. The sacs are typically doughnut-shaped and are disposed like a ring on the distal portion of the probe with some spacing between them.
Another embodiment uses a flexible magnetic probe that is positioned into the esophagus via the nasal cavity. The flexible magnetic probe is preferably constructed with either a permanent magnet or by a flow of electrical current through a magnetic coil within the body of the probe.
An external magnetic field generator provides a variable and/or sufficient magnetic field that can be placed on the side of the chest and is capable of pushing and deflecting the flexible magnetic probe resulting in temporary deflection and dislocation of the esophagus from the heart.
The probe operates in conjunction with an ablation system to prevent accidental injury of the esophagus during atrial ablation procedures. A distal portion of the probe is placed into the esophagus via the nasal cavity and positioned in the region of the esophagus that is in contact with the left atrium.
In one embodiment of this invention the probe comprises an elongated flexible tube with an expandable sac, either compliant or non-compliant, disposed at its distal portion. Regulated cooling fluid with desired temperature and pressure is continuously circulating from the external source of the related device into the sac of the probe. The sac is positioned into the esophagus region that is in contact with the left atrium. Temperature and pressure sensors are disposed within the sac of the probe to transmit data to the external related devices of this invention. The information from the sensors within the sac of the probe can provide a safety feature to control or stop the energy delivery from the ablation energy generator (i.e., radio frequency generator) and to prevent the advancement of the lesion formation that is created by the tip of the ablation catheter in the left atrium. Hence, this can prevent the accidental injury of the esophagus during the left atrium ablation procedure.
In a further embodiment, a distal portion of the probe includes a plurality of in-flow and out-flow perforations within tubes housed in the probe and extends to the proximal end of the probe that is connected to the related external device of this invention. Cooling fluid (liquid, air or other gas) with desired temperature and pressure is delivered from the external device to the out-flow perforations of the distal portion of the probe. The released fluid cools the desired region of the esophagus and will be returned through the in-flow pores of the probe to the external device.
In yet another embodiment of this invention a flexible tubular magnetic probe with a distal end and proximal end is dimensioned for receipt into the esophagus via the nasal cavity. The distal end of the magnetic probe located into the esophagus is temporarily laterally displaced, e.g., laterally pulled or pushed, by an external magnetic field source placed over the side chest of the patient. The tubular flexible magnetic probe is either constructed from a permanent magnet or by applying electrical current in a magnetic coil provided within the probe. The external variable magnetic field source is positioned over the side chest of the patient with convergent angle to have better control over the lateral pushing/pulling of the distal portion of the flexible magnetic probe in the esophagus resulting in temporary displacement and dislocation of the desired region of the esophagus laterally that is in contact with the left atrium. It is important to achieve the temporary lateral dislocation of the esophagus during the left atrial ablation procedure. This prevents the accidental advancement of the lesion formation to the esophagus by the tip of the ablation catheter in the left atrium during the left atrial ablation procedure.
a and
a shows a schematic view of a membrane.
b shows a schematic view of a membrane and associated heat source on one side of the membrane.
c shows a schematic view of a membrane and heat source on one side and a cooling source on the other side of the membrane.
a shows the schematic top view of a sac of the probe positioned in the lower segment of esophagus adjacent to the left atrial wall.
b shows the schematic side view of sac of the probe positioned in the lower segment of esophagus adjacent to the left atrial wall.
Proper propagation of electricity in the right pathway in the heart muscle results in the correct heart muscle contraction and pumping action. When the pathway of electrical propagation in the heart muscle is disturbed by any means, the heart will not contract properly and a patient suffers from heart disease. Abnormality in electrical activities of the atriums (left, right) may result in atrial malfunctions. Atrial malfunction can cause a blood clot in the atrium resulting in a brain stroke or embolism in the lungs and/or an abnormal or irregular heart beat. Abnormality in the atrial electrical activities can also cause chaotic contraction of the atrium muscle known as atrial fibrillation and the other abnormal contraction of the atrium muscle with specific rhythm called atrial flutter.
There are some medical treatments for atrial diseases. One way of treatment is the use of medications. Another way of treating the disease is by performing an ablation procedure on the heart. During the ablation procedure a distal portion of a catheter is transvenously placed into the heart and operators navigate a tip of the catheter in the heart remotely and manually via an actuator on a proximal end of the catheter. The catheter is typically an elongated, non-electrically conductive shaft (with the diameter about 2.5 mm and length approx. 110 cm) with a plurality of spaced ring electrodes (about 1 mm spacing) on the distal portion of the catheter. A platinum dome-shaped electrode (with the diameter about 2.5 mm and length of 4-10 mm) is used as a distal electrode. The catheter electrodes are individually and separately connected to electrical wires within the catheter shaft and that extend to the proximal end of the catheter. The ring electrodes are used to acquire the heart electrical activities that will be conducted to a monitoring and recording device(s). The distal tip electrode of the catheter is utilized to deliver electrical energy from the ablation generator to the tissue adjacent to the electrode.
In the recent years a radio frequency (RF) generator is used for this application. Typically the RF generator utilized for ablation procedures provides a variable energy up to about 50 Watts with the frequency of about 500 kHz. A conductive patch about 10×20 cm is attached to a patient's body. The RF generator is connected to the distal electrode of ablation catheter and patch. RF energy is delivered from the generator to the distal electrode adjacent to the abnormal site of the myocardium (heart muscle) that causes abnormality in the electrical activities of the heart and returns to the patch. When this energy is delivered to the heart muscle it creates a lesion where the distal electrode is in contact with the tissue of the heart. Creation of the lesion is called ablation or destruction of the abnormal tissue of the heart. The energy delivery time is in the order of seconds or minutes (for example, 2 minutes). The longer the duration of energy delivery with a correct amount of energy, the deeper the lesion will be. Typically the depth of the lesion is in the order of few millimeters. The thickness of the heart muscle (myocardium) is also in the order of few millimeters. The lesion depth from the endocardium, where the tip of the catheter is positioned, must be less than that of the thickness of the myocardium. The operator must always leave enough thickness of viable tissue behind the lesion. The destruction of total depth of the myocardium by creation of a lesion during ablation procedure may have deleterious effect on patient.
In the recent years there are more efforts to treat the heart patients that are suffering from atrial fibrillation by the RF ablation procedure rather than treating them by medications. Performance of atrial ablation requires placement of the tip of the catheter into the left atrium transeptally. Some part of a posterior wall of the left atrium is directly in contact with a segment of the esophagus. In order to treat the atrial fibrillation (AF), the operator (cardiologist) typically creates multiple lesions in the wall of the left atrium. These lesions can be in the segment of the atrium that is directly in contact with the esophagus. If the depth of the lesion accidently goes beyond the thickness of the atrial wall by prolonged energy delivery and higher energy, it could damage the esophagus wall. Injury of the esophagus wall can generate an atrial-esophageal fistula which can result in systemic infection and/or death. The operators (cardiologists) that perform atrial ablation are very cautious and careful about that particular region of the atrium that is directly in contact with the esophagus during ablation energy delivery. Although the operators are very careful, however accident and injury of the esophagus can happen. The total thickness of atrial wall and esophagus wall significantly varies from person to person. The range of variance is about 4 mm to 13 mm.
So far, there is no device or method that can provide a quantitative measure to prevent the accidental injury of the esophagus during atrial ablation procedures. This is a procedure that requires great skill.
One embodiment of a system of the present invention includes a probe that will be positioned via the nasal cavity in the esophagus right behind the left atrial wall. The distal portion of the probe comprises an expandable heat exchanger (sac) that can automatically provide accurate temperature to nullify the excessive heat that is transferred into the esophagus from the tip of the catheter.
Another aspect of the system is to temporarily laterally displace and dislocate the esophagus region that is normally in contact with the left posterior atrial wall.
A method of measuring and controlling the temperature of the tissue in front of the lesion formation and lesion propagation opposite to the tip of the ablation probe allows the operator to protect the desired depth of viable tissue of the heart muscle (myocardium).
This method of tissue protection is applied in particular during left atrial ablation procedures.
As noted briefly above, a left atrial ablation is performed for the treatment of abnormality in the atrial electrical activities. Referring now to the drawings, which are not intended to limit the invention.
Referring to
Again referring to
For non-compliant probe sac 49, the switch S of the microprocessor unit (
For compliant probe sac 49, the switch S of the microprocessor unit (
It will be appreciated that in the embodiments of both of
a shows a membrane 70 with the thickness of 80 at temperature T of its surrounding.
Referring to
a and 5b illustrate schematic top and side views of a segment of esophagus wall and left atrial wall. From the right side, the tip of the ablation catheter is positioned on the atrial wall and creates a lesion during ablation energy delivery as shown in
The liquid in sac 49 is heated from the tip of the ablation catheter and the temperature of the liquid in the sac 49 will elevate if continuous cooled liquid is not circulated into the sac. The liquid in sac 49 is continuously circulated from the external source. The continuous circulation of liquid with the desired temperature and pressure in sac 49 of the probe is an important feature of this invention. This feature provides even temperature distribution in sac 49 of the probe and results in a more accurate temperature measurement of the esophagus by the temperature sensor of sac 49 during atrial ablation procedure utilizing the system presented in this invention. During the atrial ablation procedure, the cardiologist using the present invention can protect against the accidental injury of the esophagus. For example, this system can automatically shut the ablation generator off in the event of excessive energy delivery by the ablation generator to protect the esophagus from the injury.
During the ablation procedure typically the Radio Frequency (RF) energy (ranging from about 0 to 50 Watts) (
Referring now to
With continued reference to
The suction tube 100 of the air probe 148 is connected to the flow meter 35. The suction pump 21 in
A further embodiment of this invention provides a flexible magnetic probe that can be positioned into the esophagus via the nasal cavity. The flexible magnetic probe can be constructed by permanent magnet or a flow of electrical current to a magnetic coil within the main body of the probe. The magnetic segment of the flexible magnetic probe will have two different magnetic polarities on either ends. The flexible magnetic probe can be utilized during the atrial ablation procedure.
Referring to
Referring to
Although the present invention has been described hereinabove with respect to the illustrated embodiments, it will be understood that the invention is capable of modification and variation and is limited only by the scope of the following claims.
This application is a continuation application of U.S. Ser. No. 11/525,476, filed Sep. 22, 2006, now abandoned.
Number | Date | Country | |
---|---|---|---|
Parent | 11525476 | Sep 2006 | US |
Child | 12729917 | US |