The present disclosure relates to ablation instruments and, more specifically, to ablation instruments with a member having a triangular cross-section.
Treatment of certain diseases requires the destruction of malignant tissue growths, e.g., tumors. Electromagnetic radiation can be used to heat and destroy tumor cells. Treatment may involve inserting an ablation instrument into tissues where cancerous tumors have been identified. Once the instrument is positioned, electromagnetic energy is passed through the instrument into surrounding tissue.
In the treatment of diseases such as cancer, certain types of tumor cells have been found to denature at elevated temperatures that are slightly lower than temperatures normally injurious to healthy cells. Known treatment methods, such as hyperthermia therapy, heat diseased cells to temperatures above 41° C. while maintaining adjacent healthy cells below the temperature at which irreversible cell destruction occurs. These methods involve applying electromagnetic radiation to heat or ablate tissue.
Electrosurgical instruments utilizing electromagnetic radiation have been developed for a variety of uses and applications. Typically, apparatus for use in tissue ablation procedures include a power generation source, e.g., a microwave or radio frequency (RF) electrosurgical generator that functions as an energy source and an ablation instrument for directing energy to the target tissue. The generator and ablation instrument are typically operatively coupled by a cable assembly having a plurality of conductors for transmitting energy from the generator to the instrument and for communicating control signals, feedback and identification signals, between the instrument and the generator.
During tissue ablation procedures, an ablation needle assembly of an ablation instrument is inserted through a trocar to access the surgical site. The trocar is inserted through an opening in tissue to permit access to a surgical site. It is beneficial to decrease the size of the trocar to increase accuracy of the positioning of the trocar and to decrease potential trauma to a patient. The size of the trocar is determined by the instruments (e.g., ablation instrument) that are inserted through the trocar during a given tissue ablation procedure.
Accordingly, there is a continuing need for ablation needle assemblies having a reduced cross-sectional area for insertion through a trocar.
This disclosure relates generally to ablation instruments having an ablation needle assembly with a member having a triangular cross-section to reduce the overall cross-sectional area of the ablation needle assembly. The ablation needle assembly includes an outer member and an inner member that cooperate to define inflow and outflow lumens about a feedline. The inflow and outflow lumens circulate a cooling fluid through the needle assembly. One of the inner or outer members has a circular cross-section and the other one of the inner or outer members has a triangular cross-section. The triangular cross-section of one of the inner and outer members may allow for a reduced cross-sectional area of the ablation needle assembly. In addition, the triangular cross-section can provide rigidity to the ablation needle assembly.
In an aspect of the present disclosure, an ablation needle assembly includes an outer member, an inner member, and a feedline. The outer member defines a first lumen that receives the inner member therein. The inner member defines a second lumen that receives the feedline therein. The first and second lumens cooperate to circulate fluid about the feedline. Either the inner or outer member has a triangular cross-section. The other of the inner or outer member may have a non-triangular cross-section. The triangular cross-section of one of the outer or inner member may provide longitudinal stiffness to the ablation needle assembly to prevent longitudinal deflection of the ablation needle assembly.
In aspects, the outer member has a triangular cross-section and the inner member has a circular cross-section. An outer surface of the inner member may be in continuing contact with internal faces of the outer member. The continuing contact of the outer surface of the inner member with the internal faces of the outer member may divide the first lumen into three separate channels. The outer surface of the inner member may have a diameter smaller than a diameter defined by internal faces of the outer member.
In some aspects, the inner member has a triangular cross-section and the outer member has a circular cross section. An inner surface of the outer member may be in continuing contact with external corners of the inner member. The continuing contact of the internal surface of the outer member with the external corners of the inner member separates the first lumen into three separate channels. The feedline may be in continuing contact with internal faces of the inner member. The continuing contact of the feedline with the internal faces of the inner member may separate the second channel into three channels. The feedline may have an outer diameter that is smaller than a diameter defined by the internal faces of the inner member.
In certain aspects, the first and second lumens are configured to circulate a cooling fluid about the feedline. A proximal end of the second lumen may be in fluid communication with an inflow tube and a proximal end of the first lumen may be in fluid communication with an outflow tube. A distal end of the first lumen may be in fluid communication with a distal end of the second lumen.
In another aspect of the present disclosure, an ablation instrument includes a needle assembly, a cable assembly, and a housing. The needle assembly includes an outer member, an inner member, and a feedline. The inner member is disposed within a first lumen that is defined by the outer member. The feedline is disposed within a second lumen that is defined by the inner member. The cable assembly has a connecter at a first end and includes a first conductor. The housing is coupled to a second end of the cable assembly. The housing electrically couples the first conductor to the feed line and fluidly couples an inflow tube with a proximal end of the second lumen and an outflow tube with a proximal end of the first lumen.
In aspects, the cable assembly includes a second conductor that is disposed about the first conductor. The housing may electrically couple the second conductor to the inner member.
Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
Various aspects of the present disclosure are described hereinbelow with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:
The present disclosure is generally directed to ablation systems having an ablation needle assembly with a member having a triangular cross-sectional area to reduce the overall cross-section of the ablation needle assembly. Hereinafter, embodiments of ablation systems with a fluid-cooled ablation needle assembly including the same of the present disclosure are described with reference to the accompanying drawings. Like reference numerals may refer to similar or identical elements throughout the description of the figures. As shown in the drawings and as used in this description, and as is traditional when referring to relative positioning on an object, the term “proximal” refers to that portion of the apparatus, or component thereof, closer to the user and the term “distal” refers to that portion of the apparatus, or component thereof, farther from the user. As it is used in this description, “ablation procedure” generally refers to any ablation procedure, such as, for example, microwave ablation, radiofrequency (RF) ablation, or microwave or RF ablation-assisted resection.
The ablation instrument of the present disclosure may be used in combination with the i-Logic® target identification, navigation, and marker placement systems developed by superDimension™, Ltd and currently marketed by Medtronic. In particular the present disclosure describes devices and systems for the treatment tissue or organs through microwave ablation of targets identified in the patient for treatment. For example, it is contemplated that the systems and methods of the present disclosure may be used to treat liver tissue, kidney tissue, pancreatic tissue, gastrointestinal tissue, interstitial masses, and other portions of the body known to those of skill in the art to be treatable via microwave ablation.
The ablation needle assembly includes an outer member that defines a first lumen, an inner member disposed within the first lumen that defines a second lumen, and a feedline disposed within the second lumen. The first and second lumens are in communication with one another at a distal end of the ablation needle assembly such that cooling fluid circulates through the first and second lumens to cool the feedline. One of the inner or outer members has a circular cross-section and the other has a triangular cross-section to reduce the cross-section of the ablation needle assembly and to provide lateral rigidity to the ablation needle assembly.
Referring now to
Referring also to
With reference to
With particular reference to
Referring also to
The inner member 44 includes an inner surface 74 that defines the second lumen 84. The feedline 46 is disposed within the second lumen 84 of the inner member 44. As shown, the feedline 46 floats within the second lumen 84 and may intermittently contact portions of the inner surface 74 of the inner member 44.
It will be appreciated that the triangular cross-section of the outer member 42 reduces the overall size (i.e., diameter) of the cross-section of the outer member 42 when compared to an outer member having a circular cross-section. In addition, the triangular cross-section of the outer member 42 provides lateral stiffness to the ablation needle assembly 40. It is envisioned that the cross-sectional area of the inner and/or outer lumens 82, 84 may be larger when one of the inner or outer members 42, 44 has a triangular cross-section allowing greater fluid flow. The greater fluid flow may result in increased cooling of the feedline 46 such that the ablation needle assembly 40 may deliver a greater amount energy to tissue when compared to an ablation needle assembly having inner and outer members having a similar cross-section to one another and a similar overall diameter to the ablation needle assembly 40.
Referring to
It is envisioned that circulating fluid through the ablation needle assembly 40 may create a uniform dielectric constant about a radiating portion of the feedline 46 which can generate spherical ablations and can improve the efficiency of energy transfer from microwave to thermal, particularly in the near field. Examples of systems and methods for generating spherical ablations are disclosed in U.S. patent application Ser. No. 14/831,467, entitled “Systems and Methods for Spherical Ablations,” filed Aug. 20, 2015 by Joseph D. Brannan, the entire contents of which are hereby incorporated by reference.
With reference to
The triangular cross-section of the inner member 244 of the needle assembly 240 reduces the overall cross-sectional area of the outer member 242 required to carry a feedline when compared to a needle assembly having inner and outer members each having a circular cross-section. Specifically, the diameter of the outer member 242 can be reduced while maintaining fluid lumens (e.g., first and second lumens 82, 84) between the feedline 246 and the inner member 244 and between the inner member 244 and the outer member 242. In addition, the triangular cross-section of the inner member 244 may provide longitudinal stiffness to the needle assembly 240.
Referring to
Although embodiments have been described in detail with reference to the accompanying drawings for the purpose of illustration and description, it is to be understood that the inventive processes and apparatus are not to be construed as limited thereby. It will be apparent to those of ordinary skill in the art that various modifications to the foregoing embodiments may be made without departing from the scope of the disclosure.
The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 62/332,080, filed on May 5, 2016, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62332080 | May 2016 | US |