The present invention relates to ablation performance indicators for electrosurgical devices. More particularly, the present invention relates to methods and apparatus for determining the ablative state of an electrosurgical device by measuring a wave shape of the current waveform.
Electrosurgery typically utilizes the application of high frequency currents to cut or ablate tissue structures, either utilizing a monopolar or bipolar configuration. Monopolar configurations utilize an instrument having a single electrode and rely on external grounding of the patient whereas bipolar configurations utilize both an active and return electrode on the instrument itself for application of a current between the electrodes.
Electrosurgical procedures and techniques are particularly useful in reducing patient bleeding and trauma typically associated with surgical procedures. However, the radio frequency (RF) currents applied by electrosurgical instruments are typically controlled by utilizing control signals indicative of calculated root-mean-square (RMS) voltage and RMS current values. Generally, a current sensing transformer is used to measure the amount of RF current passing through the ablation electrode such that this measured current may be used to derive the RMS current via a signal converter which first squares the RF current input signal and then averages the squared signal over a prescribed period of time. The signal converter then calculates the square root of the average squared value to result in the RMS current. Accordingly, the RMS current signal may take the form of a relatively slowly varying signal compared to a rapidly varying RF current input signal.
Likewise, a voltage sensing transformer may be used to derive the RMS voltage via a RMS voltage converter which squares the RF voltage input signal and then averages it over the same prescribed period of time. The signal converter may then calculate the square root of the average squared voltage values to result in the RMS voltage. These RMS values may be used to control operation of the power supply to maintain the RF output voltage within a desired range or at a constant value or to control the power delivered through the ablation electrode. Such control thus allows for the physician to ablate or coagulate tissue in a controlled manner and may also serve as rudimentary inputs to control algorithms for other instruments.
However, utilization of these RMS values fails to consider the changes in wave shape of the applied voltage and current levels as the device enters different operating modes, particularly in thermal modes (non-ablative) and plasma modes (ablative) thus potentially resulting in the inaccurate application of voltage to the treated tissue.
Therefore, there is a need for determining the ablative state of an electrosurgical device by measuring a wave shape of the current waveform directly rather than utilizing calculated RMS values to accurately determine whether a device is in an ablative state or a non-ablative state. A system is described to characterize and measure the ablation performance at the electrode of an arthroscopic electrosurgical device. Utilizing RMS values alone in electrosurgical systems to control the delivery of a predetermined level of energy to a tissue region may fail to consider the changes in wave shape as the device enters different operating modes, e.g., thermal mode (non-ablative) and plasma mode (ablative).
As discussed herein, ablation is characterized by the generation of a plasma discharge at the electrode assembly of an electrosurgical probe, the typical voltage waveform is a square waveform and utilization of such plasma to dissociate portions of a target tissue. The measured current waveform may typically approximate a square waveform when the electrosurgical system is operated in the thermal mode, as during an initial period before the plasma mode becomes active, where the current waveform roughly approximates the shape of the square voltage waveform. However, when plasma discharge is initiated and the electrode assembly begins to discharge the current waveform takes on a distinctly different appearance where the current is characterized by a spike at the leading edge of each half cycle followed by a much lower level for the remaining period of the half cycle.
The present system and method preferably discerns a difference between the two wave shapes, e.g., between the signal's initial square waveform (when the system is in the thermal mode) and a spiked waveform (when the system is in the plasma mode) by considering their Crest Factor, C, which for a waveform is defined as C=XPEAK/XRMS, where XPEAK is the peak amplitude of the waveform and XRMS is the RMS or time-averaged value of the waveform over a specified time interval. The Crest Factor may also be defined as the peak-to-average ratio. As a current load is applied such as during an ablative state, the wave shape deviates farther from a square waveform and the Crest Factor increases. For instance, when ablation is active and the system is in the plasma mode, the Crest Factor of the current waveform is several times the value when the ablative state is not active.
A measurement of the Crest Factor can therefore be used to make a determination of the state at the electrode, e.g., whether the applied energy is causing a desirable ablative effect on the electrode. This method may provide real-time measurements of the RMS and peak current amplitudes along with the Crest Factor. Moreover, these parameters may be used as limits or inputs to control algorithms or as inputs into a mechanism to indicate to a user whether the device was in its ablative or non-ablative state.
The present disclosure includes a number of important technical advantages. One technical advantage is the provision of a circuit designed to determine whether an electrode is in an ablative or non-ablative state. Another technical advantage is the provision of an ablation performance indicator on an electrosurgical instrument. Additional advantages will be apparent to those of skill in the art and from the figures, description and claims provided herein.
As discussed herein, ablation is characterized by the generation of a plasma discharge at the electrode assembly of an electrosurgical probe, the typical voltage waveform is a square waveform and utilization of such plasma to dissociate portions of a target tissue. In other words, as discussed herein, the term ‘ablation’ shall mean the removal, cutting, or resection of target tissue in which a plasma discharge or plasma field developed proximate an active electrode assembly substantially effects such removal, cutting or resection. Further, ablation shall not mean the removal, cutting or resection of tissue where no significant plasma or plasma field is developed and where the primary means for effecting the removal, cutting or resection is by passing current directly through the tissue (e.g. a Bovie device). As ablation is typically characterized by the generation of a plasma discharge at the electrode assembly of an electrosurgical probe, the typical measured current waveform may approximate a square waveform prior to the plasma mode being entered, while the system is still in the thermal mode. However, when plasma discharge is initiated and the electrode assembly begins firing, the current waveform takes on a distinctly different appearance where the current is generally characterized by a spike at the leading edge of each half cycle followed by a substantially lower level for the remaining period of the half cycle.
As described herein, the Crest Factor, C, is preferably used to discern a difference between the two wave shapes, e.g., between the signal's initial square waveform (prior to the initiation of the plasma mode) and a spiked waveform (when the ablation is active). When the electrosurgical system enters the ablative state, the wave shape deviates from a square waveform and the Crest Factor increases. A measurement of the Crest Factor can therefore be used to make a determination of the state at the electrode, e.g., whether the ablative energy is causing a desirable ablative effect on the electrode. This method may preferably provide real-time measurements of the RMS and peak current amplitudes along with the Crest Factor. Moreover, these parameters may be used as limits or inputs to control algorithms or as inputs into a mechanism to indicate to a user whether the device was in its ablative or non-ablative state.
In many electrosurgical procedures, a high frequency voltage difference is applied between the active electrode(s) and one or more return electrode(s) to develop high electric field intensities in the vicinity of the target tissue site. The high electric field intensities lead to electric field induced molecular breakdown of target tissue through molecular dissociation (rather than thermal evaporation or carbonization). This molecular disintegration completely removes the tissue structure, as opposed to dehydrating the tissue material by the removal of liquid from within the cells of the tissue, as is typically the case with electrosurgical desiccation and vaporization.
The high electric field intensities may be generated by applying a high frequency voltage that is sufficient to vaporize an electrically conductive fluid over at least a portion of the active electrode(s) in the region between the distal tip of the active electrode(s) and the target tissue. The electrically conductive fluid may be a gas or liquid, such as isotonic saline, delivered to the target site, or a viscous fluid, such as a gel, that is located at the target site. In the latter embodiment, the active electrode(s) are submersed in the electrically conductive gel during the surgical procedure. Since the vapor layer or vaporized region has relatively high electrical impedance, it minimizes the current flow into the electrically conductive fluid. This ionization, under optimal conditions, induces the discharge of energetic electrons and photons from the vapor layer to the surface of the target tissue. A more detailed description of this cold ablation phenomenon, termed Coblation®, can be found in commonly assigned U.S. Pat. No. 5,683,366 the complete disclosure of which is incorporated herein by reference in its entirety.
The systems and methods for selectively applying electrical energy to a target location within or on a patient's body may be accomplished particularly in procedures where the tissue site is fully or partially flooded or submerged with an electrically conductive fluid, such as during arthroscopic surgery of the knee, shoulder, ankle, hip, elbow, hand, foot, etc. Other tissue regions which may be treated by the system and methods described herein may also include, but are not limited to, prostate tissue, and leiomyomas (fibroids) located within the uterus, gingival tissues and mucosal tissues located in the mouth, tumors, scar tissue, myocardial tissue, collagenous tissue within the eye or epidermal and dermal tissues on the surface of the skin, etc. and may be used in the presence of an electrically conductive gel or where sufficient electrically conductive fluid is available (either delivered to the target site or naturally occurring at the target site). Other procedures which may be performed may also include laminectomy/disketomy procedures for treating herniated disks, decompressive laminectomy for stenosis in the lumbosacral and cervical spine, posterior lumbosacral and cervical spine fusions, treatment of scoliosis associated with vertebral disease, foraminotomies to remove the roof of the intervertebral foramina to relieve nerve root compression, as well as anterior cervical and lumbar diskectomies. Tissue resection within accessible sites of the body that are suitable for electrode loop resection, such as the resection of prostate tissue, leiomyomas (fibroids) located within the uterus, and other diseased tissue within the body, may also be performed.
Other procedures which may be performed where multiple tissue types are present may also include, e.g., the resection and/or ablation of the meniscus and the synovial tissue within a joint during an arthroscopic procedure. It will be appreciated that the systems and methods described herein can be applied equally well to procedures involving other tissues of the body, as well as to other procedures including open procedures, intravascular procedures, urology, laparoscopy, arthroscopy, thoracoscopy or other cardiac procedures, dermatology, orthopedics, gynecology, otorhinolaryngology, spinal and neurologic procedures, oncology, and the like.
The electrosurgical instrument may comprise a shaft or a handpiece having a proximal end and a distal end which supports the one or more active electrodes. The shaft or handpiece may assume a wide variety of configurations, with the primary purpose being to mechanically support the active electrode and permit the treating physician to manipulate the electrodes from a proximal end of the shaft. The shaft may be rigid or flexible, with flexible shafts optionally being combined with a generally rigid external tube for mechanical support. The distal portion of the shaft may comprise a flexible material, such as plastics, malleable stainless steel, etc, so that the physician can mold the shaft and/or distal portion in a desired configuration for a particular application. Flexible shafts may be combined with pull wires, shape memory actuators, and other known mechanisms for effecting selective deflection of the distal end of the shaft to facilitate positioning of the electrode array. The shaft will usually include a plurality of wires or other conductive elements running axially therethrough to permit connection of the electrode array to a connector at the proximal end of the shaft. Thus, the shaft may typically have a length between at least 5 cm and at least 10 cm, more typically being 20 cm or longer for endoscopic procedures. The shaft may typically have a diameter of at least 0.5 mm and frequently in the range of from about 1 mm to 10 mm. Of course, in various procedures, the shaft may have any suitable length and diameter that would facilitate handling by the surgeon.
As mentioned above, a gas or fluid is typically applied to the target tissue region and in some procedures it may also be desirable to retrieve or aspirate the electrically conductive fluid after it has been directed to the target site. In addition, it may be desirable to aspirate small pieces of tissue that are not completely disintegrated by the high frequency energy, air bubbles, or other fluids at the target site, such as blood, mucus, the gaseous products of ablation, etc. Accordingly, the instruments described herein can include a suction lumen in the probe or on another instrument for aspirating fluids from the target site.
Referring to
Power supply 10 has an operator controllable voltage level adjustment 38 to change the applied voltage level, which is observable at a voltage level display 40. Power supply 10 may also include one or more foot pedals 24 and a cable 26 which is removably coupled to a receptacle with a cable connector 28. The foot pedal 24 may also include a second pedal (not shown) for remotely adjusting the energy level applied to the active electrodes and a third pedal (also not shown) for switching between an ablation mode and a coagulation mode or for switching to activate between electrodes. In alternative embodiments (not expressly shown) probe 20 may include one or more control switches for activating the ablation or coagulation output and adjusting the energy level applied to the active electrodes. Operation of and configurations for the power supply 10 are described in further detail in U.S. Pat. No. 6,746,447, which is incorporated herein by reference in its entirety.
The voltage applied between the return electrodes and the active electrodes may be at high or radio frequency, typically between about 5 kHz and 20 MHz, usually being between about 30 kHz and 2.5 MHz, preferably being between about 50 kHz and 500 kHz, more preferably less than 350 kHz, and most preferably between about 100 kHz and 200 kHz. The RMS (root mean square) voltage applied will usually be in the range from about 5 volts to 1000 volts, preferably being in the range from about 10 volts to 500 volts depending on the active electrode size, the operating frequency and the operation mode of the particular procedure or desired effect on the tissue (i.e., contraction, coagulation or ablation). Typically, the peak-to-peak voltage will be in the range of 10 to 2000 volts, preferably in the range of 20 to 1200 volts and more preferably in the range of about 40 to 800 volts (again, depending on the electrode size, the operating frequency and the operation mode).
The power source may be current limited or otherwise controlled so that undesired heating of the target tissue or surrounding (non-target) tissue does not occur. In one variation, current limiting inductors are placed in series with each independent active electrode, where the inductance of the inductor is in the range of 10 uH to 50,000 uH, depending on the electrical properties of the target tissue, the desired tissue heating rate and the operating frequency. Alternatively, capacitor-inductor (LC) circuit structures may be employed, as described previously in PCT application WO 94/026228, which is incorporated herein by reference in its entirety.
Additionally, current limiting resistors may be selected. These resistors will have a large positive temperature coefficient of resistance so that, as the current level begins to rise for any individual active electrode in contact with a low resistance medium (e.g., saline irrigant or conductive gel), the resistance of the current limiting resistor increases significantly, thereby minimizing the power delivery from the active electrode into the low resistance medium (e.g., saline irrigant or conductive gel).
Handle 52 typically comprises a plastic material that is easily molded into a suitable shape for handling by the surgeon. Moreover, the distal portion of shaft 50 may be bent to improve access to the operative site of the tissue being treated. In alternative embodiments, the distal portion of shaft 50 comprises a flexible material which can be deflected relative to the longitudinal axis of the shaft. Such deflection may be selectively induced by mechanical tension of a pull wire, for example, or by a shape memory wire that expands or contracts by externally applied temperature changes. A more complete description of this embodiment can be found in PCT application WO 94/026228, which has been incorporated by reference above.
The bend in the distal portion of shaft 50 is particularly advantageous in arthroscopic treatment of joint tissue as it allows the surgeon to reach the target tissue within the joint as the shaft 50 extends through a cannula or portal. Of course, it will be recognized that the shaft may have different angles depending on a particular treatment application. For example, a shaft having a 90° bend angle may be particularly useful for accessing tissue located in the back portion of a joint compartment and a shaft having a 10° to 30° bend angle may be useful for accessing tissue near or in the front portion of the joint compartment.
Regardless of the bend angle, an electrode assembly having multiple, e.g., two or more, electrodes disposed near or at the distal end of shaft 50 may be utilized. One difficulty in designing electrosurgical devices with relatively large active electrodes is that a relatively high level of RF energy is delivered before ablative effects are activated at the electrodes. However, once the ablative effects are activated, the load impedance increases and the power delivery to the tissue decreases. In some embodiments a multi-electrode assembly may be configured to more effectively deliver the energy to a tissue region of interest, for instance, less energy may be required than if a single electrode with the same overall effective surface area were used. In such embodiments the multiple electrodes may effectively serve to “diffuse” the same amount of energy over a larger area.
Power supply 10 as described in the present system above as well as other electrosurgical systems may be controlled to deliver a predetermined level of energy to a tissue region to be treated. This may utilize limiting the applied current or voltage so that undesired heating of the target tissue or surrounding (non-target) tissue does not occur. Utilizing RMS values alone fails to consider the changes in wave shape as the device enters different operating modes, particularly in thermal mode (non-ablative) and plasma mode (ablative).
Probe 20 further includes performance indicator 55. Performance indicator 55 may include one or more LEDs or similar indicators in electrical communication with circuit 90. As circuit 90 determines that probe 20 is an ablative or non-ablative state based on Crest Factor C, indicator 55 may be illuminated to provide the user a visual indication of whether an ablative or non-ablative state is detected. In an alternative embodiment an indicator (not expressly shown) may be disposed within power supply 10 either in addition to or in place of indicator 55. Additionally, such an indicator provided in the power supply may also provide an audible tone or similar audible signal to indicate the detected state to the user.
As discussed herein, ablation is typically characterized by the generation of a plasma discharge at the electrode assembly 54 of the electrosurgical probe 20. The typical voltage waveform is illustrated in plot 60 which shows square waveform 62 in
As described herein, waveform 70 is preferably analyzed to discern a difference between the two wave shapes, e.g., between the signal's initial square waveform 76 (when the system is in the thermal mode 72) and spiked waveform 78 (when the system is in the plasma mode 74). The difference between the two waveforms may be discerned by considering their Crest Factor, C, which for a waveform is defined as:
where XPEAK is the peak amplitude of the waveform and XRMS is the RMS or time-averaged value of the waveform over a specified time interval. The Crest Factor is sometimes also defined as the peak-to-average ratio. When the system is in the thermal mode during an initial non-ablative period 72, the current waveform is square and the Crest Factor is 1 where the peak amplitude and RMS values are equal, e.g., square waveform 76. Once the system begins operating in the plasma mode, such as during ablative state 74, the wave shape deviates farther from a square waveform and the Crest Factor increases, e.g., spiked waveform 78. For instance, when ablation is active 74 the Crest Factor of the current waveform is several times the value when it is not active 72.
When an electrosurgical device, e.g., an arthroscopic ablation instrument, enters an ablative state the waveform is typically characterized by a relatively high leading edge or spike 78, followed by a much lower level 80 for the remaining half cycle resulting in a high Crest Factor since its peak is much higher than its RMS value. A measurement of the Crest Factor can therefore be used to make a determination of the state at the electrode, e.g., whether the ablative energy is causing a desirable ablative effect (for example, creating a plasma) proximate the electrode. This method may provide real-time measurements of the RMS and peak current amplitudes along with the Crest Factor. Moreover, these parameters may be used as limits or inputs to control algorithms or as inputs into a mechanism to indicate to a user whether the device was in its ablative or non-ablative state.
An example for measuring current loads and for determining an instrument's ablative state is shown in the schematic illustration of circuit 90 in
The current measurement detected from transformer 102 may be input to a high-speed analog-to-digital converter (ADC) input on DSP 100, which may utilize this input signal to calculate the RMS and peak values of the waveform as well as to calculate the Crest Factor of the waveform. An example of a suitable DSP may include the Microchip dsPIC30 line of devices which provides a 10-bit converter resolution to represent the measured analog sample. Moreover, the Microchip dsPIC30 is widely available commercially and typically includes on-board ADC converters that operate at a throughput rate of up to 2 MSPS. A number of manufacturers also make DSP/MCU devices with similar capabilities that may be utilized. The example of the Microchip dsPIC30 is provided only to be illustrative of the type of DSP which may be utilized to process the various calculations and is not intended to be limiting in any manner.
With the sensed signals detected by transformer 102 input to the ADC input on DSP 100, several resistors 104 (e.g., R1, R2, and R3) connected to transformer 102 and also connected in series with DSP 100 may be included to provide sufficient resolution of the current waveform detected by transformer 102 and so that it is bounded by VSS (ground) and VDD (supply voltage) as shown in DSP 100 in the schematic illustration. Also, a sufficient DC bias may be added to the AC current waveform by the application of +5 VDC in communication with the resistors 104. If R1 and R2 were equal in the sensing circuit 98, the DC bias added to the current waveform may be about 2.5 VDC.
With the electrode circuit 92 and sensing circuit 98 in electrical communication, the RMS value of the measured current may be computed based upon a predetermined number of samples, N, measured by current sensing transformer 102. Accordingly, the RMS value of N samples of a signal can be computed using the expression:
The high-speed ADC on DSP 100 can be run at up to, e.g., 2 MSPS, for input sampling. The calculated RMS value may be fairly accurately calculated when, e.g., N=256 samples, are included in the function. The current waveform may be sampled by sensing circuit 98 at a frequency of:
where N=256 such that representative samples are collected over approximately 256 cycles. The value of fSAMPLE represents the sampling frequency by sensing circuit 98 while fSIGNAL represents the frequency of the measured signal through electrode circuit 92.
This is shown in the graph 110 of
With the N number of samples, e.g., N=256, a first step in the data processing is to subtract the DC bias from each of the N samples. For a 10-bit value, this would result in a signed value between −511 and 512. After the DC bias is removed, each of the samples may be scanned with the absolute value calculated and the maximum value identified and retained, which represents XPEAK. DSP 100 may include at least two 40-bit accumulators and built in functions to perform algebraic operations which enable calculation of the numerator of the XPEAK value.
After the values of the samples, N, are squared and accumulated, they are divided by the N samples, e.g., 256 samples, and the square root of the resulting value is calculated to provide XRMS according to equation (2) above. With XPEAK and XRMS calculated, the Crest Factor, C, of the waveform may be calculated according to equation (1) above. This may allow for all three values: XPEAK, XRMS, and C to be reported via a user interface as an absolute limit or they may be used as input to either an RF or other control algorithm. For example, an algorithm may advantageously be used to regulate the vacuum or suction flow through the aspiration lumen in the device in order to allow the system to continuously remain in the ablative or plasma mode.
The Crest Factor, C, also may be used as an input for an indicator to determine whether the electrosurgical device is in a plasma mode (ablative) or a thermal mode (non-ablative), based on whether C has exceeded a specified threshold.
Now referring to
Alternatively, the indicator may be activated instead when a non-ablative mode or state is detected. In yet another embodiment, two or more indicators may be provided and each indicator may be activated to signal the detection of a selected mode of operation at the electrode. In still other alternative embodiments, the associated generator may include a visual or audible indicator in order to indicate the detected mode of operation of the electrode. In other embodiments, the determination that the device is in an ablative mode may be used as an input in a control algorithm as discussed above. In a preferred embodiment, steps 154, 156, 158, 160 and 162 may be continuously cycled while the electrosurgical device is activated, providing a real time or substantially real time indication of the ablative (or non-ablative) state of the electrosurgical device. The method ends at 164 when the electrosurgical device is inactive.
Other modifications and variations can be made to the disclosed embodiments without departing from the subject invention. For example, other uses or applications in characterizing waveforms are possible. Similarly, numerous other methods of controlling or characterizing instruments or otherwise treating tissue using electrosurgical probes will be apparent to the skilled artisan. Moreover, the instruments and methods described herein may be utilized in instruments for various regions of the body (e.g., shoulder, knee, etc.) and for other tissue treatment procedures (e.g., chondroplasty, menectomy, etc.). Thus, while the exemplary embodiments have been described in detail, by way of example and for clarity of understanding, a variety of changes, adaptations, and modifications will be obvious to those of skill in the art. Therefore, the scope of the present invention is limited solely by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2050904 | Trice | Apr 1936 | A |
2056377 | Wappler | Oct 1939 | A |
2611365 | Rubens | Sep 1952 | A |
3434476 | Shaw et al. | Mar 1969 | A |
3633425 | Sanford | Jan 1972 | A |
3707149 | Hao et al. | Dec 1972 | A |
3718617 | Royal | Feb 1973 | A |
3815604 | O'Malley et al. | Jun 1974 | A |
3828780 | Morrison, Jr. et al. | Aug 1974 | A |
3901242 | Storz | Aug 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3939839 | Curtiss | Feb 1976 | A |
3963030 | Newton | Jun 1976 | A |
3964487 | Judson | Jun 1976 | A |
3970088 | Morrison | Jul 1976 | A |
4033351 | Hetzel | Jul 1977 | A |
4040426 | Morrison, Jr. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4092986 | Schneiderman | Jun 1978 | A |
D249549 | Pike | Sep 1978 | S |
4114623 | Meinke et al. | Sep 1978 | A |
4116198 | Roos | Sep 1978 | A |
4181131 | Ogiu | Jan 1980 | A |
4184492 | Meinke et al. | Jan 1980 | A |
4202337 | Hren et al. | May 1980 | A |
4228800 | Degler, Jr. et al. | Oct 1980 | A |
4232676 | Herczog | Nov 1980 | A |
4240441 | Khalil | Dec 1980 | A |
4248231 | Herczog et al. | Feb 1981 | A |
4326529 | Doss et al. | Apr 1982 | A |
4346715 | Gammell | Aug 1982 | A |
4363324 | Kusserow | Dec 1982 | A |
4378801 | Oosten | Apr 1983 | A |
4381007 | Doss | Apr 1983 | A |
4418692 | Guay | Dec 1983 | A |
4474179 | Koch | Oct 1984 | A |
4476862 | Pao | Oct 1984 | A |
4509532 | DeVries | Apr 1985 | A |
4532924 | Auth et al. | Aug 1985 | A |
4548207 | Reimels | Oct 1985 | A |
4567890 | Ohta et al. | Feb 1986 | A |
4572206 | Geddes et al. | Feb 1986 | A |
4580557 | Hertzmann | Apr 1986 | A |
4587975 | Salo et al. | May 1986 | A |
4590934 | Malis et al. | May 1986 | A |
4593691 | Lindstrom et al. | Jun 1986 | A |
4658817 | Hardy | Apr 1987 | A |
4660571 | Hess et al. | Apr 1987 | A |
4674499 | Pao | Jun 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4706667 | Roos | Nov 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4727874 | Bowers et al. | Mar 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4765331 | Petruzzi et al. | Aug 1988 | A |
4785823 | Eggers et al. | Nov 1988 | A |
4805616 | Pao | Feb 1989 | A |
4823791 | D'Amelio et al. | Apr 1989 | A |
4832048 | Cohen | May 1989 | A |
4846179 | O'Connor | Jul 1989 | A |
4860752 | Turner | Aug 1989 | A |
4907589 | Cosman | Mar 1990 | A |
4920978 | Colvin | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4936301 | Rexroth et al. | Jun 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4966597 | Cosman | Oct 1990 | A |
4967765 | Turner et al. | Nov 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4979948 | Geddes et al. | Dec 1990 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5009656 | Reimels | Apr 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5035696 | Rydell | Jul 1991 | A |
5047026 | Rydell | Sep 1991 | A |
5047027 | Rydell | Sep 1991 | A |
5057105 | Malone et al. | Oct 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5057743 | Krasko et al. | Oct 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5080660 | Buelna | Jan 1992 | A |
5083565 | Parins | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5085659 | Rydell | Feb 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5092339 | Geddes et al. | Mar 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5099840 | Goble | Mar 1992 | A |
5102410 | Dressel | Apr 1992 | A |
5108391 | Flachenecker et al. | Apr 1992 | A |
RE33925 | Bales et al. | May 1992 | E |
5112330 | Nishigaki et al. | May 1992 | A |
5122138 | Manwaring | Jun 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5156151 | Imran | Oct 1992 | A |
5167659 | Ohtomo et al. | Dec 1992 | A |
5171311 | Rydell et al. | Dec 1992 | A |
5174304 | Latina et al. | Dec 1992 | A |
5178620 | Eggers et al. | Jan 1993 | A |
5183338 | Wickersheim et al. | Feb 1993 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5192280 | Parins | Mar 1993 | A |
5195959 | Smith | Mar 1993 | A |
5197466 | Marchosky et al. | Mar 1993 | A |
5197963 | Parins | Mar 1993 | A |
5207675 | Canady | May 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217459 | Kamerling | Jun 1993 | A |
5249585 | Turner et al. | Oct 1993 | A |
5255980 | Thomas et al. | Oct 1993 | A |
5261410 | Alfano et al. | Nov 1993 | A |
5267994 | Gentelia et al. | Dec 1993 | A |
5267997 | Farin et al. | Dec 1993 | A |
5273524 | Fox et al. | Dec 1993 | A |
5277201 | Stern | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5281218 | Imran | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5290282 | Casscells | Mar 1994 | A |
5300069 | Hunsberger et al. | Apr 1994 | A |
5306238 | Fleenor | Apr 1994 | A |
5312400 | Bales et al. | May 1994 | A |
5314406 | Arias et al. | May 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5324254 | Phillips | Jun 1994 | A |
5330470 | Hagen | Jul 1994 | A |
5334140 | Phillips | Aug 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5336172 | Bales et al. | Aug 1994 | A |
5336220 | Ryan et al. | Aug 1994 | A |
5336443 | Odashima | Aug 1994 | A |
5342357 | Nardella | Aug 1994 | A |
5348026 | Davidson | Sep 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5354291 | Bales et al. | Oct 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5374261 | Yoon | Dec 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5380277 | Phillips | Jan 1995 | A |
5380316 | Aita | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383876 | Nardella | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5389096 | Aita | Feb 1995 | A |
5395312 | Desai | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5401272 | Perkins | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5417687 | Nardella et al. | May 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5436566 | Thompson et al. | Jul 1995 | A |
5437662 | Nardella | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5449356 | Walbrink et al. | Sep 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5472444 | Hueber et al. | Dec 1995 | A |
5486161 | Lax et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496314 | Eggers | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5505730 | Edwards et al. | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5540683 | Ichikawa et al. | Jul 1996 | A |
5542915 | Edwards et al. | Aug 1996 | A |
5554152 | Aita | Sep 1996 | A |
5556397 | Long et al. | Sep 1996 | A |
5562703 | Desai | Oct 1996 | A |
5569242 | Lax et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5609573 | Sandock | Mar 1997 | A |
5633578 | Eggers et al. | May 1997 | A |
5643304 | Schechter et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5660567 | Nierlich et al. | Aug 1997 | A |
5662680 | Desai | Sep 1997 | A |
5676693 | LaFontaine et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5697925 | Taylor | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5700262 | Acosta et al. | Dec 1997 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5722975 | Edwards et al. | Mar 1998 | A |
5725524 | Mulier et al. | Mar 1998 | A |
5749869 | Lindenmeier et al. | May 1998 | A |
5749871 | Hood et al. | May 1998 | A |
5749914 | Janssen | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5766153 | Eggers et al. | Jun 1998 | A |
5769847 | Panescu et al. | Jun 1998 | A |
5785705 | Baker | Jul 1998 | A |
5786578 | Christy et al. | Jul 1998 | A |
5800429 | Edwards | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5810809 | Rydell | Sep 1998 | A |
5836875 | Webster, Jr. | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5860951 | Eggers | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5871469 | Eggers et al. | Feb 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5873877 | McGaffigan | Feb 1999 | A |
5885277 | Korth | Mar 1999 | A |
5888198 | Eggers et al. | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5897553 | Mulier | Apr 1999 | A |
5902272 | Eggers et al. | May 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
5964786 | Ochs et al. | Oct 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6013076 | Goble et al. | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6039734 | Goble et al. | Mar 2000 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6066489 | Fields et al. | May 2000 | A |
6068628 | Fanton et al. | May 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6093186 | Goble et al. | Jul 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6103298 | Edelson et al. | Aug 2000 | A |
6105581 | Eggers et al. | Aug 2000 | A |
6109268 | Thapliyal et al. | Aug 2000 | A |
6117109 | Eggers et al. | Sep 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6156334 | Meyer-Ingold et al. | Dec 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6159208 | Hovda et al. | Dec 2000 | A |
6162217 | Kannenberg et al. | Dec 2000 | A |
6168593 | Sharkey et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6183469 | Thapliyal et al. | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6197021 | Panescu et al. | Mar 2001 | B1 |
6203542 | Ellsberry et al. | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210405 | Goble et al. | Apr 2001 | B1 |
6217574 | Webster | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6228078 | Eggers | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6241723 | Heim et al. | Jun 2001 | B1 |
6249706 | Sobota et al. | Jun 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6261311 | Sharkey et al. | Jul 2001 | B1 |
6264652 | Eggers et al. | Jul 2001 | B1 |
6270460 | McCartan et al. | Aug 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6308089 | von der Rur et al. | Oct 2001 | B1 |
6309387 | Eggers et al. | Oct 2001 | B1 |
6312408 | Eggers et al. | Nov 2001 | B1 |
6319007 | Livaditis | Nov 2001 | B1 |
6322549 | Eggers et al. | Nov 2001 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6346107 | Cucin | Feb 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6379350 | Sharkey et al. | Apr 2002 | B1 |
6379351 | Thapliyal et al. | Apr 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6416507 | Eggers et al. | Jul 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6432103 | Ellsberry et al. | Aug 2002 | B1 |
6440129 | Simpson | Aug 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6468275 | Wampler et al. | Oct 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6514248 | Eggers et al. | Feb 2003 | B1 |
6514250 | Jahns et al. | Feb 2003 | B1 |
6517498 | Burbank et al. | Feb 2003 | B1 |
6530922 | Cosman | Mar 2003 | B2 |
6558382 | Jahns et al. | May 2003 | B2 |
6565560 | Goble et al. | May 2003 | B1 |
6578579 | Burnside | Jun 2003 | B2 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6620156 | Garito et al. | Sep 2003 | B1 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632220 | Eggers et al. | Oct 2003 | B1 |
6635034 | Cosmescu | Oct 2003 | B1 |
6640128 | Vilsmeier et al. | Oct 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6663554 | Babaev | Dec 2003 | B2 |
6663627 | Francischelli et al. | Dec 2003 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6730080 | Harano et al. | May 2004 | B2 |
6746447 | Davison et al. | Jun 2004 | B2 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6749608 | Garito et al. | Jun 2004 | B2 |
D493530 | Reschke | Jul 2004 | S |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6780178 | Palanker et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6780184 | Tanrisever | Aug 2004 | B2 |
6802842 | Ellman et al. | Oct 2004 | B2 |
6805130 | Tasto et al. | Oct 2004 | B2 |
6830558 | Flaherty et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6864686 | Novak et al. | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6872183 | Sampson et al. | Mar 2005 | B2 |
6878149 | Gatto | Apr 2005 | B2 |
6890307 | Kokate et al. | May 2005 | B2 |
6892086 | Russell | May 2005 | B2 |
6911027 | Edwards et al. | Jun 2005 | B1 |
6920883 | Bessette et al. | Jul 2005 | B2 |
6921398 | Carmel et al. | Jul 2005 | B2 |
6929640 | Underwood et al. | Aug 2005 | B1 |
6949096 | Davison et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6960204 | Eggers et al. | Nov 2005 | B2 |
6974453 | Woloszko et al. | Dec 2005 | B2 |
6979601 | Marr et al. | Dec 2005 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6986770 | Hood | Jan 2006 | B2 |
6991631 | Woloszko et al. | Jan 2006 | B2 |
7001382 | Gallo | Feb 2006 | B2 |
7004941 | Tvinnereim et al. | Feb 2006 | B2 |
7010353 | Gan et al. | Mar 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7070596 | Woloszko et al. | Jul 2006 | B1 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7094215 | Davison et al. | Aug 2006 | B2 |
7094231 | Ellman et al. | Aug 2006 | B1 |
7104986 | Hovda et al. | Sep 2006 | B2 |
7131969 | Hovda et al. | Nov 2006 | B1 |
7169143 | Eggers et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7192428 | Eggers et al. | Mar 2007 | B2 |
7201750 | Eggers et al. | Apr 2007 | B1 |
7217268 | Eggers et al. | May 2007 | B2 |
7241293 | Davison | Jul 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7270659 | Hovda et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7271363 | Lee et al. | Sep 2007 | B2 |
7276061 | Schaer et al. | Oct 2007 | B2 |
7276063 | Davison et al. | Oct 2007 | B2 |
7278994 | Goble | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7297143 | Woloszko et al. | Nov 2007 | B2 |
7297145 | Ormsby et al. | Nov 2007 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7331956 | Hovda et al. | Feb 2008 | B2 |
RE40156 | Sharps et al. | Mar 2008 | E |
7344532 | Goble et al. | Mar 2008 | B2 |
7357798 | Sharps et al. | Apr 2008 | B2 |
7387625 | Hovda et al. | Jun 2008 | B2 |
7419488 | Ciarrocca et al. | Sep 2008 | B2 |
7429260 | Underwood et al. | Sep 2008 | B2 |
7429262 | Woloszko et al. | Sep 2008 | B2 |
7435247 | Woloszko et al. | Oct 2008 | B2 |
7527624 | Dubnack et al. | May 2009 | B2 |
7678069 | Baker et al. | Mar 2010 | B1 |
7691101 | Davison et al. | Apr 2010 | B2 |
7699830 | Martin | Apr 2010 | B2 |
7785322 | Penny et al. | Aug 2010 | B2 |
7824398 | Woloszko et al. | Nov 2010 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7887538 | Bleich et al. | Feb 2011 | B2 |
7985072 | Belikov et al. | Jul 2011 | B2 |
D658760 | Cox et al. | May 2012 | S |
8192424 | Woloszko | Jun 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8568405 | Cox et al. | Oct 2013 | B2 |
8574187 | Marion | Nov 2013 | B2 |
8685018 | Cox et al. | Apr 2014 | B2 |
8747399 | Woloszko et al. | Jun 2014 | B2 |
20010025177 | Woloszko et al. | Sep 2001 | A1 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020183739 | Long | Dec 2002 | A1 |
20030013986 | Saadat | Jan 2003 | A1 |
20030028189 | Woloszko et al. | Feb 2003 | A1 |
20030088245 | Woloszko et al. | May 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030167035 | Flaherty et al. | Sep 2003 | A1 |
20030171743 | Tasto et al. | Sep 2003 | A1 |
20030208194 | Hovda et al. | Nov 2003 | A1 |
20030208196 | Stone | Nov 2003 | A1 |
20030212396 | Eggers et al. | Nov 2003 | A1 |
20030216725 | Woloszko et al. | Nov 2003 | A1 |
20030216726 | Eggers et al. | Nov 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030232048 | Yang et al. | Dec 2003 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040049180 | Sharps et al. | Mar 2004 | A1 |
20040058153 | Ren et al. | Mar 2004 | A1 |
20040092925 | Rizoiu et al. | May 2004 | A1 |
20040102044 | Mao et al. | May 2004 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040127893 | Hovda | Jul 2004 | A1 |
20040186418 | Karashima | Sep 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20050004634 | Hovda et al. | Jan 2005 | A1 |
20050010205 | Hovda et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050119650 | Sanders et al. | Jun 2005 | A1 |
20050131402 | Ciarrocca et al. | Jun 2005 | A1 |
20050187543 | Underwood et al. | Aug 2005 | A1 |
20050197657 | Goth et al. | Sep 2005 | A1 |
20050234439 | Underwood et al. | Oct 2005 | A1 |
20050245923 | Christopherson et al. | Nov 2005 | A1 |
20050251134 | Woloszko et al. | Nov 2005 | A1 |
20050261754 | Woloszko et al. | Nov 2005 | A1 |
20050273091 | Booth et al. | Dec 2005 | A1 |
20050288665 | Woloszko et al. | Dec 2005 | A1 |
20060036237 | Davison et al. | Feb 2006 | A1 |
20060095031 | Ormsby | May 2006 | A1 |
20060097615 | Tsakalakos et al. | May 2006 | A1 |
20060161148 | Behnke | Jul 2006 | A1 |
20060161150 | Keppel | Jul 2006 | A1 |
20060178670 | Woloszko et al. | Aug 2006 | A1 |
20060189971 | Eggers et al. | Aug 2006 | A1 |
20060253117 | Hovda et al. | Nov 2006 | A1 |
20060259025 | Dahla | Nov 2006 | A1 |
20070010808 | Dahla | Jan 2007 | A1 |
20070010809 | Sanders et al. | Jan 2007 | A1 |
20070093800 | Wham et al. | Apr 2007 | A1 |
20070106288 | Woloszko et al. | May 2007 | A1 |
20070112348 | Eggers et al. | May 2007 | A1 |
20070129715 | Eggers et al. | Jun 2007 | A1 |
20070149966 | Dahla et al. | Jun 2007 | A1 |
20070161981 | Sanders et al. | Jul 2007 | A1 |
20070179495 | Mitchell et al. | Aug 2007 | A1 |
20070179497 | Eggers et al. | Aug 2007 | A1 |
20070208334 | Woloszko et al. | Sep 2007 | A1 |
20070208335 | Woloszko et al. | Sep 2007 | A1 |
20070213700 | Davison et al. | Sep 2007 | A1 |
20070282323 | Woloszko et al. | Dec 2007 | A1 |
20080004615 | Woloszko et al. | Jan 2008 | A1 |
20080004621 | Dahla et al. | Jan 2008 | A1 |
20080077128 | Woloszko et al. | Mar 2008 | A1 |
20080138761 | Pond | Jun 2008 | A1 |
20080140069 | Filloux et al. | Jun 2008 | A1 |
20080154255 | Panos et al. | Jun 2008 | A1 |
20080167645 | Woloszko | Jul 2008 | A1 |
20080234674 | McClurken et al. | Sep 2008 | A1 |
20080243116 | Anderson | Oct 2008 | A1 |
20080261368 | Ramin et al. | Oct 2008 | A1 |
20080300590 | Horne et al. | Dec 2008 | A1 |
20090222001 | Greeley | Sep 2009 | A1 |
20100042101 | Inagaki et al. | Feb 2010 | A1 |
20100121317 | Lorang et al. | May 2010 | A1 |
20100152726 | Cadouri et al. | Jun 2010 | A1 |
20100228246 | Marion | Sep 2010 | A1 |
20100292689 | Davison et al. | Nov 2010 | A1 |
20100318083 | Davison et al. | Dec 2010 | A1 |
20100324549 | Marion | Dec 2010 | A1 |
20100331883 | Schmitz et al. | Dec 2010 | A1 |
20110137308 | Woloszko et al. | Jun 2011 | A1 |
20110208177 | Brannan | Aug 2011 | A1 |
20110245826 | Woloszko et al. | Oct 2011 | A1 |
20110270256 | Nelson et al. | Nov 2011 | A1 |
20110319887 | Keppel | Dec 2011 | A1 |
20120083782 | Stalder et al. | Apr 2012 | A1 |
20120095453 | Cox et al. | Apr 2012 | A1 |
20120095454 | Cox et al. | Apr 2012 | A1 |
20120109123 | Woloszko et al. | May 2012 | A1 |
20120196251 | Taft et al. | Aug 2012 | A1 |
20120197344 | Taft et al. | Aug 2012 | A1 |
20120215221 | Woloszko | Aug 2012 | A1 |
20120296328 | Marion | Nov 2012 | A1 |
20130116680 | Woloszko | May 2013 | A1 |
20140018798 | Cox et al. | Jan 2014 | A1 |
20140025065 | Marion | Jan 2014 | A1 |
20140135760 | Cadouri et al. | May 2014 | A1 |
20140155882 | Cox et al. | Jun 2014 | A1 |
20140236141 | Woloszko et al. | Aug 2014 | A1 |
20140257277 | Woloszko et al. | Sep 2014 | A1 |
20140257278 | Woloszko et al. | Sep 2014 | A1 |
20140257279 | Woloszko et al. | Sep 2014 | A1 |
20140276725 | Cox | Sep 2014 | A1 |
20150032101 | Woloszko et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
3119735 | Jan 1983 | DE |
3930451 | Mar 1991 | DE |
69635311 | Apr 2007 | DE |
10201003288 | Sep 2014 | DE |
423757 | Mar 1996 | EP |
0703461 | Mar 1996 | EP |
0740926 | Nov 1996 | EP |
0 754 437 | Jan 1997 | EP |
0 694 290 | Nov 2000 | EP |
1334699 | Aug 2003 | EP |
1428480 | Jun 2004 | EP |
1707147 | Oct 2006 | EP |
2055254 | Jan 2015 | EP |
2313949 | Jan 1977 | FR |
467502 | Jun 1937 | GB |
2160102 | Dec 1985 | GB |
2299216 | Sep 1996 | GB |
2 308 979 | Jul 1997 | GB |
2 308 980 | Jul 1997 | GB |
2 308 981 | Jul 1997 | GB |
2 327 350 | Jan 1999 | GB |
2 327 351 | Jan 1999 | GB |
2 327 352 | Jan 1999 | GB |
2333455 | Jul 1999 | GB |
2406793 | Apr 2005 | GB |
2514442 | Nov 2014 | GB |
57-57802 | Apr 1982 | JP |
57-117843 | Jul 1982 | JP |
9003152 | Apr 1990 | WO |
9007303 | Jul 1990 | WO |
9221278 | Dec 1992 | WO |
9313816 | Jul 1993 | WO |
9320747 | Oct 1993 | WO |
9404220 | Mar 1994 | WO |
9408654 | Apr 1994 | WO |
9410921 | May 1994 | WO |
9426228 | Nov 1994 | WO |
9534259 | Dec 1995 | WO |
9600040 | Jan 1996 | WO |
9600042 | Jan 1996 | WO |
9639086 | Dec 1996 | WO |
9700646 | Jan 1997 | WO |
9700647 | Jan 1997 | WO |
9718768 | May 1997 | WO |
9724073 | Jul 1997 | WO |
9724074 | Jul 1997 | WO |
9724993 | Jul 1997 | WO |
9724994 | Jul 1997 | WO |
9743971 | Nov 1997 | WO |
9748345 | Dec 1997 | WO |
9748346 | Dec 1997 | WO |
9807468 | Feb 1998 | WO |
9826724 | Jun 1998 | WO |
9827879 | Jul 1998 | WO |
9827880 | Jul 1998 | WO |
9856324 | Dec 1998 | WO |
9920213 | Apr 1999 | WO |
9951155 | Oct 1999 | WO |
9951158 | Oct 1999 | WO |
9956648 | Nov 1999 | WO |
0000098 | Jan 2000 | WO |
0009053 | Feb 2000 | WO |
0062685 | Oct 2000 | WO |
0124720 | Apr 2001 | WO |
0187154 | May 2001 | WO |
0195819 | Dec 2001 | WO |
0236028 | May 2002 | WO |
02102255 | Dec 2002 | WO |
03024305 | Mar 2003 | WO |
03092477 | Nov 2003 | WO |
2004026150 | Apr 2004 | WO |
2004071278 | Aug 2004 | WO |
2005125287 | Dec 2005 | WO |
2007006000 | Jan 2007 | WO |
2007056729 | May 2007 | WO |
2010052717 | May 2010 | WO |
2012050636 | Apr 2012 | WO |
2012050637 | Apr 2012 | WO |
Entry |
---|
Buchelt, et al. “Excimer Laser Ablation of Fibrocartilage: An In Vitro and In Vivo Study”, Lasers in Surgery and Medicine, vol. 11, pp. 271-279, 1991. |
Costello et al., “Nd: YAG Laser Ablation of the Prostate as a Treatment for Benign Prostatic Hypertrophy”, Lasers in Surgery and Medicine, vol. 12, pp. 121-124, 1992. |
Rand et al., “Effect of Elecctrocautery on Fresh Human Articular Cartilage”, J. Arthro. Surg., vol. 1, pp. 242-246, 1985. |
O'Neill et al., “Percutaneous Plasma Discectomy Stimulates Repair in Injured Porcine Intervertebral Discs”, Dept. of Orthopaedic Surgery, Dept. of Radiology University of California at San Francisco, CA, 3 pgs. |
PCT International Search Report for PCT/US99/14685), 1 pg Mailed Oct. 21, 1999. |
PCT Notification of International Preliminary Examination Report for PCT/US99/14685, 4 pgs, Mailed Feb. 20, 2001. |
PCT International Search Report for PCT/US98/22323, 1 pg, Mailed Mar. 3, 1999. |
PCT Notification of International Preliminary Examination Report for PCT/US98/22323, 5 pgs, Mailed Nov. 28, 2000. |
European Search Report for EP 98953859, 2 pgs, Jul. 2, 2001. |
Supplementary European Search Report for EP 98953859, 3 pgs, Oct. 18, 2001. |
PCT International Search Report for PCT/US99/18289, 1 pg, Mailed Dec. 7, 1999. |
PCT Notification of International Preliminary Examination Report for PCT/US99/18289, 4 pgs, Mailed Jul. 7, 2000. |
European Search Report for EP 99945039.8, 3 pgs, Oct. 1, 2001. |
PCT International Search Report for PCT/US02/19261, 1 pg, Mailed Sep. 18, 2002. |
PCT International Preliminary Examination Report for PCT/US02/19261, 3 pgs, Mar. 25, 2003. |
PCT International Search Report for PCT/US02/29476, 1 pg, Mailed May 24, 2004. |
PCT International Search Report for PCT/US03/13686, 1 pg, Mailed Nov. 25, 2003. |
PCT International Search Report for PCT/USO4/03614, 1 pg, Mailed Sep. 14, 2004. |
PCT Written Opinion of the International Searching Authority for PCT/US04/03614, 4 pgs, Mailed Sep. 14, 2004. |
EP Communication, European Examination Report for EP 98953859.0, 3 pgs, Jun. 14, 2004. |
EP Communication, European Examination Report for EP 99945039.8, 5 pgs, May 10, 2004. |
PCT Notification of International Search Report and Written Opinion for PCT/US06/26321, 8pgs, Mailed Apr. 25, 2007. |
PCT Notification of the International Search Report and Written Opinion for PCT/US06/60618, 7pgs, Mailed Oct. 5, 2007. |
Barry et al., “The Effect of Radiofrequency-generated Thermal Energy on the Mechanical and Histologic Characteristics of the Arterial Wall in Vivo: Implications of Radiofrequency Angioplasty” American Heart Journal vol. 117, pp. 332-341, 1982. |
Codman & Shurtleff, Inc. “The Malis Bipolar Coagulating and Bipolar Cutting System CMC-II” brochure, early, 2 pgs, 1991. |
Codman & Shurtleff, Inc. “The Malis Bipolar Electrosurgical System CMC-III Instruction Manual” , 15 pgs, Jul. 1991. |
Cook et al., “Therapeutic Medical Devices: Application and Design” , Prentice Hall, Inc., 3pgs, 1982. |
Dennis et al. “Evolution of Electrofulguration in Control of Bleeding of Experimental Gastric Ulcers,” Digestive Diseases and Sciences, vol. 24, No. 11, 845-848, Nov. 1979. |
Dobbie, A.K., “The Electrical Aspects of Surgical Diathermy, Bio Medical Engineering” Bio-Medical Engineering vol. 4, pp. 206-216, May 1969. |
Elsasser, V.E. et al., “An Instrument for Transurethral Resection without Leakage of Current” Acta Medicotechnica vol. 24, No. 4, pp. 129-134, 1976. |
Geddes, “Medical Device Accidents: With Illustrative Cases” CRC Press, 3 pgs, 1998. |
Honig, W., “The Mechanism of Cutting in Electrosurgery” IEEE pp. 58-65, 1975. |
Kramolowsky et al. “The Urological App of Electorsurgery” J. of Urology vol. 146, pp. 669-674, 1991. |
Kramolowsky et al. “Use of 5F Bipolar Electrosurgical Probe in Endoscopic Urological Procedures” J. of Urology vol. 143, pp. 275-277, 1990. |
Lee, B et al. “Thermal Compression and Molding of Artherosclerotic Vascular Tissue with Use” JACC vol. 13(5), pp. 1167-1171, 1989. |
Letter from Department of Health to Jerry Malis dated Jan. 24, 1991, 3 pgs. |
Letter from Department of Health to Jerry Malis dated Jul. 25, 1985, 1 pg. |
Letter from Jerry Malis to FDA dated Jul. 25, 1985, 2 pgs. |
Lu, et al., “Electrical Thermal Angioplasty: Catheter Design Features, In Vitro Tissue Ablation Studies and In Vitro Experimental Findings,” Am J. Cardiol vol. 60, pp. 1117-1122, Nov. 1, 1987. |
Malis, L., “Electrosurgery, Technical Note,” J. Neursurg., vol. 85, pp. 970-975, Nov. 1996. |
Malis, L., “Excerpted from a seminar by Leonard I. Malis, M.D. at the 1995 American Association of Neurological Surgeons Meeting,” 1pg, 1995. |
Malis, L., “Instrumentation for Microvascular Neurosurgery” Cerebrovascular Surgery, vol. 1, pp. 245-260, 1985. |
Malis, L., “New Trends in Microsurgery and Applied Technology,” Advanced Technology in Neurosurgery, pp. 1-16, 1988. |
Malis, L., “The Value of Irrigation During Bipolar Coagulation” See ARTC 21602, 1 pg, Apr. 9, 1993. |
Nardella, P.C., SPIE 1068: pp. 42-49, Radio Frequency Energy and Impedance Feedback, 1989. |
O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, McGraw-Hill, 2nd Ed., pp. 3-5, 1992. |
Olsen MD, Bipolar Laparoscopic Cholecstectomy Lecture (marked confidential), 12 pgs, Oct. 7, 1991. |
Pearce, John A. “Electrosurgery”, pp. 17, 69-75, 87, John Wiley & Sons, New York, 1986. |
Pearce, John A., “Electrosurgery”, Handbook of Biomedical Engineering, chapter 3, Academic Press Inc., N.Y., pp. 98-113, 1988. |
Piercey et al., “Electrosurgical Treatment of Experimental Bleeding Canine Gastric Ulcers” Gastroenterology vol. 74(3), pp. 527-534, 1978. |
Protell et al., “Computer-Assisted Electrocoagulation: Bipolar v. Monopolar in the Treatment of Experimental Canine Gastric Ulcer Bleeding,” Gastroenterology vol. 80, No. 3, pp. 451-455, 1981. |
Ramsey et al., “A Comparison of Bipolar and Monopolar Diathermy Probes in Experimental Animals”, Urological Research vol. 13, pp. 99-102, 1985. |
Selikowitz et al., “Electric Current and Voltage Recordings on the Myocardium During Electrosurgical Procedures in Canines,” Surgery, Gynecology & Obstetrics, vol. 164, pp. 219-224, Mar. 1987. |
Shuman, “Bipolar Versus Monopolar Electrosurgery: Clinical Applications,” Dentistry Today, vol. 20, No. 12, 7 pgs, Dec. 2001. |
Slager et al. “Spark Erosion of Arteriosclerotic Plaques” Z. Kardiol. 76:Suppl. 6, pp. 67-71, 1987. |
Slager et al. “Vaporization of Atherosclerotice Plaques by Spark Erosion” JACC 5(6): pp. 1382-1386, Jun. 1985. |
Stoffels, E. et al., “Investigation on the Interaction Plasma-Bone Tissue”, E-MRS Spring Meeting, 1 pg, Jun. 18-21, 2002. |
Stoffels, E. et al., “Biomedical Applications of Plasmas”, Tutorial presented prior to the 55th Gaseous Electronics Conference in Minneapolis, MN, 41 pgs, Oct. 14, 2002. |
Stoffels, E. et al., “Plasma Interactions with Living Cells”, Eindhoven University of Technology, 1 pg, 2002. |
Stoffels, E. et al., “Superficial Treatment of Mammalian Cells using Plasma Needle”, J. Phys. D: Appl. Phys. 26, pp. 2908-2913, Nov. 19, 2003. |
Stoffels, E. et al., “Plasma Needle”, Eindhoven University of Technology, 1 pg, Nov. 28, 2003. |
Stoffels, E. et al., “Plasma Physicists Move into Medicine”, Physicsweb, 1 pg, Nov. 2003. |
Stoffels, E. et al., “Plasma Treated Tissue Engineered Skin to Study Skin Damage”, Biomechanics and Tissue Engineering, Materials Technology, 1 pg, 2003. |
Stoffels, E. et al., “Plasma Treatment of Dental Cavities: A Feasibility Study”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1540-1542, Aug. 2004. |
Stoffels, E. et al., “The Effects of UV Irradiation and Gas Plasma Treatment on Living Mammalian Cells and Bacteria: A Comparative Approach”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1544-1550 Aug. 2004. |
Stoffels, E. et al., “Electrical and Optical Characterization of the Plasma Needle”, New Journal of Physics 6, pp. 1-14, Oct. 28, 2004. |
Stoffels, E. et al., “Where Plasma Meets Plasma”, Eindhoven University of Technology, 23 pgs, 2004. |
Stoffels, E. et al., “Gas Plasma effects on Living Cells”, Physica Scripta, T107, pp. 79-82, 2004. |
Stoffels, E. et al., “Plasma Treatment of Mammalian Vascular Cells: A Quantitative Description”, IEEE Transaction on Plasma Science, vol. 33, No. 2, pp. 771-775, Apr. 2005. |
Stoffels, E. et al., “Deactivation of Escherichia coli by the Plasma Needle”, J. Phys. D: Appl. Phys. 38, pp. 1716-1721, May 20, 2005. |
Stoffels, E. et al., “Development of a Gas Plasma Catheter for Gas Plasma Surgery”, XXVIIth ICPIG, Endoven University of Technology, pp. 18-22, Jul. 2005. |
Stoffels, E. et al., “Development of a Smart Positioning Sensor for the Plasma Needle”, Plasma Sources Sci. Technol. 15, pp. 582-589, Jun. 27, 2006. |
Stoffels, E. et al., Killing of S. Mutans Bacteria Using a Plasma Needle at Atmospheric Pressure, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1317-1324, Aug. 2006. |
Stoffels, E. et al., “Plasma-Needle Treatment of Substrates with Respect to Wettability and Growth of Excherichia coli and Streptococcus mutans”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1325-1330, Aug. 2006. |
Stoffels, E. et al., “Reattachment and Apoptosis after Plasma-Needle Treatment of Cultured Cells”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1331-1336, Aug. 2006. |
Stoffels, E. et al., “UV Excimer Lamp Irradiation of Fibroblasts: The Influence on Antioxidant Homostasis”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1359-1364, Aug. 2006. |
Stoffels, E. et al., “Plasma Needle for In Vivo Medical Treatment: Recent Developments and Perspectives”, Plasma Sources Sci. Technol. 15, pp. S169-S180, Oct. 6, 2006. |
Swain, C.P., et al., “Which Electrode, A Comparison of four endoscopic methods of electrocoagulation in experimental bleeding ulcers” Gut vol. 25, pp. 1424-1431, 1987. |
Tucker, R. et al. “A Comparison of Urologic Application of Bipolar Versus Monopolar Five French Electrosurgical Probes” J. of Urology vol. 141, pp. 662-665, 1989. |
Tucker, R. et al. “In vivo effect of 5 French Bipolar and Monopolar Electrosurgical Probes on the Porcine Bladder” Urological Research vol. 18, pp. 291-294, 1990. |
Tucker, R. et al., “Demodulated Low Frequency Currents from Electrosurgical Procedures,” Surgery, Gynecology and Obstetrics, 159:39-43, 1984. |
Tucker, R. et al., Abstract P14-11, p. 248, “A Bipolar Electrosurgical Turp Loop”, Nov. 1989. |
Valley Forge Scientific Corp., “Summary of Safety and Effective Information from 510K”, 2pgs, 1991. |
Valley Forge's New Products, CLINICA, 475, 5, Nov. 6, 1991. |
Valleylab SSE2L Instruction Manual, 11 pgs, Jan. 6, 1983. |
Valleylab, Inc. “Valleylab Part No. 945 100 102 A” Surgistat Service Manual, pp. 1-46, Jul. 1988. |
Wattiez, Arnaud et al., “Electrosurgery in Operative Endoscopy,” Electrosurgical Effects, Blackwell Science, pp. 85-93, 1995. |
Wyeth, “Electrosurgical Unit” pp. 1181-1202, 2000. |
UK Search Report for GB0805062.7 1 pg, Jul. 16, 2008. |
BiLAP IFU 910033-002 Rev A for BiLAP Model 3527, L-Hook; BiLAP Model 3525, J-Hook; BiLAP Model 3529, High Angle, 2 pgs, Nov. 30, 1993. |
BiLAP IFU 910026-001 Rev A for BiLAP Model 3525, J-Hook, 4 pgs, May 20, 1991. |
BiLAP Generator Settings, Jun. 1991. |
Tucker et al. “The interaction between electrosurgical generators, endroscopic electrodes, and tissue,” Gastrointestinal Endoscopy, vol. 38, No. 2, pp. 118-122, 1992. |
European Examination Report for EP 02749601.7 4pgs, Dec. 2, 2009. |
European Examination Report 2 for EP 04708664 5pgs, May 3, 2010. |
Extended European Search Report for EP09152846, 8pgs, Jan. 5, 2010. |
European Search Report for EP 09152850, 2 pgs, Dec. 29, 2009. |
European Examination Report for EP 02773432 4 pgs, Sep. 22, 2009. |
European Examination Report for EP 05024974 4 pgs, Dec. 5, 2008. |
European Examination Report for EP 04708664 7pgs, Sep. 7, 2009. |
European Search Report for EP 02773432 3pgs, Dec. 19, 2008. |
European Search Report for EP 04708664.0 5pgs, Apr. 6, 2009. |
UK Search Report for GB0800129.9 2pgs, May 8, 2008. |
UK Search Report for GB0900604.0 4 pgs, May 15, 2009. |
UK Search Report for GB1110342.1 3pgs, Oct. 18, 2011. |
uropean Examination Report (3rd) for EP 04708664 6pgs Nov. 6, 2012. |
UK Suppl Search Report for GB1110342.1 2pgs Aug. 16, 2012. |
UK Combined Search and Exam Report for GB1403997.8 5pgs Sep. 17, 2014. |
Elgrabli, D., Abella-Gallart, S., Aguerre-Chariol, O., Robidel F.R., Boczkowski, J., Lacroix, G. (2007). Effect of BSA on carbon nanotube dispersion in vivi and in vitro studies. vol. 1, No. 4, pp. 266-278, 2007. |
“Work functions for photoelectric effect”. (2001). Retrieved on Jun. 11, 2014 from http://hyperphysics.phyastr.gsu.edu/hbase/tables/photoelec.html, 2001. |
Jing et al. (2007). Biocompatibility of Cerium Oxide Films Synthesized by Dual Plasma Deposition. Key Enginerring Materials. vol. 330-332.pp. 749-752, 2007. |
Wikipedia Field Electron Emission. Retrieved on Dec. 29, 2014 from http://en.wikipedia.org/wiki/Field—electron—emission. |
Number | Date | Country | |
---|---|---|---|
20090209956 A1 | Aug 2009 | US |