The present disclosure relates to an ablation probe. More particularly, the present disclosure relates to an ablation probe with one or more tissue sensing configurations.
Utilizing microwave thermal therapy to treat target tissue is known in the art. Specifically, one or more suitable microwave antennas that are coupled to an energy source may be positioned adjacent target tissue. Subsequently, electrosurgical energy, e.g., microwave energy, may be transmitted to a radiating section of the microwave antenna and is directed to target tissue, which, in turn, results in thermal coagulation. Typically, a surgeon relies on one or more imaging devices, systems and/or techniques to facilitate in the microwave thermal therapy. For example, such imaging devices, systems and/or techniques may be utilized to determine placement of the microwave antenna relative to target tissue, ablation completion of target tissue and/or ablation zone size of treated target tissue.
While the aforementioned imaging devices, systems and/or techniques may work well in a number of applications, (e.g., determining, for example, placement of the microwave antenna relative to target tissue) such imaging devices, systems and/or techniques, typically, do not provide automatic shut off when the microwave antenna is purposefully and/or inadvertently withdrawn from or not fully inserted into target tissue. In either of the foregoing scenarios, unintentional thermal injury to a patient and/or clinician is possible.
As can be appreciated, an ablation probe with one or more tissue sensing configurations may prove useful in the surgical arena. Specifically, one or more tissue sensing configurations that are configured to detect ablation probe placement within tissue can prove advantageous for increasing performance and/or patient safety.
Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion of a surgical instrument that is being described which is further from a user, while the term “proximal” refers to the portion of the surgical instrument that is being described which is closer to a user.
An aspect of the present disclosure provides an ablation probe. The ablation probe includes a housing that is configured to couple to a microwave energy source. A shaft extends distally from the housing and includes a radiating section at a distal end thereof. A sensor assembly is operably disposed within the housing and includes a pair of sensor contacts. One or more sensors are positioned adjacent the radiating section and extend along the shaft. The sensor(s) have a pair of sensor contact pads that are positioned on the shaft for contact with the pair of sensors. During transmission of microwave energy from the radiating section into target tissue one or more electrical parameters are induced into the sensor(s) and detected by the pair of sensor contacts. The electrical parameter(s) may be impedance and/or capacitance. The electrical parameter(s) may be induced via an interrogatory pulse generated from a circuit of the microwave energy source.
The sensor(s) and the pair of sensor contact pads may be formed from a silver ink deposition that is provided on an exterior surface of the shaft. The silver ink deposition may be provided on the exterior surface of the shaft via pad printing, laser ablation and/or direct write. The silver ink deposition may include two or more depositions that are spaced-apart from one another forming two or more conductive traces that culminate at the sensor contact pads.
Moreover, the sensor assembly may include a sensor housing that is configured to support the pair of sensor contacts. The sensor contacts of the pair of sensor contacts may be positioned apart from one another within the sensor housing to contact the sensor contact pads and may include a proximal end and distal end. The distal ends may be disposed in oblique relation with respect to the proximal ends. Each sensor contact of the pair of sensor contacts may be resilient and configured to flex when the shaft is inserted through an aperture in the sensor housing for coupling to the housing. Each sensor contact of the pair of sensor contacts may be configured to couple to a corresponding lead that extends within the housing and couples to the microwave energy source for communication with one or more modules associated therewith. The proximal ends of the sensors may be configured to couple to corresponding clocking features that are provided on an end cap and hub that are positioned within the housing. The clocking features may be configured to facilitate aligning and coupling the sensor housing to the housing of the ablation probe.
The radiating section may be configured to transmit microwave energy at a frequency that ranges from about 2300 MHz to about 2450 MHz. Moreover, a polyester heat shrink wrap may be provided along the shaft and covers the sensor(s). Additionally, a ceramic trocar tip may be provided at distal tip of the shaft and may be configured to pierce tissue. Further, in-flow and out-flow tubes may be provided on the housing of the ablation probe and configured to cool the radiating section of the shaft.
An aspect of the present disclosure provides a method for manufacturing a microwave ablation probe. A housing configured to couple to a microwave energy source is formed. A shaft having a radiation section and one or more sensors including a pair of sensor contacts is formed. A sensor assembly including a sensor housing that couples to a pair of sensor contacts is formed. The shaft is coupled to the housing such that each sensor of the pair of sensors contacts a corresponding one of the sensor contacts such that during transmission of microwave energy from the radiating section into target tissue one or more electrical parameters may be induced into the sensor(s) and detected by the pair of sensor contacts.
The method may include forming the sensor(s) including the pair of sensor contact pads via a silver ink deposition that is provided on an exterior surface of the shaft. The method may include utilizing a process such as, for example, pad printing, laser ablation and direct write to provide the silver ink deposition on the exterior surface of the shaft.
Forming the sensor(s) including the pair of sensor contact pads via a silver ink deposition may include forming two or more depositions that are spaced-apart from one another forming at least two conductive traces that culminate at the sensor contact pads.
The method may include utilizing an overmolding process to couple the sensor housing to the pair of sensor contacts. The method may also include bending each sensor contact of the pair of sensor contacts such that the sensor contacts are angled toward one another and are positioned apart from one another within the sensor housing to contact the sensor contact pads.
Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:
Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
In accordance with the instant disclosure, one or more sensor configurations are provided on an ablation probe to detect one or more properties that may be associated with target tissue and/or a specific surgical procedure. Specifically, the sensor configuration(s) provides feedback to a clinician or directly to a source of electrosurgical energy, e.g., a microwave generator, to improve overall performance of the ablation device and/or safety to a patient or clinician. To this end, the sensor configuration(s) includes one or more conductive traces that are deposited on an exterior surface of a shaft of the ablation probe and interrogated at a predetermined frequency to measure one or more electrical properties, e.g., capacitance and/or impedance, that are induced in the conductive traces.
Turning now to
Continuing with reference to
Shaft 22 may be formed from any suitable material, e.g., metal, glass fiber, and extends distally from housing 8. In the illustrated embodiment, shaft 22 is formed from glass fiber Shaft 22 includes a distal end 24 (
Hub 30 defines in-flow ports 32 and out-flow ports 34 that are configured to couple to corresponding in-flow tubes 18 and out-flow tubes 20 (
Continuing with reference to
Referring to
In the illustrated embodiment, distal ends 54, 56 are offset from proximal ends 50, 52 (as best seen in
Referring to
With reference now to
In the illustrated embodiments, the silver ink deposition is utilized to form two or more conductive traces 47a, 47b (
Continuing with reference to
A shrink wrap 66 (shown in phantom in
In accordance with the instant disclosure, ablation probe 2 is configured to function in two modes of operation. Specifically, in a first mode of operation, e.g., a standard or manual ablation mode, sensor 4 may be configured to detect when ablation probe 2 or component associated therewith, e.g., radiating section 6, has been properly inserted, e.g., fully positioned, within target tissue and may be configured to automatically terminate power to ablation probe 2 if radiating section 6 is inadvertently or purposefully removed from target tissue. In this particular mode of operation, a clinician may position radiating section 6 of ablation probe 2 within target tissue. One or more modules associated with generator 3 may be coupled to conductive traces 47a, 47b and configured to send an interrogatory pulse thereto to determine if radiating section 6 has been properly inserted into target tissue, e.g., liver tissue. If the module(s) detects a predetermined capacitance and/or impedance induced within conductive traces 47a, 47b, a clinician may initiate the transmission of microwave energy to radiating section 6. It has been shown through empirical testing that suitable interrogation frequencies for capacitance may range from about 200 KHz to about 600 KHz. Moreover, it has been shown through empirical testing that suitable interrogation frequencies for impedance may range from about 40 KHz to about 600 KHz. In manual mode of operation, generator 3 automatically shuts off if radiating section 6 is inadvertently or purposefully removed from target tissue during transmission of microwave energy therefrom.
Moreover, in a second mode of operation, e.g., a resection mode, the generator may be configured to automatically initiate and terminate power to ablation probe 2 based on proper insertion of ablation probe 2. In this particular mode of operation, a clinician may position radiating 6 of section ablation probe 2 within target tissue. One or more modules associated with generator 3 may be coupled to conductive traces 47a, 47b and configured to send an interrogatory pulse thereto to determine if radiating section 6 has been properly inserted into target tissue, e.g., liver tissue. In resection mode, if the module(s) detects a predetermined capacitance and/or impedance induced within conductive traces 47a, 47b, generator 3 automatically initiates the transmission of microwave energy to radiating section 6. Generator 3 automatically shuts off if radiating section 6 is inadvertently or purposefully removed from target tissue during transmission of microwave energy therefrom. This particular mode of operation allows a clinician to rapidly change positions down a resection line without having to manually turn the generator on and off.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, while the aforementioned disclosure has been described in terms of use of utilizing sensor 4 in conjunction for determining proper insertion of radiating section 6 into tissue, sensor 4 may be utilized to determine other parameters that may associated with ablation probe 2 and/or a surgical procedure. For example, sensor 4 may be configured to detect tissue type, progression of a microwave ablation procedure, completion of a microwave ablation procedure, etc. Moreover, in embodiments, sensor 4 may be utilized to detect the presence of a cooling fluid that is being circulated through ablation probe 2 and/or component associated therewith, e.g., shaft 22; this could mitigate circulation errors, e.g., a clinician forgets to circulate fluid to radiating section 6. As can be appreciated, this may increase the operative shelf life of radiating section 6 and/or ablation probe 2.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a divisional application of U.S. patent application Ser. No. 14/064,472 filed on Oct. 28, 2013, now U.S. Pat. No. 9,901,399, which claims priority to U.S. Provisional Application Ser. No. 61/738,021, filed on Dec. 17, 2012, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
D223367 | Kountz | Apr 1972 | S |
4291708 | Frei et al. | Sep 1981 | A |
D263020 | Rau, III | Feb 1982 | S |
D266842 | Villers et al. | Nov 1982 | S |
D278306 | McIntosh | Apr 1985 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D354218 | Van de Peer | Jan 1995 | S |
5423810 | Goble et al. | Jun 1995 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5810804 | Gough et al. | Sep 1998 | A |
D424693 | Pruter | May 2000 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6059780 | Gough et al. | May 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6494882 | Lebouitz et al. | Dec 2002 | B1 |
6500175 | Gough et al. | Dec 2002 | B1 |
6569162 | He | May 2003 | B2 |
D487039 | Webster et al. | Feb 2004 | S |
6702810 | McClurken et al. | Mar 2004 | B2 |
6706040 | Mahon et al. | Mar 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
6962587 | Johnson et al. | Nov 2005 | B2 |
7025765 | Balbierz et al. | Apr 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
7108696 | Daniel et al. | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
7160296 | Pearson et al. | Jan 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
7344533 | Pearson et al. | Mar 2008 | B2 |
D576932 | Strehler | Sep 2008 | S |
7419487 | Johnson et al. | Sep 2008 | B2 |
D594736 | Esjunin | Jun 2009 | S |
D594737 | Kelly et al. | Jun 2009 | S |
D606203 | Husheer et al. | Dec 2009 | S |
D613412 | DeCarlo | Apr 2010 | S |
D634010 | DeCarlo | Mar 2011 | S |
8257349 | Orszulak | Sep 2012 | B2 |
D681810 | DeCarlo | May 2013 | S |
8655454 | Prakash et al. | Feb 2014 | B2 |
8795268 | Willyard | Aug 2014 | B2 |
8852180 | Brannan | Oct 2014 | B2 |
8906008 | Brannan et al. | Dec 2014 | B2 |
8920410 | Brannan | Dec 2014 | B2 |
8945113 | Brannan et al. | Feb 2015 | B2 |
8968290 | Brannan et al. | Mar 2015 | B2 |
8968300 | Brannan | Mar 2015 | B2 |
9017328 | Bahney | Apr 2015 | B2 |
9066681 | Arts et al. | Jun 2015 | B2 |
9168178 | Reid, Jr. et al. | Oct 2015 | B2 |
9192308 | Brannan et al. | Nov 2015 | B2 |
9192426 | Brannan et al. | Nov 2015 | B2 |
9192439 | Dunning et al. | Nov 2015 | B2 |
9192440 | Rossetto | Nov 2015 | B2 |
9332959 | Arts et al. | May 2016 | B2 |
9358067 | Lee et al. | Jun 2016 | B2 |
9364278 | DeCarlo et al. | Jun 2016 | B2 |
9370392 | Sharonov | Jun 2016 | B2 |
9375196 | Zheng | Jun 2016 | B2 |
9396645 | Will | Jul 2016 | B2 |
9439712 | Sharonov | Sep 2016 | B2 |
9504524 | Behnke, II | Nov 2016 | B2 |
9522033 | Brannan | Dec 2016 | B2 |
9526568 | Ohri et al. | Dec 2016 | B2 |
9649146 | Orszulak | May 2017 | B2 |
9668802 | Brannan | Jun 2017 | B2 |
9814844 | Ohri et al. | Nov 2017 | B2 |
9833286 | Podhajsky | Dec 2017 | B2 |
9901398 | Brannan et al. | Feb 2018 | B2 |
9901399 | Dunning et al. | Feb 2018 | B2 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020120261 | Morris et al. | Aug 2002 | A1 |
20030199863 | Swanson et al. | Oct 2003 | A1 |
20040097805 | Verard et al. | May 2004 | A1 |
20050137662 | Morris et al. | Jun 2005 | A1 |
20060163744 | Vanheusden et al. | Jul 2006 | A1 |
20070173806 | Orszulak et al. | Jul 2007 | A1 |
20070203551 | Cronin et al. | Aug 2007 | A1 |
20080125775 | Morris | May 2008 | A1 |
20080281314 | Johnson et al. | Nov 2008 | A1 |
20080287944 | Pearson et al. | Nov 2008 | A1 |
20090187180 | Brannan | Jul 2009 | A1 |
20090240273 | DeCarlo | Sep 2009 | A1 |
20090306655 | Stangenes | Dec 2009 | A1 |
20100114086 | Deem et al. | May 2010 | A1 |
20100217253 | Mehta | Aug 2010 | A1 |
20110092972 | Allen | Apr 2011 | A1 |
20110118724 | Turner et al. | May 2011 | A1 |
20110152853 | Manley et al. | Jun 2011 | A1 |
20110184403 | Brannan | Jul 2011 | A1 |
20110190754 | Kim et al. | Aug 2011 | A1 |
20110208184 | Brannan | Aug 2011 | A1 |
20110223812 | Prest | Sep 2011 | A1 |
20120010505 | Allen | Jan 2012 | A1 |
20120010604 | Allen | Jan 2012 | A1 |
20120116388 | Houser et al. | May 2012 | A1 |
20130317495 | Brannan | Nov 2013 | A1 |
20130324910 | Ohri et al. | Dec 2013 | A1 |
20130324911 | Ohri et al. | Dec 2013 | A1 |
20130345541 | Nau, Jr. | Dec 2013 | A1 |
20130345552 | Arts et al. | Dec 2013 | A1 |
20140018793 | Sharonov | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1103807 | Mar 2003 | CN |
390937 | Mar 1924 | DE |
1099658 | Feb 1961 | DE |
1139927 | Nov 1962 | DE |
1149832 | Jun 1963 | DE |
1439302 | Jan 1969 | DE |
2439587 | Feb 1975 | DE |
2455174 | May 1975 | DE |
2407559 | Aug 1975 | DE |
2415263 | Oct 1975 | DE |
2429021 | Jan 1976 | DE |
2460481 | Jun 1976 | DE |
2602517 | Jul 1976 | DE |
2504280 | Aug 1976 | DE |
2627679 | Jan 1977 | DE |
2540968 | Mar 1977 | DE |
2820908 | Nov 1978 | DE |
2803275 | Aug 1979 | DE |
2823291 | Nov 1979 | DE |
2946728 | May 1981 | DE |
3143421 | May 1982 | DE |
3045996 | Jul 1982 | DE |
3120102 | Dec 1982 | DE |
3510586 | Oct 1986 | DE |
3604823 | Aug 1987 | DE |
3712328 | Feb 1988 | DE |
3711511 | Jun 1988 | DE |
3904558 | Aug 1990 | DE |
3942998 | Jul 1991 | DE |
4238263 | May 1993 | DE |
04303882 | Feb 1995 | DE |
4339049 | May 1995 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19717411 | Nov 1998 | DE |
19751108 | May 1999 | DE |
19801173 | Jul 1999 | DE |
19848540 | May 2000 | DE |
10224154 | Dec 2003 | DE |
10310765 | Sep 2004 | DE |
10328514 | Mar 2005 | DE |
102004022206 | Dec 2005 | DE |
202005015147 | Feb 2006 | DE |
102009015699 | May 2010 | DE |
246350 | Nov 1987 | EP |
0521264 | Jan 1993 | EP |
556705 | Aug 1993 | EP |
0558429 | Sep 1993 | EP |
0648515 | Apr 1995 | EP |
836868 | Apr 1998 | EP |
882955 | Dec 1998 | EP |
1159926 | Mar 2003 | EP |
1810628 | Jul 2007 | EP |
179 607 | Nov 1906 | FR |
1 275 415 | Nov 1961 | FR |
1 347 865 | Jan 1964 | FR |
2 235 669 | Jan 1975 | FR |
2 276 027 | Jan 1976 | FR |
2 313 708 | Dec 1976 | FR |
2 502 935 | Oct 1982 | FR |
2 517 953 | Jun 1983 | FR |
2 573 301 | May 1986 | FR |
2 862 813 | May 2005 | FR |
2 864 439 | Jul 2005 | FR |
55106 | Jan 1993 | JP |
0540112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09000492 | Jan 1997 | JP |
09010223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
20018944 | Jan 2001 | JP |
2001003776 | Jan 2001 | JP |
200129356 | Feb 2001 | JP |
200137775 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
2001231870 | Aug 2001 | JP |
2008142467 | Jun 2008 | JP |
20070093068 | Sep 2007 | KR |
20100014406 | Feb 2010 | KR |
20120055063 | May 2012 | KR |
166452 | Jan 1965 | SU |
401367 | Oct 1973 | SU |
727201 | Apr 1980 | SU |
0036985 | Jun 2000 | WO |
0174252 | Oct 2001 | WO |
2006105121 | Oct 2006 | WO |
2007100559 | Sep 2007 | WO |
2010035831 | Apr 2010 | WO |
Entry |
---|
Mouser Electronics. Spring-loaded pins datasheet. Retrieved on Jan. 20, 2016 from http://www.mouser.com/ProductDetail/Mill-Max/0906-0-15-20-76-14-11-0/?qs=sGAEpiMZZMu2RFV024JNk1ZV1gAkUw03A0T%2fFU81DTc%3d. |
LigaSure.TM. Vessel Sealing System, the Seal of Confidence in General , Gynecologic, Urologic, and Laparaoscopic Surgery, Sales/Product Literature, Jan. 2004. |
Livraghi et al., (1995) “Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases”, Radiology, p. 140 (Abstr). |
Lyndon B. Johnson Space Center, Houston, Texas, “Compact Directional Microwave Antenna for Localized Heating,” NASA Tech Briefs, Mar. 2008. |
M. A. Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics. 9(3), May-Jun. 1982. |
Magdy F. Iskander et al., “Design Optimization of Interstitial Antennas”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, Feb. 1989, pp. 238-246. |
McGahan et al., (1995) “Percutaneous Ultrasound-guided Radiofrequency Electrocautery Ablation of Prostate Tissue in Dogs”, Acad Radiol, vol. 2, No. 1: pp. 61-65. |
McLellan et al., “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC. |
MDTECH product literature (Dec. 1999) “FlexStrand”: product description, 1 page. |
MDTECH product literature (Mar. 2000) I'D Wire: product description, 1 page. |
Medtrex Brochure “The O.R. Pro 300” 1 page; Sep. 1998. |
Michael Choti, “Abdominoperineal Resection with the LigaSure.TM. Vessel Sealing System and LigaSure.TM. Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003. |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure.TM. Vessel Sealing System” Innovations That Work. LJ, Sep. 1999. |
Murakami, R. et al., (1995). “Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation,” American Journal of Radiology (AJR) 164:1159-1164. |
Ni Wei et al., “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(Mar. 2005); pp. 160-184. |
Ogden, “Goertzel Alternative to the Fourier Transform”: Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG, vol. 99, No. 9, 1687. |
Olsson M.D. et al., “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Organ, L W, “Electrophysiologic Principles of Radiofrequency Lesion Making” Appl. Neurophysiol, vol. 39: pp. 69-76 (1976/77). |
P.R. Stauffer et al., “Interstitial Heating Technologies”, Thermoradiotheray and Thermochemotherapy (1995) vol. I, Biology, Physiology, Physics, pp. 279-320. |
Palazzo et al., “Randomized clinical trial of LigaSure.TM. versus open haemorrhoidectomy” British Journal of Surgery 2002,89,154-157 “Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Peterson et al., “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
R. Gennari et al., (Jun. 2000) “Use of Technetium-99m-Labeled Colloid Albumin for Preoperative and Intraoperative Localization of Non palpable Breast Lesions,” American College of Surgeons. 190(6):692-699. |
Valleylab Brochure. “Reducing Needlestick Injuries in the Operating Room” 1 page, Mar. 2001. |
Reidenbach, (1995) “First Experimental Results with Special Applicators for High-Frequency Interstitial Thermotherapy”, Society Minimally Invasive Therapy, 4(Suppl 1):40 (Abstr). |
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pages, Jan. 1989. |
Rothenberg et al., “Use of the LigaSure.TM. Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (I PEG) 2000. |
Sayfan et al., “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001)71.9 pp. 538-540. |
Sigel et al., “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Solbiati et al., (2001) “Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients”, Radiology, vol. 221, pp. 159-166. |
Solbiati et al. (1995) “Percutaneous US-guided RF Tissue Ablation of Liver Metastases: Long-term Follow-up”, Radiology, pp. 195-203. |
Strasberg et al., “Use of a Bipolar Vassel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779. |
Sylvain Labonte et al., “Monopole Antennas for Microwave Catheter Ablation”, IEEE Trans. on Microwave Theory and Techniques, vol. 44, No. 10, pp. 1832-1840, Oct. 1995. |
T. Matsukawa et al., “Percutaneous Microwave Coagulation Therapy in Liver Tumors”, Acta Radiologica, vol. 38, pp. 110-415, 1997. |
T.Seki et al., (1994) “Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma,” Cancer 74(3):817-825. |
Urologix, Inc.—Medical Professionals: Targis.TM. Technology (Date Unknown). “Overcoming the Challenge” located at: <(http://www.urologix.com!medicaUtechnology.html > Nov. 18, 1999; 3 pages. |
Urrutia et al., (1988). “Retractable-Barb Needle for Breast Lesion Localization: Use in 60 Cases,” Radiology 169 (3):845-847. |
Valleylab Brochure, “Valleylab Electroshield Monitoring System” 2 pages, Nov. 1995. |
ValleyLab Brochure, “Electosurgery: A Historical Overview”, Innovations in Electrosurgery, 1999. |
Vallfors et al., “Automatically Controlled Bipolar Electrocoagulation—COA-COMP” Neurosurgical Review 7:2-3 (1984) pp. 187-190. |
W. Scott Helton, “LigaSureTM Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature 1999. |
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921. |
Walt Boyles, “Instrumentation Reference Book”, 2002, Butterworth-Heinemann, pp. 262-264. |
Wonnell et al., “Evaluation of Microwave and Radio Frequency Catheter Ablation in a Myocardium-Equivalent Phantom Model”, IEEE Transactions on Biomedical Engineering, vol. 39, No. 10, Oct. 1992; pp. 1086-1095. |
U.S. Appl. No. 08/136,098, filed Oct. 14, 1993, Roger A. Stern. |
U.S. Appl. No. 08/483,742, filed Jun. 7, 1995, Roger A. Stern. |
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy”, Journal Neurosurgery, 83; (1995) pp. 271-276. |
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994), pp. 297-307. |
Anonymous. (1999) Auto Suture MIBB Site Marker: Single Use Clip Applier, United States Surgical (Product Instructions), 2 pages. |
Anonymous. (2001) Disposable Chiba Biopsy Needles and Trays, Biopsy and Special Purpose Needles Cook Diagnostic and Interventional Products Catalog (products list), 4 pages. |
Anonymous. (1987) Homer Mammalok. TM. Breast Lesion Needle/Wire Localizer, Namic.RTM. Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages. |
Anonymous. (1999) MIBB Site Marker, United States Surgical (Sales brochure), 4 pages. |
Anonymous. Blunt Tubes with Finished Ends. Pointed Cannula, Popper & Sons Biomedical Instrument Division. (Products Price List), one page, Jul. 19, 2000. |
Anonymous. Ground Cannulae, ISPG, New Milford, CT, (Advertisement) one page, Jul. 19, 2000. |
B. Levy M.D. et al., “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology. vol. 102, No. 1, Jul. 2003. |
B. Levy M.D. et al., “Update on Hysterectomy New Technologies and Techniques” OBG Management. Feb. 2003. |
B. Levy M.D.. “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
B. F. Mullan et al., (May 1999) “Lung Nodules: Improved Wire for CT-Guided Localization,” Radiology 211:561-565. |
B. T. Heniford M.D. et al., “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151. |
Bulletin of the American Physical Society, vol. 47, No. 5, Aug. 2002, p. 41. |
C. F. Gottlieb et al., “Interstitial Microwave Hyperthermia Applicators having Submillimetre Diameters”, Int. J. Hyperthermia, vol. 6, No. 3, pp. 707-714, 1990. |
C. H. Durney et al.. “Antennas for Medical Applications”, Antenna Handbook: Theory Application and Design, p. 24-40. Van Nostrand Reinhold, 1988 New York, V.T. Lo, S.W. Lee. |
Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure.TM. Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Charlotte, NC 2003. |
Carus et al., “Initial Experience With the LigaSure. TM. Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Chicharo et al., “A Sliding Goertzel Algorithm” Aug. 1996 DOS pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 52. No. 3. |
Chou, C.K., (1995) “Radiofrequency Hyperthermia in Cancer Therapy,” Chapter 941n Biologic Effects of Nonionizing Electromagnetic Fields, CRC Press, Inc., pp. 1424-1428. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure.TM.” Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003. |
Cosman et al., “Methods of Making Nervous System Lesions”, In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499. |
Cosman et al., “Radiofrequency Lesion Generation and its Effect on Tissue Impedence”, Applied Neurophysiology, 51:230-242, 1988. |
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone”, Neurosurgery 15:(1984) pp. 945-950. |
Crawford et al., “Use of the LigaSure.TM. Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford, “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
E. David Crawford, “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Esterline, “Light Key Projection Keyboard” Advanced Input Systems, located at: <http://www.advanced-input.com/lightkey> 2002. |
Esterline Product Literature, “Light Key: Visualize a Virtual Keyboard. One With No Moving Parts”. Nov. 1, 2003; 4 pages. |
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27. |
Goldberg et al., “Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part I”, (2001) J Vasc. Interv. Radiol, vol. 12, pp. 1021-1032. |
Goldberg et al. (1995) “Saline-enhanced RF Ablation: Demonstration of Efficacy and Optimization of Parameters”, Radiology, 197(P): 140 (Abstr). |
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404. |
H. Schwarzmaier et al., “Magnetic Resonance Imaging of Microwave Induced Tissue Heating” Dept. of Laser Medicine & Dept. of Diagnostic Radiology; Heinrich-Heine-University, Duesseldorf Germany; Dec. 8, 1994; pp. 729-731. |
Heniford et al., “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2001) 15:799-801. |
Herman at al., “Laparoscopic Intestinal Resection With the LigaSure.TM. Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002. |
Humphries Jr. et al., “Finite-Element Codes to Model Electrical Heating and Non-Linear Thermal Transport in Biological Media”, Proc. ASME HTD-355, 131 (1997). |
Ian D. McRury et al., The Effect of Ablation Sequence and Duration on Lesion Shape Using Rapidly Pulsed Radiofrequency Energy Through Electrodes, Feb. 2000, Springer Netherlands. vol. 4; No. 1. pp. 307-320. |
Jarrett et al., “Use of the LigaSure.TM. Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
Johnson, “Evaluation of the LigaSure.TM. Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinic La Congress Poster (2000). |
Johnson et al., “New Low-Profile Applicators for Local Heating of Tissues”, IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 1, Jan. 1984, pp. 28-37. |
Johnson, “Use of the LigaSure.TM. Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Joseph G. Andriole, M.D., et al., “Biopsy Needle Characteristics Assessed in the Laboratory”, Radiology 148: 659-662, Sep. 1983. |
Joseph Ortenberg, “LigaSure.TM. System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:876-878. |
Kopans, D.B. et al., (Nov. 1985) “Spring Hookwire Breast Lesion Localizer: Use with Rigid-Compression. Mammographic Systems,” Radiology 157(2):537-538. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
Number | Date | Country | |
---|---|---|---|
20180235696 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
61738021 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14064472 | Oct 2013 | US |
Child | 15905065 | US |