Ablation probe with tissue sensing configuration

Abstract
An ablation probe is provided. The ablation probe includes a housing that is configured to couple to a microwave energy source. A shaft extends distally from the housing and includes a radiating section at a distal end thereof. A sensor assembly is operably disposed on the housing and includes a pair of sensor contacts. One or more sensors are positioned adjacent the radiating section and extend along the shaft. The sensor(s) have a pair of sensor contact pads that are positioned on the shaft for contact with the pair of sensors such that during transmission of microwave from the radiating section into target tissue at least one electrical parameter is induced into the at least one sensor and detected by the pair of sensor contacts.
Description
BACKGROUND
Technical Field

The present disclosure relates to an ablation probe. More particularly, the present disclosure relates to an ablation probe with one or more tissue sensing configurations.


Description of Related Art

Utilizing microwave thermal therapy to treat target tissue is known in the art. Specifically, one or more suitable microwave antennas that are coupled to an energy source may be positioned adjacent target tissue. Subsequently, electrosurgical energy, e.g., microwave energy, may be transmitted to a radiating section of the microwave antenna and is directed to target tissue, which, in turn, results in thermal coagulation. Typically, a surgeon relies on one or more imaging devices, systems and/or techniques to facilitate in the microwave thermal therapy. For example, such imaging devices, systems and/or techniques may be utilized to determine placement of the microwave antenna relative to target tissue, ablation completion of target tissue and/or ablation zone size of treated target tissue.


While the aforementioned imaging devices, systems and/or techniques may work well in a number of applications, (e.g., determining, for example, placement of the microwave antenna relative to target tissue) such imaging devices, systems and/or techniques, typically, do not provide automatic shut off when the microwave antenna is purposefully and/or inadvertently withdrawn from or not fully inserted into target tissue. In either of the foregoing scenarios, unintentional thermal injury to a patient and/or clinician is possible.


SUMMARY

As can be appreciated, an ablation probe with one or more tissue sensing configurations may prove useful in the surgical arena. Specifically, one or more tissue sensing configurations that are configured to detect ablation probe placement within tissue can prove advantageous for increasing performance and/or patient safety.


Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion of a surgical instrument that is being described which is further from a user, while the term “proximal” refers to the portion of the surgical instrument that is being described which is closer to a user.


An aspect of the present disclosure provides an ablation probe. The ablation probe includes a housing that is configured to couple to a microwave energy source. A shaft extends distally from the housing and includes a radiating section at a distal end thereof. A sensor assembly is operably disposed within the housing and includes a pair of sensor contacts. One or more sensors are positioned adjacent the radiating section and extend along the shaft. The sensor(s) have a pair of sensor contact pads that are positioned on the shaft for contact with the pair of sensors. During transmission of microwave energy from the radiating section into target tissue one or more electrical parameters are induced into the sensor(s) and detected by the pair of sensor contacts. The electrical parameter(s) may be impedance and/or capacitance. The electrical parameter(s) may be induced via an interrogatory pulse generated from a circuit of the microwave energy source.


The sensor(s) and the pair of sensor contact pads may be formed from a silver ink deposition that is provided on an exterior surface of the shaft. The silver ink deposition may be provided on the exterior surface of the shaft via pad printing, laser ablation and/or direct write. The silver ink deposition may include two or more depositions that are spaced-apart from one another forming two or more conductive traces that culminate at the sensor contact pads.


Moreover, the sensor assembly may include a sensor housing that is configured to support the pair of sensor contacts. The sensor contacts of the pair of sensor contacts may be positioned apart from one another within the sensor housing to contact the sensor contact pads and may include a proximal end and distal end. The distal ends may be disposed in oblique relation with respect to the proximal ends. Each sensor contact of the pair of sensor contacts may be resilient and configured to flex when the shaft is inserted through an aperture in the sensor housing for coupling to the housing. Each sensor contact of the pair of sensor contacts may be configured to couple to a corresponding lead that extends within the housing and couples to the microwave energy source for communication with one or more modules associated therewith. The proximal ends of the sensors may be configured to couple to corresponding clocking features that are provided on an end cap and hub that are positioned within the housing. The clocking features may be configured to facilitate aligning and coupling the sensor housing to the housing of the ablation probe.


The radiating section may be configured to transmit microwave energy at a frequency that ranges from about 2300 MHz to about 2450 MHz. Moreover, a polyester heat shrink wrap may be provided along the shaft and covers the sensor(s). Additionally, a ceramic trocar tip may be provided at distal tip of the shaft and may be configured to pierce tissue. Further, in-flow and out-flow tubes may be provided on the housing of the ablation probe and configured to cool the radiating section of the shaft.


An aspect of the present disclosure provides a method for manufacturing a microwave ablation probe. A housing configured to couple to a microwave energy source is formed. A shaft having a radiation section and one or more sensors including a pair of sensor contacts is formed. A sensor assembly including a sensor housing that couples to a pair of sensor contacts is formed. The shaft is coupled to the housing such that each sensor of the pair of sensors contacts a corresponding one of the sensor contacts such that during transmission of microwave energy from the radiating section into target tissue one or more electrical parameters may be induced into the sensor(s) and detected by the pair of sensor contacts.


The method may include forming the sensor(s) including the pair of sensor contact pads via a silver ink deposition that is provided on an exterior surface of the shaft. The method may include utilizing a process such as, for example, pad printing, laser ablation and direct write to provide the silver ink deposition on the exterior surface of the shaft.


Forming the sensor(s) including the pair of sensor contact pads via a silver ink deposition may include forming two or more depositions that are spaced-apart from one another forming at least two conductive traces that culminate at the sensor contact pads.


The method may include utilizing an overmolding process to couple the sensor housing to the pair of sensor contacts. The method may also include bending each sensor contact of the pair of sensor contacts such that the sensor contacts are angled toward one another and are positioned apart from one another within the sensor housing to contact the sensor contact pads.





BRIEF DESCRIPTION OF THE DRAWING

Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:



FIG. 1 is a right, perspective view of an ablation probe having a sensing configuration according to an embodiment of the present disclosure;



FIG. 2 is a partial, left side view of the ablation probe depicted in FIG. 1 with a left side portion of a housing being removed to illustrate a portion of a sensor assembly according to an embodiment of the present disclosure;



FIG. 3 is a left, perspective view illustrating a pair of sensor contacts of the sensor assembly depicted in FIG. 2;



FIG. 4 is a left, perspective view illustrating the sensor assembly coupled to an end cap of the ablation probe;



FIG. 5 is a cut-away view taken along line segment 5-5 in FIG. 4 with a shaft of the ablation probe removed;



FIG. 6 is a partial, top elevated view of the ablation probe depicted in FIG. 1 with a top portion of a housing being removed and a top portion of a sensor housing removed to illustrate the sensor contacts in contact with sensor pads disposed on the shaft of the ablation probe;



FIG. 7A is a side view of the shaft including a sensor configuration according to an embodiment of the instant disclosure;



FIG. 7B is an enlarged area of detail depicted in FIG. 7A;



FIG. 8A is a side view of the shaft including a sensor configuration according to another embodiment of the instant disclosure;



FIG. 8B is an enlarged area of detail depicted in FIG. 8A;



FIG. 9A is a side view of the shaft including a sensor configuration according to yet another embodiment of the instant disclosure;



FIG. 9B is an enlarged area of detail depicted in FIG. 9A;



FIG. 10A is a side view of the shaft including a sensor configuration according to still another embodiment of the instant disclosure;



FIG. 10B is an enlarged area of detail depicted in FIG. 10A;



FIG. 11 is a side view of the shaft including a sensor configuration according to still yet another embodiment of the instant disclosure;



FIG. 12A is a side view of the shaft including a sensor configuration according to still yet another embodiment of the instant disclosure;



FIG. 12B is an enlarged area of detail depicted in FIG. 12A;



FIG. 13A is a side view of the shaft including a sensor configuration according to still yet another embodiment of the instant disclosure;



FIG. 13B is an enlarged area of detail depicted in FIG. 13A;



FIG. 14A is a side view of the shaft including a sensor configuration according to still yet another embodiment of the instant disclosure;



FIG. 14B is an enlarged area of detail depicted in FIG. 14A;



FIG. 15A is a side view of the shaft including a sensor configuration according to still yet another embodiment of the instant disclosure; and



FIG. 15B is an enlarged area of detail depicted in FIG. 15A.





DETAILED DESCRIPTION

Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.


In accordance with the instant disclosure, one or more sensor configurations are provided on an ablation probe to detect one or more properties that may be associated with target tissue and/or a specific surgical procedure. Specifically, the sensor configuration(s) provides feedback to a clinician or directly to a source of electrosurgical energy, e.g., a microwave generator, to improve overall performance of the ablation device and/or safety to a patient or clinician. To this end, the sensor configuration(s) includes one or more conductive traces that are deposited on an exterior surface of a shaft of the ablation probe and interrogated at a predetermined frequency to measure one or more electrical properties, e.g., capacitance and/or impedance, that are induced in the conductive traces.


Turning now to FIG. 1, an ablation probe 2 including a sensor configuration 4 according to an embodiment of the present disclosure is illustrated. In accordance with the instant disclosure, sensor configuration 4 may also be utilized to serve as centimeter depth markings. Ablation probe 2 is configured to electrosurgically treat tissue utilizing electrosurgical energy having a frequency that ranges from about 2300 MHz to about 2450 MHz. In embodiments, ablation probe 2 may be configured to electrosurgically treat tissue utilizing electrosurgical energy having a frequency that is less than 2300 MHz (e.g., 915 MHz) and greater than 2450 MHz. It has been shown through empirical testing that utilizing microwave energy from about 2300 MHz to about 2450 MHz has clear advantages when compared to more traditional frequency platforms, e.g., 915 MHz. Specifically, and in accordance with the instant disclosure, ablation probe 2 utilizes microwave energy that is provided by a microwave energy source, e.g., a generator 3 (FIG. 1), and transmitted at a frequency that ranges from about 2300 MHz to about 2450 MHz to create ablation zones that have a more spherical configuration for a specified range of activation times when compared to conventional ablation probes. Moreover, this higher frequency range allows ablation probe 2 to utilize a radiating section 6 (FIG. 1) that includes a length that is relatively short when compared to radiating sections of conventional ablation probes. As can be appreciated, radiating section 6 provides enhanced focus of the microwave energy transmitted therefrom and into target tissue, which, in turn, allows the microwave energy to penetrate deeper and faster into target tissue, which, in turn, results in a desired tissue effect with shorter activation times of radiating section 6.


Continuing with reference to FIG. 1, ablation probe 2 includes a housing 8 that is formed from one or more suitable materials, e.g., plastic, metal, metal alloy, ceramic, etc. Housing 8 functions as a handle that may be grasped by a user and is configured to house one or more components of ablation probe 2. A proximal end of housing 8 operably couples to a hub 10 (FIG. 1) that couples a cable 12 to ablation probe 2 and one or more leads 14, 16 (FIG. 2) that are disposed within housing 8. Proximal end 8 also couples to in-flow and out-flow tubes 18, 20 (FIG. 2), respectively, that are coupled to a coolant source 5 (FIG. 1) configured to provide one or more suitable coolants, e.g., saline, to a shaft 22 that serves as a cooling jacket and surrounds radiating section 6.


Shaft 22 may be formed from any suitable material, e.g., metal, glass fiber, and extends distally from housing 8. In the illustrated embodiment, shaft 22 is formed from glass fiber Shaft 22 includes a distal end 24 (FIGS. 1 and 7A) that includes a ceramic tip 25 (FIGS. 1 and 7A) configured to pierce tissue for positioning radiating section 6 adjacent target tissue. Shaft 22 also includes a proximal end 26 that operably couples to one or more components disposed within housing 8. Specifically, proximal end 26 includes a pair of indents 28 (FIG. 7A) that are configured to couple to a pair of corresponding detents (not explicitly shown) that are provided within a hub 30 (FIGS. 2, 4 and 6).


Hub 30 defines in-flow ports 32 and out-flow ports 34 that are configured to couple to corresponding in-flow tubes 18 and out-flow tubes 20 (FIG. 2). In-flow and out-flow ports 32, 34, respectively, communicate with one or more lumens (not explicitly shown) that extend through housing 8 and into shaft 22 forming a closed-loop path for providing coolant to radiating section 6. Hub 30 includes one or more clocking features (not explicitly shown) that align with one or more corresponding clocking features (not explicitly shown) disposed on an end cap 36 (FIG. 4) that operably couples to a distal end of hub 30. The clocking features on hub 30 and end cap 36 are configured to provide passage for leads 14, 16 so that leads 14, 16 may be coupled to a pair of sensor contacts 38, 40 (FIGS. 2-4 and 6) of a sensor assembly 42 (FIG. 2).


Continuing with reference to FIG. 2, sensor assembly 42 is operably disposed within housing 8 and includes sensor contacts 38, 40 that are configured to contact a corresponding pair of sensor contact pads 44 (see FIGS. 6-7A for example) positioned on shaft 22. Specifically, during transmission of microwave energy from radiating section 6 into target tissue, one or more electrical parameters, e.g., capacitance and/or impedance, is induced into one or more conductive traces 46 (FIGS. 7A-7B) and detected by sensor contacts 38, 40. Alternatively, a separate interrogation circuit 7 (FIG. 1) may be configured to apply a separate voltage to conductive traces 46 and measure current associated therewith to determine capacitance and/or impedance. In this embodiment, interrogation circuit 7 may be in communication with one or more modules (not shown) of generator 3 and configured to calculate capacitance and/or impedance. The interrogation frequency utilized may range from about 50 KHz to about 4 MHz.


Referring to FIGS. 3-4, sensor contacts 38, 40 are spaced apart a predetermined distance from one another within a sensor housing 48 that is configured to support sensor contacts 38, 40 (as best seen in FIG. 4). Proximal ends 50, 52 of sensor contacts 38, 40, respectively, are configured to couple to corresponding leads 14, 16 that extend within housing 8 (FIG. 3). Leads 14, 16 couple to the microwave energy source to provide communication between sensor contacts 38, 40 and one or more modules (not explicitly shown) of the microwave energy source.


In the illustrated embodiment, distal ends 54, 56 are offset from proximal ends 50, 52 (as best seen in FIG. 3) to facilitate contact between sensor contacts 38, 40 and sensor contact pads 44. Specifically, distal ends 54, 56 are disposed in oblique relationship with respect to respective proximal ends 50, 52 and are in substantial horizontal alignment with one another.


Referring to FIG. 5, a predetermined gap is provided between the distal ends 54, 56 and may be determined during the manufacture process. More particularly, the distance of the gap between distal ends 54, 56 is smaller than an outside diameter of shaft 22; this will facilitate contact between distal ends 54, 56 and sensor contact pads 44. Specifically, each of distal ends 54, 56 includes a sensor contact surface 58, 60 (FIGS. 3 and 5) that is configured slide across a corresponding sensor contact pad 44 when shaft 22 is positioned through an aperture 62 that provides passage through sensor housing 48 (see FIGS. 4-5). In embodiments, sensor contact surfaces 58, 60 may be biased outwardly from distal ends 54, 56 and movable therein. Specifically, as shaft 22 is positioned within aperture 62 the larger diameter of shaft 22 causes sensor contact surfaces 58, 60 to translate into distal ends 54, 56. As can be appreciated, this reduces the likelihood of sensor contact surfaces 58, 60 inadvertently scrapping/or scratching off the silver ink depositions that form sensor contact pads 44 as shaft 22 is inserted through aperture 62. Additionally, distal ends 54, 56 are flexible and configured to flex when shaft 22 is positioned through aperture 62. Specifically, notched out portions 64 (one of notched portions 64 is shown in FIG. 4) are provided on sensor housing 48 and allow distal ends 54, 56 to flex or give as shaft 22 is positioned within aperture 62. The flexibility of distal ends 54, 56 may be adjusted or varied during the manufacturing process as needed.


With reference now to FIGS. 7A-7B, an embodiment of sensor configuration 4 (sensor 4) is illustrated. In the embodiment illustrated in FIGS. 7A-7B, sensor 4 is positioned adjacent radiating section 6 and extends a predetermined length along shaft 22. In accordance with the instant disclosure, sensor 4 is defined by one or more conductive traces 46 that are formed from a silver ink deposition provided on the exterior surface of shaft 22. A silver ink deposition was utilized because of its ability to withstand EtO (Ethylene Oxide) sterilization. Other types of ink depositions including but not limited to gold, copper and nickel may also be utilized. One or more methods or processes may be utilized for depositing the silver ink onto the exterior of surface of shaft 22. For example, pad printing, laser ablation and direct write are suitable methods for depositing the silver ink onto the exterior surface of shaft 22.


In the illustrated embodiments, the silver ink deposition is utilized to form two or more conductive traces 47a, 47b (FIG. 7B) that are spaced apart a predetermined distance from one another. For example, in embodiments, the distance that conductive traces 47a, 47b are spaced apart from one another may range from about 0.010 inches to about 0.080 inches. As can be appreciated, the distance that separates conductive traces 47a, 47b may be varied or altered during the silver ink deposition process. Accordingly, in embodiments, the distance that separates conductive traces 47a, 47b may be less than 0.050 mm or greater than 0.080 mm.


Continuing with reference to FIG. 7A each of conductive traces 47a, 47 extends from distal end 24 adjacent radiating section 6 to proximal end 26 adjacent detents 28 and culminates at sensor contact pads 44 that are also formed during the aforementioned silver ink deposition process. The distance that separates conductive traces 47a, 47 and sensor contact pads 44 ranges from about 0.050 inches to about 0.100 inches. As can be appreciated, the distance that separates conductive traces 47a, 47b and sensor contact pads 44 may be varied or altered during the silver ink deposition process. Accordingly, in embodiments, the distance that separates conductive traces 47a, 47b and sensor contact pads 44 may be less than 0.001 mm or less than 0.300 mm. The important part of this feature are to have the contact pads spaced far enough apart to ensure electrical isolation from one another, but large enough pad area to ensure contact with the pogo-pin.



FIGS. 8A-15B illustrate various other configurations of sensor 4. Each of the configurations of sensor 4 shown in FIGS. 8A-15B may be formed utilizing the aforementioned materials and silver ink deposition processes. Sensors 4 illustrated in FIGS. 7A-15B may include any suitable configuration, such as, for example, two horizontal bars (FIGS. 8A-8B), two vertical bars (FIGS. 7A-7B), multi-band horizontal bars (FIGS. 9A-9B), spiral bars (FIGS. 10A-10B), or other suitable configuration (see FIGS. 11-15B for example). The specific configuration of sensor 4 utilized with ablation probe 2 will depend on a manufactures preference, a type of surgical procedure, target tissue (e.g., liver, ling, kidney, etc.), signal to noise ration parameters, etc.


A shrink wrap 66 (shown in phantom in FIG. 7A), e.g., polyester heat shrink wrap, is provided along shaft 22 to encapsulate conductive traces 47a, 47b and sensor contact pads 44. Shrink wrap 66 is utilized to maintain the structural integrity of conductive traces 47a, 47b and/or sensor contact pads 44. Moreover, shrink wrap 66 is utilized to protect a patient from silver bio-incompatibility. Further, it serves as a nonstick coating to prevent ablated tissue from sticking to sensor 4, e.g., conductive traces 47a, 47b.


In accordance with the instant disclosure, ablation probe 2 is configured to function in two modes of operation. Specifically, in a first mode of operation, e.g., a standard or manual ablation mode, sensor 4 may be configured to detect when ablation probe 2 or component associated therewith, e.g., radiating section 6, has been properly inserted, e.g., fully positioned, within target tissue and may be configured to automatically terminate power to ablation probe 2 if radiating section 6 is inadvertently or purposefully removed from target tissue. In this particular mode of operation, a clinician may position radiating section 6 of ablation probe 2 within target tissue. One or more modules associated with generator 3 may be coupled to conductive traces 47a, 47b and configured to send an interrogatory pulse thereto to determine if radiating section 6 has been properly inserted into target tissue, e.g., liver tissue. If the module(s) detects a predetermined capacitance and/or impedance induced within conductive traces 47a, 47b, a clinician may initiate the transmission of microwave energy to radiating section 6. It has been shown through empirical testing that suitable interrogation frequencies for capacitance may range from about 200 KHz to about 600 KHz. Moreover, it has been shown through empirical testing that suitable interrogation frequencies for impedance may range from about 40 KHz to about 600 KHz. In manual mode of operation, generator 3 automatically shuts off if radiating section 6 is inadvertently or purposefully removed from target tissue during transmission of microwave energy therefrom.


Moreover, in a second mode of operation, e.g., a resection mode, the generator may be configured to automatically initiate and terminate power to ablation probe 2 based on proper insertion of ablation probe 2. In this particular mode of operation, a clinician may position radiating 6 of section ablation probe 2 within target tissue. One or more modules associated with generator 3 may be coupled to conductive traces 47a, 47b and configured to send an interrogatory pulse thereto to determine if radiating section 6 has been properly inserted into target tissue, e.g., liver tissue. In resection mode, if the module(s) detects a predetermined capacitance and/or impedance induced within conductive traces 47a, 47b, generator 3 automatically initiates the transmission of microwave energy to radiating section 6. Generator 3 automatically shuts off if radiating section 6 is inadvertently or purposefully removed from target tissue during transmission of microwave energy therefrom. This particular mode of operation allows a clinician to rapidly change positions down a resection line without having to manually turn the generator on and off.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, while the aforementioned disclosure has been described in terms of use of utilizing sensor 4 in conjunction for determining proper insertion of radiating section 6 into tissue, sensor 4 may be utilized to determine other parameters that may associated with ablation probe 2 and/or a surgical procedure. For example, sensor 4 may be configured to detect tissue type, progression of a microwave ablation procedure, completion of a microwave ablation procedure, etc. Moreover, in embodiments, sensor 4 may be utilized to detect the presence of a cooling fluid that is being circulated through ablation probe 2 and/or component associated therewith, e.g., shaft 22; this could mitigate circulation errors, e.g., a clinician forgets to circulate fluid to radiating section 6. As can be appreciated, this may increase the operative shelf life of radiating section 6 and/or ablation probe 2.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A method for manufacturing a microwave ablation probe comprising: forming a housing configured to couple to a microwave energy source;forming a shaft defining a longitudinal axis, the shaft having a pair of sensor contact pads and a radiating section for electrosurgically treating tissue;forming a pair of sensor contacts that couples to the interior of the housing; andcoupling the shaft to the housing such that each sensor contact pad of the pair of sensor contact pads contacts a first portion of a corresponding one of the sensor contacts, the first portion of each of the pair of sensor contacts extending perpendicularly from a second portion toward the longitudinal axis defined by the shaft, the second portion of each of the pair of sensor contacts defining a longitudinal axis that extends along the longitudinal axis defined by the shaft.
  • 2. The method according to claim 1, including forming the pair of sensor contact pads on an exterior surface of the shaft via a silver ink deposition.
  • 3. The method according to claim 2, wherein forming the pair of sensor contact pads via the silver ink deposition includes utilizing a process selected from the group consisting of pad printing, laser ablation and direct write.
  • 4. The method according to claim 2, wherein forming the pair of sensor contact pads via the silver ink deposition includes forming at least two depositions that are spaced-apart from one another forming at least two conductive traces that culminate at the sensor contact pads.
  • 5. The method according to claim 1, further comprising overmolding a sensor housing to support at least a portion of the pair of sensor contacts therein.
  • 6. The method according to claim 1, further comprising bending each sensor contact such that a distal end of each sensor contact is angled toward the other sensor contact.
  • 7. The method according to claim 1, wherein coupling the shaft to the housing includes disposing a proximal portion of the shaft within an interior of the housing such that a distal portion of the shaft extends distally from the housing.
  • 8. A method for manufacturing an electrosurgical device, comprising: coupling an elongated shaft to a housing, the elongated shaft defining a longitudinal axis and configured to electrosurgically treat tissue; andcoupling a sensor contact pad disposed on the elongated shaft to a first portion of a sensor contact disposed within the housing, the first portion of the sensor contact extending perpendicularly from a second portion of the sensor contact toward the longitudinal axis defined by the elongated shaft.
  • 9. The method according to claim 8, wherein the second portion of the sensor contact defines a longitudinal axis that extends along the longitudinal axis of the elongated shaft.
  • 10. The method according to claim 8, further comprising coupling a pair of sensor contact pads disposed on the elongated shaft with a first portion of each of a pair of sensor contacts disposed within the housing, the first portion of each of the pair of sensor contacts extending perpendicularly from a second portion toward the longitudinal axis defined by the elongated shaft.
  • 11. The method according to claim 8, wherein coupling the elongated shaft to the housing includes disposing a proximal portion of the elongated shaft within an interior of the housing such that a distal portion of the elongated shaft extends distally from the housing.
  • 12. The method according to claim 8, wherein coupling the elongated shaft to the housing includes coupling the sensor contact pad with a sensor contact surface disposed on a distal end portion of the first portion of the sensor contact.
  • 13. A method for manufacturing an electrosurgical device, comprising: disposing a sensor contact within a housing, the sensor contact having a first portion extending perpendicularly from a second portion; andcoupling an elongated shaft defining a longitudinal axis to the housing to couple a sensor contact pad disposed on the elongated shaft with the first portion of the sensor contact, the elongated shaft configured to electrosurgically treat tissue.
  • 14. The method according to claim 13, wherein coupling the elongated shaft to the housing includes positioning the elongated shaft such that a longitudinal axis defined by the second portion of the sensor contact extends along the longitudinal axis defined by the elongated shaft.
  • 15. The method according to claim 13, wherein the first portion of the sensor contact extends perpendicularly from the second portion of the sensor contact toward the longitudinal axis defined by the elongated shaft upon coupling the elongated shaft to the housing.
  • 16. The method according to claim 13, wherein coupling the elongated shaft to the housing includes coupling the sensor contact pad with a sensor contact surface disposed on a distal end portion of the first portion of the sensor contact.
  • 17. The method according to claim 13, wherein coupling the elongated shaft to the housing includes disposing a proximal portion of the elongated shaft within the housing such that a distal portion of the elongated shaft extends distally from the housing.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a divisional application of U.S. patent application Ser. No. 14/064,472 filed on Oct. 28, 2013, now U.S. Pat. No. 9,901,399, which claims priority to U.S. Provisional Application Ser. No. 61/738,021, filed on Dec. 17, 2012, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (111)
Number Name Date Kind
D223367 Kountz Apr 1972 S
4291708 Frei et al. Sep 1981 A
D263020 Rau, III Feb 1982 S
D266842 Villers et al. Nov 1982 S
D278306 McIntosh Apr 1985 S
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
D354218 Van de Peer Jan 1995 S
5423810 Goble et al. Jun 1995 A
5500012 Brucker et al. Mar 1996 A
5810804 Gough et al. Sep 1998 A
D424693 Pruter May 2000 S
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059780 Gough et al. May 2000 A
6123702 Swanson et al. Sep 2000 A
D449886 Tetzlaff et al. Oct 2001 S
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6494882 Lebouitz et al. Dec 2002 B1
6500175 Gough et al. Dec 2002 B1
6569162 He May 2003 B2
D487039 Webster et al. Feb 2004 S
6702810 McClurken et al. Mar 2004 B2
6706040 Mahon et al. Mar 2004 B2
D496997 Dycus et al. Oct 2004 S
D499181 Dycus et al. Nov 2004 S
6962587 Johnson et al. Nov 2005 B2
7025765 Balbierz et al. Apr 2006 B2
D525361 Hushka Jul 2006 S
7108696 Daniel et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
D533942 Kerr et al. Dec 2006 S
D535027 James et al. Jan 2007 S
7160296 Pearson et al. Jan 2007 B2
D541418 Schechter et al. Apr 2007 S
D541938 Kerr et al. May 2007 S
D564662 Moses et al. Mar 2008 S
7344533 Pearson et al. Mar 2008 B2
D576932 Strehler Sep 2008 S
7419487 Johnson et al. Sep 2008 B2
D594736 Esjunin Jun 2009 S
D594737 Kelly et al. Jun 2009 S
D606203 Husheer et al. Dec 2009 S
D613412 DeCarlo Apr 2010 S
D634010 DeCarlo Mar 2011 S
8257349 Orszulak Sep 2012 B2
D681810 DeCarlo May 2013 S
8655454 Prakash et al. Feb 2014 B2
8795268 Willyard Aug 2014 B2
8852180 Brannan Oct 2014 B2
8906008 Brannan et al. Dec 2014 B2
8920410 Brannan Dec 2014 B2
8945113 Brannan et al. Feb 2015 B2
8968290 Brannan et al. Mar 2015 B2
8968300 Brannan Mar 2015 B2
9017328 Bahney Apr 2015 B2
9066681 Arts et al. Jun 2015 B2
9168178 Reid, Jr. et al. Oct 2015 B2
9192308 Brannan et al. Nov 2015 B2
9192426 Brannan et al. Nov 2015 B2
9192439 Dunning et al. Nov 2015 B2
9192440 Rossetto Nov 2015 B2
9332959 Arts et al. May 2016 B2
9358067 Lee et al. Jun 2016 B2
9364278 DeCarlo et al. Jun 2016 B2
9370392 Sharonov Jun 2016 B2
9375196 Zheng Jun 2016 B2
9396645 Will Jul 2016 B2
9439712 Sharonov Sep 2016 B2
9504524 Behnke, II Nov 2016 B2
9522033 Brannan Dec 2016 B2
9526568 Ohri et al. Dec 2016 B2
9649146 Orszulak May 2017 B2
9668802 Brannan Jun 2017 B2
9814844 Ohri et al. Nov 2017 B2
9833286 Podhajsky Dec 2017 B2
9901398 Brannan et al. Feb 2018 B2
9901399 Dunning et al. Feb 2018 B2
20020077627 Johnson et al. Jun 2002 A1
20020120261 Morris et al. Aug 2002 A1
20030199863 Swanson et al. Oct 2003 A1
20040097805 Verard et al. May 2004 A1
20050137662 Morris et al. Jun 2005 A1
20060163744 Vanheusden et al. Jul 2006 A1
20070173806 Orszulak et al. Jul 2007 A1
20070203551 Cronin et al. Aug 2007 A1
20080125775 Morris May 2008 A1
20080281314 Johnson et al. Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20090187180 Brannan Jul 2009 A1
20090240273 DeCarlo Sep 2009 A1
20090306655 Stangenes Dec 2009 A1
20100114086 Deem et al. May 2010 A1
20100217253 Mehta Aug 2010 A1
20110092972 Allen Apr 2011 A1
20110118724 Turner et al. May 2011 A1
20110152853 Manley et al. Jun 2011 A1
20110184403 Brannan Jul 2011 A1
20110190754 Kim et al. Aug 2011 A1
20110208184 Brannan Aug 2011 A1
20110223812 Prest Sep 2011 A1
20120010505 Allen Jan 2012 A1
20120010604 Allen Jan 2012 A1
20120116388 Houser et al. May 2012 A1
20130317495 Brannan Nov 2013 A1
20130324910 Ohri et al. Dec 2013 A1
20130324911 Ohri et al. Dec 2013 A1
20130345541 Nau, Jr. Dec 2013 A1
20130345552 Arts et al. Dec 2013 A1
20140018793 Sharonov Jan 2014 A1
Foreign Referenced Citations (94)
Number Date Country
1103807 Mar 2003 CN
390937 Mar 1924 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
1439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2415263 Oct 1975 DE
2429021 Jan 1976 DE
2460481 Jun 1976 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2627679 Jan 1977 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
3712328 Feb 1988 DE
3711511 Jun 1988 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4238263 May 1993 DE
04303882 Feb 1995 DE
4339049 May 1995 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19717411 Nov 1998 DE
19751108 May 1999 DE
19801173 Jul 1999 DE
19848540 May 2000 DE
10224154 Dec 2003 DE
10310765 Sep 2004 DE
10328514 Mar 2005 DE
102004022206 Dec 2005 DE
202005015147 Feb 2006 DE
102009015699 May 2010 DE
246350 Nov 1987 EP
0521264 Jan 1993 EP
556705 Aug 1993 EP
0558429 Sep 1993 EP
0648515 Apr 1995 EP
836868 Apr 1998 EP
882955 Dec 1998 EP
1159926 Mar 2003 EP
1810628 Jul 2007 EP
179 607 Nov 1906 FR
1 275 415 Nov 1961 FR
1 347 865 Jan 1964 FR
2 235 669 Jan 1975 FR
2 276 027 Jan 1976 FR
2 313 708 Dec 1976 FR
2 502 935 Oct 1982 FR
2 517 953 Jun 1983 FR
2 573 301 May 1986 FR
2 862 813 May 2005 FR
2 864 439 Jul 2005 FR
55106 Jan 1993 JP
0540112 Feb 1993 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09000492 Jan 1997 JP
09010223 Jan 1997 JP
11244298 Sep 1999 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
20018944 Jan 2001 JP
2001003776 Jan 2001 JP
200129356 Feb 2001 JP
200137775 Feb 2001 JP
2001128990 May 2001 JP
2001231870 Aug 2001 JP
2008142467 Jun 2008 JP
20070093068 Sep 2007 KR
20100014406 Feb 2010 KR
20120055063 May 2012 KR
166452 Jan 1965 SU
401367 Oct 1973 SU
727201 Apr 1980 SU
0036985 Jun 2000 WO
0174252 Oct 2001 WO
2006105121 Oct 2006 WO
2007100559 Sep 2007 WO
2010035831 Apr 2010 WO
Non-Patent Literature Citations (98)
Entry
Mouser Electronics. Spring-loaded pins datasheet. Retrieved on Jan. 20, 2016 from http://www.mouser.com/ProductDetail/Mill-Max/0906-0-15-20-76-14-11-0/?qs=sGAEpiMZZMu2RFV024JNk1ZV1gAkUw03A0T%2fFU81DTc%3d.
LigaSure.TM. Vessel Sealing System, the Seal of Confidence in General , Gynecologic, Urologic, and Laparaoscopic Surgery, Sales/Product Literature, Jan. 2004.
Livraghi et al., (1995) “Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases”, Radiology, p. 140 (Abstr).
Lyndon B. Johnson Space Center, Houston, Texas, “Compact Directional Microwave Antenna for Localized Heating,” NASA Tech Briefs, Mar. 2008.
M. A. Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics. 9(3), May-Jun. 1982.
Magdy F. Iskander et al., “Design Optimization of Interstitial Antennas”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, Feb. 1989, pp. 238-246.
McGahan et al., (1995) “Percutaneous Ultrasound-guided Radiofrequency Electrocautery Ablation of Prostate Tissue in Dogs”, Acad Radiol, vol. 2, No. 1: pp. 61-65.
McLellan et al., “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC.
MDTECH product literature (Dec. 1999) “FlexStrand”: product description, 1 page.
MDTECH product literature (Mar. 2000) I'D Wire: product description, 1 page.
Medtrex Brochure “The O.R. Pro 300” 1 page; Sep. 1998.
Michael Choti, “Abdominoperineal Resection with the LigaSure.TM. Vessel Sealing System and LigaSure.TM. Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003.
Muller et al., “Extended Left Hemicolectomy Using the LigaSure.TM. Vessel Sealing System” Innovations That Work. LJ, Sep. 1999.
Murakami, R. et al., (1995). “Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation,” American Journal of Radiology (AJR) 164:1159-1164.
Ni Wei et al., “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(Mar. 2005); pp. 160-184.
Ogden, “Goertzel Alternative to the Fourier Transform”: Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG, vol. 99, No. 9, 1687.
Olsson M.D. et al., “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Organ, L W, “Electrophysiologic Principles of Radiofrequency Lesion Making” Appl. Neurophysiol, vol. 39: pp. 69-76 (1976/77).
P.R. Stauffer et al., “Interstitial Heating Technologies”, Thermoradiotheray and Thermochemotherapy (1995) vol. I, Biology, Physiology, Physics, pp. 279-320.
Palazzo et al., “Randomized clinical trial of LigaSure.TM. versus open haemorrhoidectomy” British Journal of Surgery 2002,89,154-157 “Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Peterson et al., “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
R. Gennari et al., (Jun. 2000) “Use of Technetium-99m-Labeled Colloid Albumin for Preoperative and Intraoperative Localization of Non palpable Breast Lesions,” American College of Surgeons. 190(6):692-699.
Valleylab Brochure. “Reducing Needlestick Injuries in the Operating Room” 1 page, Mar. 2001.
Reidenbach, (1995) “First Experimental Results with Special Applicators for High-Frequency Interstitial Thermotherapy”, Society Minimally Invasive Therapy, 4(Suppl 1):40 (Abstr).
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pages, Jan. 1989.
Rothenberg et al., “Use of the LigaSure.TM. Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (I PEG) 2000.
Sayfan et al., “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001)71.9 pp. 538-540.
Sigel et al., “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Solbiati et al., (2001) “Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients”, Radiology, vol. 221, pp. 159-166.
Solbiati et al. (1995) “Percutaneous US-guided RF Tissue Ablation of Liver Metastases: Long-term Follow-up”, Radiology, pp. 195-203.
Strasberg et al., “Use of a Bipolar Vassel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779.
Sylvain Labonte et al., “Monopole Antennas for Microwave Catheter Ablation”, IEEE Trans. on Microwave Theory and Techniques, vol. 44, No. 10, pp. 1832-1840, Oct. 1995.
T. Matsukawa et al., “Percutaneous Microwave Coagulation Therapy in Liver Tumors”, Acta Radiologica, vol. 38, pp. 110-415, 1997.
T.Seki et al., (1994) “Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma,” Cancer 74(3):817-825.
Urologix, Inc.—Medical Professionals: Targis.TM. Technology (Date Unknown). “Overcoming the Challenge” located at: <(http://www.urologix.com!medicaUtechnology.html > Nov. 18, 1999; 3 pages.
Urrutia et al., (1988). “Retractable-Barb Needle for Breast Lesion Localization: Use in 60 Cases,” Radiology 169 (3):845-847.
Valleylab Brochure, “Valleylab Electroshield Monitoring System” 2 pages, Nov. 1995.
ValleyLab Brochure, “Electosurgery: A Historical Overview”, Innovations in Electrosurgery, 1999.
Vallfors et al., “Automatically Controlled Bipolar Electrocoagulation—COA-COMP” Neurosurgical Review 7:2-3 (1984) pp. 187-190.
W. Scott Helton, “LigaSureTM Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature 1999.
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921.
Walt Boyles, “Instrumentation Reference Book”, 2002, Butterworth-Heinemann, pp. 262-264.
Wonnell et al., “Evaluation of Microwave and Radio Frequency Catheter Ablation in a Myocardium-Equivalent Phantom Model”, IEEE Transactions on Biomedical Engineering, vol. 39, No. 10, Oct. 1992; pp. 1086-1095.
U.S. Appl. No. 08/136,098, filed Oct. 14, 1993, Roger A. Stern.
U.S. Appl. No. 08/483,742, filed Jun. 7, 1995, Roger A. Stern.
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy”, Journal Neurosurgery, 83; (1995) pp. 271-276.
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994), pp. 297-307.
Anonymous. (1999) Auto Suture MIBB Site Marker: Single Use Clip Applier, United States Surgical (Product Instructions), 2 pages.
Anonymous. (2001) Disposable Chiba Biopsy Needles and Trays, Biopsy and Special Purpose Needles Cook Diagnostic and Interventional Products Catalog (products list), 4 pages.
Anonymous. (1987) Homer Mammalok. TM. Breast Lesion Needle/Wire Localizer, Namic.RTM. Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages.
Anonymous. (1999) MIBB Site Marker, United States Surgical (Sales brochure), 4 pages.
Anonymous. Blunt Tubes with Finished Ends. Pointed Cannula, Popper & Sons Biomedical Instrument Division. (Products Price List), one page, Jul. 19, 2000.
Anonymous. Ground Cannulae, ISPG, New Milford, CT, (Advertisement) one page, Jul. 19, 2000.
B. Levy M.D. et al., “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology. vol. 102, No. 1, Jul. 2003.
B. Levy M.D. et al., “Update on Hysterectomy New Technologies and Techniques” OBG Management. Feb. 2003.
B. Levy M.D.. “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
B. F. Mullan et al., (May 1999) “Lung Nodules: Improved Wire for CT-Guided Localization,” Radiology 211:561-565.
B. T. Heniford M.D. et al., “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151.
Bulletin of the American Physical Society, vol. 47, No. 5, Aug. 2002, p. 41.
C. F. Gottlieb et al., “Interstitial Microwave Hyperthermia Applicators having Submillimetre Diameters”, Int. J. Hyperthermia, vol. 6, No. 3, pp. 707-714, 1990.
C. H. Durney et al.. “Antennas for Medical Applications”, Antenna Handbook: Theory Application and Design, p. 24-40. Van Nostrand Reinhold, 1988 New York, V.T. Lo, S.W. Lee.
Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure.TM. Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Charlotte, NC 2003.
Carus et al., “Initial Experience With the LigaSure. TM. Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Chicharo et al., “A Sliding Goertzel Algorithm” Aug. 1996 DOS pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 52. No. 3.
Chou, C.K., (1995) “Radiofrequency Hyperthermia in Cancer Therapy,” Chapter 941n Biologic Effects of Nonionizing Electromagnetic Fields, CRC Press, Inc., pp. 1424-1428.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure.TM.” Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003.
Cosman et al., “Methods of Making Nervous System Lesions”, In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499.
Cosman et al., “Radiofrequency Lesion Generation and its Effect on Tissue Impedence”, Applied Neurophysiology, 51:230-242, 1988.
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone”, Neurosurgery 15:(1984) pp. 945-950.
Crawford et al., “Use of the LigaSure.TM. Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford, “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
E. David Crawford, “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Esterline, “Light Key Projection Keyboard” Advanced Input Systems, located at: <http://www.advanced-input.com/lightkey> 2002.
Esterline Product Literature, “Light Key: Visualize a Virtual Keyboard. One With No Moving Parts”. Nov. 1, 2003; 4 pages.
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27.
Goldberg et al., “Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part I”, (2001) J Vasc. Interv. Radiol, vol. 12, pp. 1021-1032.
Goldberg et al. (1995) “Saline-enhanced RF Ablation: Demonstration of Efficacy and Optimization of Parameters”, Radiology, 197(P): 140 (Abstr).
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404.
H. Schwarzmaier et al., “Magnetic Resonance Imaging of Microwave Induced Tissue Heating” Dept. of Laser Medicine & Dept. of Diagnostic Radiology; Heinrich-Heine-University, Duesseldorf Germany; Dec. 8, 1994; pp. 729-731.
Heniford et al., “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2001) 15:799-801.
Herman at al., “Laparoscopic Intestinal Resection With the LigaSure.TM. Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002.
Humphries Jr. et al., “Finite-Element Codes to Model Electrical Heating and Non-Linear Thermal Transport in Biological Media”, Proc. ASME HTD-355, 131 (1997).
Ian D. McRury et al., The Effect of Ablation Sequence and Duration on Lesion Shape Using Rapidly Pulsed Radiofrequency Energy Through Electrodes, Feb. 2000, Springer Netherlands. vol. 4; No. 1. pp. 307-320.
Jarrett et al., “Use of the LigaSure.TM. Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
Johnson, “Evaluation of the LigaSure.TM. Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinic La Congress Poster (2000).
Johnson et al., “New Low-Profile Applicators for Local Heating of Tissues”, IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 1, Jan. 1984, pp. 28-37.
Johnson, “Use of the LigaSure.TM. Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Joseph G. Andriole, M.D., et al., “Biopsy Needle Characteristics Assessed in the Laboratory”, Radiology 148: 659-662, Sep. 1983.
Joseph Ortenberg, “LigaSure.TM. System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:876-878.
Kopans, D.B. et al., (Nov. 1985) “Spring Hookwire Breast Lesion Localizer: Use with Rigid-Compression. Mammographic Systems,” Radiology 157(2):537-538.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
Related Publications (1)
Number Date Country
20180235696 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
61738021 Dec 2012 US
Divisions (1)
Number Date Country
Parent 14064472 Oct 2013 US
Child 15905065 US