The present invention relates to tissue ablation devices generally and relates more particularly to devices adapted to ablate lines of tissue, for example for use in conjunction with an electrosurgical version of the Maze procedure.
The Maze procedure is a surgical intervention for patients with chronic atrial fibrillation (AF) that is resistant to other medical treatments. The operation employs incisions in the right and left atria which divide the atria into electrically isolated portions which in turn results in an orderly passage of the depolarization wave front from the sino-atrial node (SA Node) to the atrial-ventricular node (AV Node) while preventing reentrant wave front propagation. Although successful in treating AF, the surgical Maze procedure is quite complex and is currently performed by a limited number of highly skilled cardiac surgeons in conjunction with other open-heart procedures. As a result of the complexities of the surgical procedure, there has been an increased level of interest in procedures employing electrosurgical devices or other types of ablation devices, e.g. thermal ablation, micro-wave ablation, cryo-ablation or the like to ablate tissue along pathways approximating the incisions of the Maze procedure. Electrosurgical systems for performing such procedures are described in U.S. Pat. No. 5,916,213, issued to Hiassaguerre, et al. U.S. Pat. No. 5,957,961, issued to Maguire, et al. and U.S. Pat. No. 5,690,661, all incorporated herein by reference in their entireties. Cryo-ablation systems for performing such procedures are described in U.S. Pat. No. 5,733,280 issued to Avitall, also incorporated herein by reference in its entirety.
In conjunction with the use of electrosurgical ablation devices, various control mechanisms have been developed to control delivery of ablation energy to achieve the desired result of ablation, i.e. killing of cells at the ablation site while leaving the basic structure of the organ to be ablated intact. Such control systems include measurement of temperature and impedance at or adjacent to the ablation site, as are disclosed in U.S. Pat. No. 5,540,681, issued to Struhl, et al., incorporated herein by reference in its entirety.
Additionally, there has been substantial work done toward assuring that the ablation procedure is complete, i.e. that the ablation extends through the thickness of the tissue to be ablated, before terminating application of ablation energy. This desired result is some times referred to as a “transmural” ablation. For example, detection of a desired drop in electrical impedance at the electrode site as an indicator of transmurality is disclosed in U.S. Pat. No. 5,562,721 issued to Marchlinski et al, incorporated herein by reference in its entirety. Alternatively, detection of an impedance rise or an impedance rise following an impedance fall are disclosed in U.S. Pat. No. 5,558,671 issued to Yates and U.S. Pat. No. 5,540,684 issued to Hassler, respectively, also incorporated herein by reference in their entireties. Because ablated heart tissue is necrotic, it does not depolarize and therefore does not contribute to the depolarization signal. This fact has recently led some physicians to use the amplitude of a locally acquired electrogram signal to determine whether a lesion is complete. For example, during provision of R-F energy at a constant power level, the physician may monitor the amplitude of electrograms obtained using electrodes adjacent the ablation site, and, in response to a defined drop, e.g. 75%, may terminate provision of RF energy.
Three basic approaches have been employed to create elongated lesions using electrosurgical devices. The first approach is simply to create a series of short lesions using a contact electrode, moving it along the surface of the organ wall to be ablated to create a linear lesion. This can be accomplished either by making a series of lesions, moving the electrode between lesions or by dragging the electrode along the surface of the organ to be ablated and continuously applying ablation energy, as described in U.S. Pat. No. 5,897,533 issued to Mulier, et al., incorporated herein by reference in its entirety. The second basic approach to creation of elongated lesions is simply to employ an elongated electrode, and to place the elongated electrode along the desired line of lesion along the tissue. This approach is described in U.S. Pat. No. 5,916,213, cited above and. The third basic approach to creation of elongated lesions is to provide a series of electrodes and arrange the series of electrodes along the desired line of lesion. The electrodes may be activated individually or in sequence, as disclosed in U.S. Pat. No. 5,957,961, also cited above. In the case of multi-electrode devices, individual feedback regulation of ablated energy applied via the electrodes may also be employed. The present invention is believed useful in conjunction with all three approaches
The present invention is directed toward an improved system for creating lesions and assessing their completeness or transmurality. In the preferred embodiment as disclosed, the apparatus for producing the lesions is an electrosurgical device, in particular a saline-irrigated bipolar electrosurgical forceps. However, the mechanism for assessing lesion transmurality provided by the present invention is believed useful in other contexts, including unipolar R-F ablation and R-F ablation using catheters or hand-held probes. The mechanism for assessing transmurality may also be of value in the context of other types of ablation systems, including those in which ablation occurs in conjunction with an induced rise in tissue temperature, such as those applying ablation energy in the form of microwave radiation, light (laser ablation) or heat (thermal ablation). The invention may also be useful in conjunction with other types of ablation, including cryo-ablation, ultrasound ablation and chemical ablation.
According to the present invention, assessment of transmurality of a lesion is accomplished by monitoring the depolarization signal amplitude in a local electrogram taken using electrodes located adjacent the tissue to be ablated. In the context of R-F ablation, measurement of electrogram amplitude may be done using the ablation electrodes or may be done using dedicated electrodes adjacent to the ablation electrodes. In the context of the other types of ablation discussed above, electrogram measurement would typically be accomplished by means of a dedicated set of measurement electrodes.
Following onset of application of ablation energy to heart tissue, the amplitude of a local electrogram measured with electrodes located adjacent tissue to be ablated first gradually drops and then stabilizes, indicating that the tissue being monitored has ceased making any contribution to the sensed electrogram. The amplitude drop (ΔEGM) or the following amplitude plateau “P” may be used alone or together as indicators of transmurality employed by the present invention. The amplitude drop may be compared to a pre-set value (ΔEGM ? a). (The plateau “P” may be detected in response to a determination that the rate of amplitude change is less than a defined value over a series of amplitude measurements or over a defined duration (|dA/dt|=b). In some embodiments, detection of a rapid drop in amplitude (dA/dt=d) may be employed as an indicator that the ablation process is proceeding too quickly and may be employed to trigger a reduction in the power of applied ablation energy. In other embodiments, detection of an insufficiently rapid drop in amplitude (dA/dt=d) may be employed as an indicator that the ablation process is proceeding too slowly and may be employed to trigger an increase in the power of applied ablation energy.
In the context of R-F ablation, the invention is believed valuable in conjunction with an ablation device having multiple, individually activatable electrodes or electrode pairs to be arranged along a desired line of lesion. In this context, the mechanism for determining transmurality of lesions adjacent individual electrodes or pairs may be used to deactivate individual electrodes or electrode pairs, when the lesions in tissue adjacent these individual electrodes or electrode pairs are complete. This allows the creation of an essentially uniform lesion along the line of electrodes or electrode pairs, regardless of differences in tissue thickness adjacent the individual electrodes or electrode pairs. The invention is also believed useful in conjunction with assessment of transmurality of lesions produced by devices having only a single electrode or single electrode pair. Similar considerations apply to the use of the present invention in the contexts of other types of ablation as listed above.
a and 2b illustrate alternative electrode configurations for a hemostat generally according to
a shows a first embodiment of an electrode arrangement for a hemostat generally as illustrated in
b illustrates an alternative embodiment of an electrode system for a hemostat generally as illustrated in
In use, the hemostat is arranged so that the tissue to be ablated is located between the jaws 18 and 19, and pressure is applied in order to compress the tissue slightly between the jaws to ensure good electrical contact. All electrode pairs may be activated individually and may be individually deactivated when the lesions between the individual electrode pairs are completely transmural. Alternatively, electrode pairs could be activated sequentially, with one pair deactivated upon a detection of a complete lesion between the electrode pair, followed by activation of the next sequential electrode pair. Corresponding use of the invention in conjunction with a series of unipolar electrodes, for example corresponding to electrodes along one of the two jaws in conjunction with a remote ground plate or a similar series of individually activatable electrodes on a catheter or probe in conjunction with a ground plate is also possible.
Display 804 and controls 802 are connected to a digital microprocessor 800, which permits interface between the user and the remainder of the electrical components of the system. Microprocessor 800 operates under control of stored programming defining its operation including programming controlling its operation according to the present invention, as discussed in more detail below. Microprocessor 800 provides control outputs to and receives input signals from the remaining circuitry via address/data bus 806. In particular, the microprocessor 800 provides for monitoring of power, current, voltage, electrogram amplitude and temperature. As necessary, the microprocessor will provide this information to the display 804. Additionally, the microprocessor 800 permits the user to select the control mode (either temperature or power) and to input the power set point, temperature set point, and a timer set point to the system. The primary source of power for the radio-frequency generator may be a 12 V battery rated at 7.2 ampere-hours or the device may be AC powered. A back-up battery (not shown) such as a lithium cell may also be provided to provide sufficient power to the microprocessor 800 to maintain desired memory functions when the main power is shut off.
The power supply system as illustrated includes a desired number “M” of individually controllable R-F power supplies and receives temperature inputs from a desired number “N” of temperature sensing devices in the ablation device, illustrated schematically at 838 and receives electrogram amplitude inputs from a desired number “M” of electrogram monitoring circuits. Each R-F power supply includes a transformer (822, 824, 826), a power control circuit (810, 812, 814) and a power measurement circuit (816, 818, 820). A crystal-locked radio-frequency oscillator 840 generates the switching pulses, which drive both the power transformers (822, 824, 826) and the power controllers (810, 812, 814). Power controllers (810, 812, 814) may be analog controllers which operate by pulse-width modulation by comparing a power set point signal from microprocessor 800 with an actual power signal generated by a power measurement circuit (816, 818, 820), which may, for example, include a.torroidal transformer coupled to the power output from the associated transformer (822, 824, 826). The power measurement circuits (816, 818, 820) multiply the output current and voltage and provide the resulting actual power signal to both the power controllers (810, 812, 814) and the microprocessor 800.
The R F power output of the transformers (822, 824, 826) is provided to interface board 808, and thereby is provided to the ablation electrode or electrodes on the ablation device 838. Separate analog comparator circuits (not illustrated) may also be provided for monitoring the output of the power measurement circuits (816, 818, 820), in order to shut-off current to the output transformers (822, 824, 826) if the power exceeds a limit, typically 55 watts. Power transformers (822, 824, 826) may include center taps, which receive the outputs of the power controllers (810, 812, 814). Secondary windings of the transformers (822, 824, 826) may provide for continuous monitoring of the applied voltage in order to permit the power calculations by power measurement circuits (816, 818, 820).
The illustrated power R-F generator system employs software controlled temperature processing, accomplished by micro processor 800, which receives the “N” temperature input signals from temperature measurement circuits (828, 830, 832), each of which are coupled to a corresponding temperature sensor in ablation device 838 by means of an electrical connector, illustrated schematically at 836 and interface circuit 808. If programmed to operate in the temperature controlled mode, processor 800 receives the “N” temperature signals and, based upon the indicated temperatures, defines power set points for each of the power control. circuits (810, 812, 814), which in the manner described above control the power levels applied to electrodes on the catheter through interface 834. Processor 800 may also selectively enable or disable any of the “M” provided R-F power supplies, in response to external control signals from controls 802 or in response to detected anomalous temperature conditions.
In addition to the circuitry as described above and disclosed in the Maguire, et al. '961patent, the apparatus of
Individual electrogram amplitude measurements made by measurement circuits 843, 845 and 847 are provided to the address/data bus 806 and thence to microprocessor 800 for analysis to determine whether the behavior of the measured electrogram amplitude over time, indicates that the lesion associated with the measured amplitudes is completely transmural. As discussed in more detail below, a determination of transmurality may be made in response to detection of a defined drop in electrogram amplitude and/or a series of amplitude measurements that are relatively constant, over a desired period of time or over a defined number of successive amplitude measurements. In some embodiments, an abrupt drop in electrogram amplitude may also be employed to reduce the power level of ablation energy delivered to the tissue being monitored.
In cases in which an alternative ablation energy generation apparatus is employed, particularly those in which a rise in tissue temperature is induced, e.g. laser, microwave or thermal ablation, the R-F generation circuitry of
The flow chart of
After initialization at 200, the microprocessor 800 (
The flow chart of
After initialization at 300, the microprocessor 800 (
If the required drop is detected at 308, at 310, the microprocessor 800 employs the stored electrogram amplitude measurements to calculate dA/dt, which may, for example, be calculated based on net variation of electrogram amplitude over a series of 2 or 3 measurements. As discussed above in conjunction with detection of the required amplitude drop, averaged amplitude values may also be used to calculate dA/dt. The absolute value of dA/dt, i.e., |dA/dt| may employed to assess whether or not an electrogram amplitude plateau has been reached at 310, for example by verifying that a series of values of |dA/dt| are all (e.g. 3 of 3) or predominantly (e.g. 2 of 3) below a defined variability value “b”.
The processor continues to collect amplitude measurements and make calculations until such time as an amplitude plateau is recognized at 310 and a sufficient amplitude drop is recognized at 308. When both of these criteria have been met, the termination of application of ablation energy to the tissue being monitored then occurs at 312. The termination of ablation may occur concurrent with detection of the required drop or a preset delay thereafter to assure complete transmurality.
The flow chart of
After initialization at 400, the microprocessor 800 (
The processor continues to collect amplitude measurements until such time as an amplitude plateau is recognized at 410 and a sufficient time has elapsed at 412. When both of these criteria have been met, the termination of application of ablation energy to the tissue being monitored then occurs at 414. The termination of ablation may occur concurrent with detection of the required drop or a preset delay thereafter to assure complete transmurality.
After initialization at 600, all electrodes 1-X are activated at 602, meaning that ablation energy is provided to all electrodes and electrode pairs. The microprocessor measures the electrogram amplitude associated with a first electrode or electrode pair at 604 and then at 608 checks to see whether transmurality criteria are met for a first ablation electrode or electrode pair at 604, using the criteria discussed above in conjunction with any of
The overall operational methodology of
This application is a continuation of U.S. Ser. No. 10/685,236, filed. Oct. 14, 2003 by Francischelli et al., now U.S. Pat. No. 7,029,470, which is a continuation of U.S. Ser. No. 10/132,392, filed Apr. 24, 2002 by Francischelli et al., now U.S. Pat. No. 6,663,627, and also claims the benefit of Provisional U.S. Patent Application No. 60/236,923, filed Apr. 26, 2001 by Francischelli et al., incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3736936 | Basiulis et al. | Jun 1973 | A |
3807403 | Stumpf et al. | Apr 1974 | A |
3823575 | Parel | Jul 1974 | A |
3823718 | Tromovitch | Jul 1974 | A |
3827436 | Stumpf et al. | Aug 1974 | A |
3830239 | Stumpf | Aug 1974 | A |
3859986 | Okada et al. | Jan 1975 | A |
3862627 | Hans, Sr. | Jan 1975 | A |
3886945 | Stumpf et al. | Jun 1975 | A |
3907339 | Stumpf et al. | Sep 1975 | A |
3910277 | Zimmer | Oct 1975 | A |
3913581 | Ritson et al. | Oct 1975 | A |
3924628 | Droegemueller et al. | Dec 1975 | A |
4018227 | Wallach | Apr 1977 | A |
4022215 | Benson | May 1977 | A |
4061135 | Widran et al. | Dec 1977 | A |
4063560 | Thomas et al. | Dec 1977 | A |
4072152 | Linehan | Feb 1978 | A |
4082096 | Benson | Apr 1978 | A |
4207897 | Lloyd et al. | Jun 1980 | A |
4248224 | Jones | Feb 1981 | A |
4275734 | Mitchiner | Jun 1981 | A |
4278090 | van Gerven | Jul 1981 | A |
4377168 | Rzasa et al. | Mar 1983 | A |
4519389 | Gudkin et al. | May 1985 | A |
4598698 | Siegmund | Jul 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4664110 | Schanzlin | May 1987 | A |
4736749 | Lundback | Apr 1988 | A |
4779611 | Grooters et al. | Oct 1988 | A |
4802475 | Weshahy | Feb 1989 | A |
4815470 | Curtis et al. | Mar 1989 | A |
4872346 | Kelly-Fry et al. | Oct 1989 | A |
4916922 | Mullens | Apr 1990 | A |
4917095 | Fry et al. | Apr 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4946460 | Merry et al. | Aug 1990 | A |
5013312 | Parins et al. | May 1991 | A |
5029574 | Shimamura et al. | Jul 1991 | A |
5044165 | Linner et al. | Sep 1991 | A |
5078713 | Varney | Jan 1992 | A |
5080102 | Dory | Jan 1992 | A |
5080660 | Buelina | Jan 1992 | A |
5100388 | Behl et al. | Mar 1992 | A |
5108390 | Potocky et al. | Apr 1992 | A |
5147355 | Freidman et al. | Sep 1992 | A |
5178133 | Pena | Jan 1993 | A |
5207674 | Hamilton | May 1993 | A |
5215103 | Desai | Jun 1993 | A |
5217860 | Fahy et al. | Jun 1993 | A |
5222501 | Ideker et al. | Jun 1993 | A |
5224943 | Goddard | Jul 1993 | A |
5228923 | Hed | Jul 1993 | A |
5231995 | Desai | Aug 1993 | A |
5232516 | Hed | Aug 1993 | A |
5233515 | Cosman | Aug 1993 | A |
5246438 | Langberg | Sep 1993 | A |
5254116 | Baust et al. | Oct 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5269291 | Carter | Dec 1993 | A |
5275595 | Dobak, III | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5281213 | Milder et al. | Jan 1994 | A |
5281215 | Milder | Jan 1994 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5309896 | Moll et al. | May 1994 | A |
5316000 | Chapelon et al. | May 1994 | A |
5317878 | Bradshaw et al. | Jun 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5322520 | Milder | Jun 1994 | A |
5323781 | Ideker et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324284 | Imran | Jun 1994 | A |
5324286 | Fowler | Jun 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5353783 | Nakao et al. | Oct 1994 | A |
5354258 | Dory | Oct 1994 | A |
5361752 | Moll et al. | Nov 1994 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5396887 | Imran | Mar 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5400770 | Nakao et al. | Mar 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5403309 | Coleman et al. | Apr 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5423807 | Milder | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5427119 | Swartz et al. | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5435308 | Gallup et al. | Jul 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5450843 | Moll et al. | Sep 1995 | A |
5450846 | Goldreyer | Sep 1995 | A |
5452582 | Longsworth | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5469853 | Law et al. | Nov 1995 | A |
5472876 | Fahy | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478330 | Imran et al. | Dec 1995 | A |
5486193 | Bourne et al. | Jan 1996 | A |
5487385 | Avitall | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5498248 | Milder | Mar 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5516505 | McDow | May 1996 | A |
5520682 | Baust et al. | May 1996 | A |
5522870 | Ben-Zion | Jun 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5545195 | Lennox et al. | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560362 | Sliwa, Jr. et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5562721 | Marchlinski et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573532 | Chang et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575788 | Baker et al. | Nov 1996 | A |
5575810 | Swanson et al. | Nov 1996 | A |
5578007 | Imran | Nov 1996 | A |
5579764 | Goldreyer | Dec 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5590657 | Cain et al. | Jan 1997 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5607462 | Imran | Mar 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5630837 | Crowley | May 1997 | A |
5637090 | McGee et al. | Jun 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5656029 | Imran et al. | Aug 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5671747 | Connor | Sep 1997 | A |
5673695 | McGee et al. | Oct 1997 | A |
5676662 | Fleischhacker et al. | Oct 1997 | A |
5676692 | Sanghvi et al. | Oct 1997 | A |
5676693 | Lafontaine | Oct 1997 | A |
5678550 | Bassen et al. | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5681278 | Igo et al. | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5687737 | Branham et al. | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5690611 | Swartz et al. | Nov 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697925 | Taylor | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5697928 | Walcott et al. | Dec 1997 | A |
5713942 | Stern et al. | Feb 1998 | A |
5716389 | Walinsky et al. | Feb 1998 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5718701 | Shai et al. | Feb 1998 | A |
5720775 | Larnard | Feb 1998 | A |
5722402 | Swanson et al. | Mar 1998 | A |
5730074 | Peter | Mar 1998 | A |
5730127 | Avitall | Mar 1998 | A |
5730704 | Avitall | Mar 1998 | A |
5733280 | Avitall | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5755760 | Maguire et al. | May 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5782828 | Chen et al. | Jul 1998 | A |
5785706 | Bednarek | Jul 1998 | A |
5788636 | Curley | Aug 1998 | A |
5792140 | Tu et al. | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5800428 | Nelson et al. | Sep 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5840030 | Ferek-Petric et al. | Nov 1998 | A |
5844349 | Oakley et al. | Dec 1998 | A |
5846187 | Wells et al. | Dec 1998 | A |
5846191 | Wells et al. | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5871525 | Edwards et al. | Feb 1999 | A |
5873845 | Cline et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879295 | Li et al. | Mar 1999 | A |
5879296 | Ockuly et al. | Mar 1999 | A |
5881732 | Sung et al. | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5885278 | Fleischman | Mar 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5897533 | Glickman | Apr 1999 | A |
5897553 | Mulier | Apr 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5899898 | Arless et al. | May 1999 | A |
5899899 | Arless et al. | May 1999 | A |
5902289 | Swartz et al. | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5906580 | Kline-Schoder et al. | May 1999 | A |
5906587 | Zimmon | May 1999 | A |
5906606 | Chee et al. | May 1999 | A |
5908029 | Knudson et al. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5916214 | Cosio et al. | Jun 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5927284 | Borst et al. | Jul 1999 | A |
5928191 | Houser et al. | Jul 1999 | A |
5931810 | Grabek | Aug 1999 | A |
5931848 | Saadat | Aug 1999 | A |
5954661 | Greenspon et al. | Sep 1999 | A |
5957961 | Maguire et al. | Sep 1999 | A |
5971980 | Sherman | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6016811 | Knopp et al. | Jan 2000 | A |
6042556 | Beach et al. | Mar 2000 | A |
6063081 | Mulier | May 2000 | A |
6066136 | Geistert | May 2000 | A |
6071279 | Whayne et al. | Jun 2000 | A |
6088894 | Oakley | Jul 2000 | A |
6096037 | Mulier | Aug 2000 | A |
6113592 | Taylor | Sep 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6120496 | Whayne et al. | Sep 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6165174 | Jacobs et al. | Dec 2000 | A |
6183468 | Swanson et al. | Feb 2001 | B1 |
6217528 | Koblish et al. | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6236883 | Ciaccio et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238347 | Nix et al. | May 2001 | B1 |
6238393 | Mulier | May 2001 | B1 |
6245061 | Panescu et al. | Jun 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6270471 | Hechel et al. | Aug 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6302880 | Schaer | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6312383 | Lizzi et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6319249 | Tollner | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328736 | Mulier | Dec 2001 | B1 |
6332881 | Carner et al. | Dec 2001 | B1 |
6358248 | Mulier | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6364876 | Erb et al. | Apr 2002 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6371955 | Fuimaono et al. | Apr 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6413254 | Hissong et al. | Jul 2002 | B1 |
6419648 | Vitek et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6430426 | Avitall | Aug 2002 | B2 |
6440130 | Mulier | Aug 2002 | B1 |
6443952 | Mulier | Sep 2002 | B1 |
6447507 | Bednarek et al. | Sep 2002 | B1 |
6461314 | Pant et al. | Oct 2002 | B1 |
6461356 | Patterson | Oct 2002 | B1 |
6464700 | Koblish et al. | Oct 2002 | B1 |
6471697 | Lesh | Oct 2002 | B1 |
6471698 | Edwards et al. | Oct 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6475216 | Mulier | Nov 2002 | B2 |
6477396 | Mest et al. | Nov 2002 | B1 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6488680 | Francischelli | Dec 2002 | B1 |
6502575 | Jacobs et al. | Jan 2003 | B1 |
6514250 | Jahns | Feb 2003 | B1 |
6522905 | Desai | Feb 2003 | B2 |
6522930 | Schaer et al. | Feb 2003 | B1 |
6527767 | Wang et al. | Mar 2003 | B2 |
6537248 | Mulier | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6558382 | Jahns | May 2003 | B2 |
6584345 | Govari | Jun 2003 | B2 |
6584360 | Francischelli | Jun 2003 | B2 |
6585732 | Mulier | Jul 2003 | B2 |
6605084 | Acker et al. | Aug 2003 | B2 |
6610055 | Swanson et al. | Aug 2003 | B1 |
6610060 | Mulier | Aug 2003 | B2 |
6613048 | Mulier | Sep 2003 | B2 |
6645199 | Jenkins et al. | Nov 2003 | B1 |
6645202 | Pless et al. | Nov 2003 | B1 |
6648883 | Francischelli | Nov 2003 | B2 |
6656175 | Francischelli | Dec 2003 | B2 |
6663627 | Francischelli et al. | Dec 2003 | B2 |
6692450 | Coleman | Feb 2004 | B1 |
6699240 | Francischelli | Mar 2004 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6706038 | Francischelli | Mar 2004 | B2 |
6706039 | Mulier | Mar 2004 | B2 |
6716211 | Mulier | Apr 2004 | B2 |
6736810 | Hoey | May 2004 | B2 |
6755827 | Mulier | Jun 2004 | B2 |
6764487 | Mulier | Jul 2004 | B2 |
6773433 | Stewart et al. | Aug 2004 | B2 |
6776780 | Mulier | Aug 2004 | B2 |
6807968 | Francischelli | Oct 2004 | B2 |
6827715 | Francischelli | Dec 2004 | B2 |
6849073 | Hoey | Feb 2005 | B2 |
6858028 | Mulier | Feb 2005 | B2 |
6887238 | Jahns | May 2005 | B2 |
6899711 | Stewart et al. | May 2005 | B2 |
6911019 | Mulier | Jun 2005 | B2 |
6916318 | Francischelli | Jul 2005 | B2 |
6936046 | Hissong | Aug 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6949098 | Mulier | Sep 2005 | B2 |
6960205 | Jahns | Nov 2005 | B2 |
6962589 | Mulier | Nov 2005 | B2 |
7029470 | Francischelli et al. | Apr 2006 | B2 |
20030045872 | Jacobs | Mar 2003 | A1 |
20030144656 | Ocel | Jul 2003 | A1 |
20030191462 | Jacobs | Oct 2003 | A1 |
20030216724 | Jahns | Nov 2003 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040015219 | Francischelli | Jan 2004 | A1 |
20040044340 | Francischelli | Mar 2004 | A1 |
20040049179 | Francischelli | Mar 2004 | A1 |
20040078069 | Francischelli | Apr 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040087940 | Jahns | May 2004 | A1 |
20040092926 | Hoey | May 2004 | A1 |
20040138621 | Jahns | Jul 2004 | A1 |
20040138656 | Francischelli | Jul 2004 | A1 |
20040143260 | Francischelli | Jul 2004 | A1 |
20040186465 | Francischelli | Sep 2004 | A1 |
20040215183 | Hoey | Oct 2004 | A1 |
20040220560 | Briscoe | Nov 2004 | A1 |
20040236322 | Mulier | Nov 2004 | A1 |
20040267326 | Ocel | Dec 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050033280 | Francischelli | Feb 2005 | A1 |
20050090815 | Francischelli | Apr 2005 | A1 |
20050143729 | Francischelli | Jun 2005 | A1 |
20050165392 | Francischelli | Jul 2005 | A1 |
20050209564 | Bonner | Sep 2005 | A1 |
20050267454 | Hissong | Dec 2005 | A1 |
20060009756 | Francischelli | Jan 2006 | A1 |
20060009759 | Chrisitian | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
0 499 491 | Feb 1992 | EP |
Number | Date | Country | |
---|---|---|---|
20060142753 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10685236 | Oct 2003 | US |
Child | 11355465 | US | |
Parent | 10132392 | Apr 2002 | US |
Child | 10685236 | US |