The present invention generally relates to plasma guns, particularly to ablative plasma guns, and also relates to triggers for electric arc devices.
Electric arc devices are used in a variety of applications, including series capacitor protection as described in U.S. Pat. No. 4,259,704 of the present assignee, high power switches, acoustic generators, shock wave generators, and pulsed plasma thrusters. Such devices have two or more electrodes separated by a gap of air or another gas. A bias voltage is applied to the electrodes across the gap. A triggering device in the gap ionizes a portion of the gas in the gap, providing a conductive path that initiates arcing between the electrodes.
Conventional spark gap triggering involves application of high voltage pulses to a trigger pin. The trigger pulse magnitude depends largely on the bias voltage across the spark gap. Although such pulse triggering is widely used, the cost of the trigger source and its electronics is several times higher than the cost of the main spark gap itself. For example, in a 600V system the required trigger voltage is at least 250 KV for a gap of 20 mm.
An aspect of the invention resides in a plasma gun with two gap electrodes in diagonally opposite ends of an open-ended chamber of ablative material such as an ablative polymer. A divergent nozzle ejects and spreads an ablative plasma at supersonic speed.
Another aspect of the invention resides in using the ablative plasma to trigger a main arc device, such as an arc crowbar or a high power switch, faster and with less trigger energy than existing triggers.
Another aspect of the invention resides in controlling the initial properties of a triggered arc in a main arc device via properties of an ablative plasma, which are in turn controllable by design parameters of an ablative plasma gun.
Another aspect of the invention resides in reducing cost for triggering arc devices by means of inexpensive ablative plasma gun designs and by the reduced triggering energy and related trigger circuit requirements.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Characteristics of the plasma jet 34 such as velocity, ion concentration, and spread, may be controlled by the electrode dimensions and separation, the dimensions of the interior chamber 28 of the cup 26, the type of ablative material, the trigger pulse shape and energy, and the nozzle shape. The cup material may be Polytetrafluoroethylene, Polyoxymethylene Polyamide, Poly-methyle methacralate (PMMA), other ablative polymers, or various mixtures of these materials. The chamber 28 may be generally elongated and cylindrical with a closed end, to minimize trigger pulse energy, ablation response time, and ejection time, and maximize plasma production, or it may be another shape.
The plasma gun may have a base 36 for supporting the electrodes 22, 24 and the cup 26 as shown. A cover 38 may enclose the other elements and provide the nozzle 30. The cup 26 may be retained between the base 36 and the cover 38 as shown. The base 36 and the cover 38 may be made of the same material as the cup or of different materials, such as a refractory or ceramic material. Each electrode 22, 24 has a respective distal end 23, 25 that enters the chamber 28 through the cup 26 walls. The electrodes 22, 24 may be formed as wires as shown to minimize expense, or they may have other known forms. The distal ends of the electrodes 23, 25 may be diagonally opposed across the chamber 28 and separated along the length of the chamber 28 as shown to provide a gap for the gun arc 32. The material of the electrodes, or at least the distal ends of the electrodes, may be tungsten steel, tungsten, other high temperature refractory metals/alloys, carbon/graphite, or other suitable arc electrode materials.
The inventors have innovatively recognized that an ablative plasma gun embodying aspects of the present invention provides a more efficient arc gap trigger than conventional triggering methods mentioned above.
For readers desirous of general background information in connection with an example main arc device, reference is made to U.S. patent application Ser. No. 11/693,849, filed Mar. 30, 2007 by the assignee of the present invention, titled “Arc Flash Elimination Apparatus And Method”, and herein incorporated by reference in its entirety. This application describes an innovative arc crowbar that may be triggered by an ablative plasma gun embodying aspects of the present invention. The arc crowbar has two or more main electrodes separated by a gap of air or another gas in a pressure-tolerant case. Each electrode is connected to an electrically different portion of a power circuit. An ablative plasma gun is mounted in the gap. When an arc flash is detected on the power circuit, the arc crowbar is triggered by a voltage or current pulse to the plasma gun. The gun injects ablative plasma into the crowbar gap, reducing the gap impedance sufficiently to initiate a protective arc between the main electrodes that quickly absorbs energy from the arc flash and opens a circuit breaker. This quickly stops the arc flash and protects the power circuit.
Generally, a main arc device 50 has two or more main electrodes 52, 54 separated by a gap 58 of air or another gas. Each electrode 52, 54 is connected to an electrically different portion 60, 62 of a circuit, for example different phases, neutral, or ground. This provides a bias voltage 61 across the arc gap 58. A trigger circuit 64 provides a trigger pulse to the ablative plasma gun 20, causing it to eject ablative plasma 34 into the gap 58, lowering the gap impedance to initiate an arc 59 between the electrodes 52, 54.
The arc crowbar electrode gap 58 should be triggered as soon as an arc flash is detected on a protected circuit. One or more suitable sensors may be arranged to detect an arc flash and provide the trigger signal 74 as detailed in the related patent application. In the case of a 600V system, during arc flash the voltage across the gap 58 is normally less than 250 volts, which may not be enough to initiate the arc 59. The ablative plasma 34 bridges the gap 58 in less than about a millisecond to enable a protective short circuit via the arc 59 to extinguish the arc flash before damage is done.
In a series of successful tests of an arc crowbar 70, the crowbar electrodes 52, 54, 56 were about 40 mm diameter spheres, each spaced about 25 mm from the adjacent sphere, with sphere centers located at a radius of about 37.52 mm from a common center point. The trigger was an ablative plasma gun 20 with a cup 26 made of Polyoxymethylene with a chamber 28 diameter of about 3 mm and chamber length of about 8 mm. The nozzle 30 was located about 25 mm below the plane of the electrode 53, 54, 46 sphere centers.
Gap bias voltages ranging from about 120V to about 600V were triggered in testing by the ablative plasma gun using a triggering pulse 8/20 (e.g., a pulse with a rise time of about 8 microseconds and a fall time of about 20 microseconds) with respective current and voltage ranges from about 20 kA to about 5 kA and from about 40 kV to about 5 kV. For example, a gap bias voltage of about 150V was triggered by a trigger pulse of about 20 kV/5 kA. In contrast, a conventional trigger pin would require a trigger pulse of about 250 kV for this same bias voltage, making the conventional trigger pin and its circuitry several times more expensive than the main electrodes.
It will be appreciated that an ablative plasma gun embodying aspects of the present invention may be used as both a main arc device, and as a trigger. For example, an ablative plasma gun may be provided as a main arc device in an acoustic generator, a shock wave generator, or a pulsed plasma thruster, and may be triggered by a smaller ablative plasma gun as described herein.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1803175 | Devers | Apr 1931 | A |
3977191 | Britt | Aug 1976 | A |
4259704 | Hamann | Mar 1981 | A |
4493297 | McIlwain et al. | Jan 1985 | A |
4902870 | Frind et al. | Feb 1990 | A |
5120567 | Frind et al. | Jun 1992 | A |
5225656 | Frind | Jul 1993 | A |
5233155 | Frind | Aug 1993 | A |
5924278 | Burton et al. | Jul 1999 | A |
6001426 | Witherspoon et al. | Dec 1999 | A |
6141192 | Garzon | Oct 2000 | A |
6207916 | Pniok et al. | Mar 2001 | B1 |
6242707 | Mody et al. | Jun 2001 | B1 |
6417671 | Tiemann | Jul 2002 | B1 |
6532140 | McMahon et al. | Mar 2003 | B1 |
6633009 | Shea | Oct 2003 | B1 |
6683764 | Pniok | Jan 2004 | B1 |
6740841 | Brunet et al. | May 2004 | B2 |
6751528 | Dougherty | Jun 2004 | B1 |
6839209 | Shea et al. | Jan 2005 | B2 |
Number | Date | Country |
---|---|---|
1976077 | Oct 2008 | EP |
0178470 | Oct 2001 | WO |
Entry |
---|
Editor: Jim Wilson; NASA Official: Brian Dunbar; Title: Pulsed Plasma Thrusters; From NASA fact sheets (available on Internet); Last updated Mar. 17, 2006. |
Publication Titled: Bypass Gap, by GE Transmission, Distribution & Industrial Systems, regarding Series Compensation Systems, dated Nov. 14, 1999. |
Search Report and Written Opinion from corresponding EP Application No. 08154225.0-1226 dated May 11, 2012. |
Number | Date | Country | |
---|---|---|---|
20080253040 A1 | Oct 2008 | US |