1. Field of the Invention
The invention relates to drug delivery implantable medical devices, one example of which is a stent. More particularly, the invention relates to abluminal, multilayer coating constructs for drug-delivery stents.
2. Description of the Background
This invention relates to radially expandable endoprostheses, which are adapted to be implanted in a bodily lumen. An “endoprosthesis” corresponds to an artificial implantable medical device that is placed inside the body. A “lumen” refers to a cavity of a tubular organ such as a blood vessel. A stent is an example of these endoprostheses. Stents are generally cylindrically shaped devices, which function to hold open and sometimes expand a segment of a blood vessel or other anatomical lumen such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in blood vessels. “Stenosis” refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce body vessels and prevent restenosis following angioplasty in the vascular system. “Restenosis” refers to the reoccurrence of stenosis in a blood vessel or heart valve after it has been treated (as by balloon angioplasty, stenting, or valvuloplasty) with apparent success.
The treatment of a diseased site or lesion with a stent involves both delivery and deployment of the stent. “Delivery” refers to introducing and transporting the stent through a bodily lumen to a region, such as a lesion, in a vessel that requires treatment. “Deployment” corresponds to the expansion of the stent within the lumen at the treatment region. Delivery and deployment of a stent are accomplished by positioning the stent about one end of a catheter, inserting the end of the catheter through the skin into a bodily lumen, advancing the catheter in the bodily lumen to a desired treatment location, expanding the stent at the treatment location, and removing the catheter from the lumen. In the case of a balloon expandable stent, the stent is mounted about a balloon disposed on the catheter. Mounting the stent typically involves compressing or crimping the stent onto the balloon. The stent is then expanded by inflating the balloon. The balloon may then be deflated and the catheter withdrawn. In the case of a self-expanding stent, the stent may be secured to the catheter via a retractable sheath or a sock. When the stent is in a desired bodily location, the sheath may be withdrawn which allows the stent to self-expand.
Stents have been made of many materials including metals and polymers. Polymeric materials include both nonbioerodable and bioerodable plastic materials. The cylindrical structure of stents is typically composed of a scaffolding that includes a pattern or network of interconnecting structural elements or struts. The scaffolding can be formed from wires, bars, tubes, or planar films of material rolled into a cylindrical shape. Furthermore, the pattern that makes up the stent allows the stent to be radially expandable and longitudinally flexible. Longitudinal flexibility facilitates delivery of the stent, and rigidity is needed to hold open a body lumen. The pattern should be designed to maintain the longitudinal flexibility and rigidity required of the stent.
Stents are used not only for mechanical intervention but also as vehicles for providing biological therapy. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or even toxic side effects for the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results.
A medicated stent may be fabricated by coating the surface of either a metallic or polymeric scaffolding to produce a drug reservoir layer on the surface. The drug reservoir layer typically includes a polymeric carrier that includes an active agent or drug. To fabricate a coating, a polymer, or a blend of polymers, can be applied on the stent using commonly used techniques known to those having ordinary skill in the art. A composition for application to a stent may include a solvent, a polymer dissolved in the solvent, and an active agent dispersed in the blend. The composition may be applied to the stent by immersing the stent in the composition, by direct application, by roll coating, or by spraying the composition onto the stent. The solvent is allowed to evaporate, leaving on the stent strut surfaces a coating of the polymer and the active agent impregnated in the polymer.
A drug delivery stent coating should meet several well-known criteria including mechanical integrity, controlled release of the drug, and biocompatibility. Active agents within polymer-based coating layers can interfere with the mechanical integrity of a coating since active agents negatively impact the coating mechanical properties, and the ability of a polymer matrix to adhere effectively to the surface of the stent. Increasing the quantity of the active agent reduces the effectiveness of the adhesion. A primer layer can serve as a functionally useful intermediary layer between the surface of the device and an active agent-containing or reservoir coating, or between multiple layers of reservoir coatings. The primer layer provides an adhesive tie between the reservoir coating and the device. In addition, successful treatment of a diseased site with a medicated stent often requires that the rate of release of the active agent or drug be within a prescribed range. A barrier or polymeric topcoat layer above a reservoir layer serves the purpose of controlling the rate of release of an active agent or drug.
Furthermore, since the presence of foreign polymers can adversely affect the body, it is generally desirable to limit exposure of the polymer on a coating to the body. Therefore, a stent may also include a biobeneficial coating over a reservoir layer and/or topcoat layer to improve the biocompatibility of the coating. However, in general, it is appropriate to use no more polymer than is necessary to hold the drug on the stent and to control its release. This is particularly the case for coatings that include bioabsorbable polymers since the polymer is absorbed in vivo. Therefore, it would be advantageous to reduce the amount of coating material on a stent without adversely impacting the stent's treatment capabilities.
Additionally, the presence of a topcoat layer, such as a poly(ester amide) (PEA) layer, on a luminal stent surface can have a detrimental impact on a stent's deliverability and coating mechanical integrity. The PEA coatings change the coefficient of friction between the stent and the delivery balloon. In addition, some PEA polymers have structures that cause them to be sticky or tacky. If the PEA either increases the coefficient of friction or adheres to the catheter balloon, the smooth release of the stent from the balloon after deflation is compromised. PEA stent coatings often exhibit extensive balloon shear damage post-deployment as well, which could result in a thrombogenic luminal stent surface. Therefore, it would be desirable to limit exposure of the balloon to the PEA topcoat layer.
Embodiments of the present invention are directed to coatings for implantable medical devices, such as stents. The devices may include a structural element having a surface with an abluminal side, a luminal side, and two sidewalls extending between the abluminal side and the luminal side. The coating may include a continuous first layer disposed above all or a majority of the abluminal side and optionally above a portion of at least one of the side-walls extending from the abluminal side. The luminal side and portions of the sidewalls are free from the first layer. The coating may further include a continuous second layer covering the first layer such that no portion of the first layer is not covered by the second layer. The luminal side of the structural element is free from the second layer.
A further embodiment of the invention may a include a coating for the structural element including a continuous first layer disposed above all or a majority of the abluminal side and optionally above a portion of at least one of the side-walls extending from the abluminal side. The luminal side and portions of the sidewalls are free from the first layer. The coating may further include a continuous second layer covering a portion of the first layer such that at least a portion of the first layer is not covered by the second layer.
Embodiments of the invention described herein relate to drug delivery implantable medical devices. In particular, various embodiments of devices with abluminal, multilayer coating constructs for drug-delivery are described. The embodiments of devices described herein relate to implantable medical devices that include an underlying scaffolding or substrate with a coating such as a polymer-based coating. The polymer-based coating may contain, for example, an active agent or drug for local administration at a diseased site. The active agent can be any substance capable of exerting a therapeutic or prophylactic effect. The underlying substrate that is coated can be polymeric, metallic, ceramic, or made from any suitable material. “Implantable medical device” is intended to include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure or substrate of the device can be of virtually any design.
The underlying structure or substrate of an implantable medical device, such as a stent can be completely or at least in part be made from a biodegradable polymer or combination of biodegradable polymers, a biostable polymer or combination of biostable polymers, or a combination of biodegradable and biostable polymers. Additionally, a polymer-based coating for a surface of a device can be a biodegradable polymer or combination of biodegradable polymers, a biostable polymer or combination of biostable polymers, or a combination of biodegradable and biostable polymers.
To fabricate the coating, the polymer, or a blend of polymers, can be applied on the stent using commonly used techniques known to those having ordinary skill in the art. For example, the polymer can be applied to the stent by dissolving the polymer in a coating solvent, or a mixture of solvents, and applying the resulting solution on the stent by spraying, “ink-jet-type” deposition methods, brushing, roll coating, plasma deposition, and the like. “Solvent” is defined as a substance capable of dissolving or dispersing one or more other substances or capable of at least partially dissolving or dispersing the substance(s) to form a uniformly dispersed mixture at the molecular- or ionic-size level. The solvent should be capable of dissolving at least 0.1 mg of the polymer in 1 ml of the solvent, and more narrowly 0.5 mg in 1 ml at ambient temperature and ambient pressure.
Polymers can be biostable, bioabsorbable, biodegradable, or bioerodable. Biostable refers to polymers that are not biodegradable. The terms biodegradable, bioabsorbable, and bioerodable are used interchangeably and refer to polymers that are capable of being completely degraded and/or eroded when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed, and/or eliminated by the body. The processes of breaking down and eventual absorption and elimination of the polymer can be caused by, for example, hydrolysis, metabolic processes, bulk or surface erosion, and the like. For coating applications, it is understood that after the process of degradation, erosion, absorption, and/or resorption has been completed, no polymer will remain on the device. In some embodiments, very negligible traces or residue may be left behind. For stents made from a biodegradable polymer, the stent is intended to remain in the body for a duration of time until its intended function of, for example, maintaining vascular patency and/or drug delivery is accomplished.
Representative examples of polymers that may be used in the embodiments of the substrate of implantable medical devices or coatings for implantable medical devices disclosed herein include, but are not limited to, poly(N-acetylglucosamine) (Chitin), Chitosan, poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic acid), poly(D,L-lactide), poly(D-lactic acid), poly(D-lactide), poly(D,L-lactide-co-L-lactide), poly(caprolactone), poly(trimethylene carbonate), polyester amide, poly(glycolic acid-co-trimethylene carbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers other than polyacrylates, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene fluoride and polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), poly(methacrylates), poly(acrylates), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides, polyethers, polyurethanes, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose. Additional representative examples of polymers that may be especially well suited for use in embodiments of the substrate of implantable medical devices or coatings for implantable medical devices disclosed herein include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(butyl methacrylate), poly(vinylidene fluoride-co-hexafluoropropene) (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, N.J.), polyvinylidene fluoride (otherwise known as KYNAR, available from ATOFINA Chemicals, Philadelphia, Pa.), ethylene-vinyl acetate copolymers, and polyethylene glycol.
In addition, polymers containing moieties derived from poly(lactic acid) can be also used in addition to or instead of, poly(lactic acid), for fabricating and coating devices. Polymers based on poly(lactic acid) include derivatives of poly(lactic acid), for example, hydrolyzed or carboxylated poly(lactic acid), or a blend thereof. Using hydrolyzed or carboxylated poly(lactic acid) is expected to result in an increased rate of degradation of the coating. Another type of polymer based on poly(lactic acid) that can be used for fabricating and coating implantable medical devices includes graft copolymers, and block copolymers, such as AB block-copolymers (“diblock-copolymers”) or ABA block-copolymers (“triblock-copolymers”), or mixtures thereof.
Examples of active agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The bioactive agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel, (e.g., TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g., Taxotere®, from Aventis S.A., Frankfurt, Germany), methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g., Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g., Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include aspirin, sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g., Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g., Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), calcium channel blockers (such as nifedipine), coichicine, proteins, peptides, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate agents include cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, carboplatin, alpha-interferon, genetically engineered epithelial cells, steroidal anti-inflammatory agents, non-steroidal anti-inflammatory agents, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, estradiol, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2′,6,6′-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, ABT-578, clobetasol, cytostatic agents, prodrugs thereof, co-drugs thereof, and a combination thereof. Other therapeutic substances or agents may include rapamycin and structural derivatives or functional analogs thereof, such as 40-O-(2-hydroxy)ethyl-rapamycin (known by the trade name of EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.
A non-polymer substrate of the device may be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
Embodiments of the devices described herein may be illustrated by a stent.
Additionally, a surface of an implantable medical device may also be characterized by the relative location of the surface with respect to a bodily lumen. The device may include luminal surfaces or inner portions, abluminal surfaces or outer portions, and surfaces between the luminal and abluminal surfaces or side-wall surfaces. For example, struts 15 of stent 10 include luminal surfaces 35, abluminal surfaces 40, and side-wall surfaces 45. A strut may also be described by axes, a longitudinal axis and a latitudinal axis.
As indicated above, a drug delivery coating for a stent with a structural element like that depicted in
(a) a primer layer, which may improve adhesion of subsequent layers on the implantable substrate or on a previously formed layer;
(b) a reservoir or agent layer, which may include a polymer and an agent or, alternatively, a polymer free agent;
(c) a topcoat layer, which may serve as a way of controlling the rate of release of an agent from a reservoir layer; and
(d) a biobeneficial or biocompatible finishing layer containing a biobeneficial agent, which may improve the biocompatibility of the coating.
The reservoir layer can be applied directly to at least a part of a surface of an implantable medical device as a pure agent to serve as a reservoir for at least one active agent. The agent can be combined with a biodegradable polymer as a matrix, wherein the agent may or may not be bonded to the polymer. The primer layer can be applied between the surface of the device and the agent layer to improve adhesion of the agent layer to the surface or between layers and can optionally include an agent. A layer of pure or substantially pure active agent can be sandwiched between layers including biodegradable polymer. For example, it has been observed that a reservoir layer containing principally EVEROLIMUS has very poor adhesion to metallic struts. A primer layer, including, for example, poly(butyl methacrylate) (PBMA) enables an EVEROLIMUS reservoir layer to remain on the stent. The topcoat layer can be applied over at least a portion of the reservoir layer to serve as a membrane to control the rate of release of the active agent and can optionally comprise an agent.
The biobeneficial finishing layer can also be applied to increase the biocompatibility of the coating by, for example, increasing acute hemocompatibility and can also include an active agent. A “biobeneficial agent” is an agent linked to a polymer that provides a biological benefit within a mammal without necessarily being released from the polymer. A biological benefit may be that the polymer or coating is modified with the biobeneficial agent to be non-thrombogenic, such that protein absorption is inhibited or prevented to avoid formation of a thromboembolism; to promote healing, such that endothelialization of the luminal stent surfaces is rapid and forms a healthy and functional endothelial layer; or to be non-inflammatory, such that the biobeneficial agent acts as a biomimic to passively avoid attracting monocytes and neutrophils, which leads to the cascade of events creating inflammation. The biobeneficial agent can also be combined, mixed or blended with a polymer. Representative examples of biobeneficial agents include, but are not limited to, poly(alkylene glycols), poly(N-vinyl pyrrolidone), poly(acrylamide methyl propane sulfonic acid), poly(styrene sulfonate), sulfonated dextran, polyphosphazenes, poly(orthoesters), poly(tyrosine carbonate), hyaluronic acid, heparin and any derivatives, hirudin, analogs, homologues, congeners, salts, copolymers and combinations thereof.
Coating configurations on stents with one or more of the above types of layers are typically conformal, which is a coating that covers all or most of the surfaces of the struts, including the abluminal surface, luminal surface, and side-wall surfaces.
It would be desirable to have a drug delivery coating restricted completely or substantially to an abluminal surface of a stent that also addresses one or more of the criteria discussed above including mechanical integrity, controlled release, and biocompatibility. There are several advantages of having a drug delivery coating restricted completely to an abluminal surface region of a strut. From a therapeutic standpoint, an abluminal coating can be as efficacious as a conformal coating. Furthermore, an abluminal coating allows a reduction in the total polymer load on a stent, which may improve the biocompatibility of the stent. A lower polymer loading reduces the form factor of the stent which reduces the disturbance of the local blood flow, and hence, the thrombogenecity of the stent. Additionally, a decreased polymer load for biodegradable coatings reduces the likelihood of embolization due to particles of degrading polymer in the blood stream.
Another advantage of a coating restricted completely or substantially to the abluminal surface is that interactions between a topcoat layer and the catheter balloon are reduced or eliminated. It has been observed that use of an outermost topcoat layer, in particular poly(ester amide), on a luminal stent surface can have a detrimental impact on a stent's deliverability and coating mechanical integrity. The PEA coating changes the coefficient of friction between the stent and the delivery balloon. Additionally, some PEA polymers have structures that cause them to be sticky or tacky. If the PEA either increases the coefficient of friction or adheres to the catheter balloon, the smooth release of the stent from the balloon after deflation is compromised. PEA stent coatings have been observed to exhibit extensive balloon shear damage post-deployment as well, which could increase the thrombogenicity of the luminal stent surface.
The abluminal, multilayer coating configurations described herein possess the advantages discussed above and meet one or more of the criteria of mechanical integrity, controlled release, and biocompatibility. Additionally, the coatings allow controlled release from an abluminal reservoir layer without the use of reservoirs embedded in cavities or indentations in the abluminal surface. The surfaces of the structural members of the implantable medical devices used for conformal coatings are identical to those used in the presently described abluminal coating embodiments.
Embodiments of polymer coatings are illustrated by FIGS. 5-15A-B. The figures have not been drawn to scale, and the thickness of the various layers have been over or under emphasized for illustrative purposes. The polymers used for the primer material should have a high capacity of adherence to the surface of an implantable device, such as a metallic surface of a stent, or a high capacity of adherence to a polymeric surface such as the surface of a stent made of polymer, or a previously applied layer of polymeric material. The polymer in primer layers may be a homopolymer, copolymer, terpolymer, etc. The polymer may also include random, alternating, block, cross-linked, blends, and graft variations thereof. For instance, a primer layer may include PEA, poly(butyl methacrylate), or a poly(lactic acid). The active agent may be, for example, 40-O-(2-hydroxy)ethyl-rapamycin, known by the trade name of EVEROLIMUS, available from Novartis as Certican™. The active agent may be dispersed in a polymer such as poly(vinylidene fluoride-co-hexafluoropropene) (Solef). A topcoat or barrier layer may be any polymer that controls the migration of active agent. For example, the topcoat layer may include PEA.
By way of example, and not limitation, a primer layer can have any suitable thickness, examples of which can be in the range of about 0.1 to about 10 microns, or more narrowly about 0.1 to about 2 microns. A reservoir layer can have a thickness of about 0.1 microns to about 20 microns, or more narrowly about 0.5 microns to 15 microns. The amount of the active agent to be included on an implantable medical device can be further increased by applying a plurality of reservoir layers on top of one another. A topcoat layer can have any suitable thickness, examples of which can be in the range of about 0.1 to about 20 microns, or more narrowly about 0.1 to about 10 microns.
“Above” a surface or layer is defined as higher than or over a surface or layer measured along an axis normal to a surface, but not necessarily in contact with the surface or layer. “Below” is defined as the opposite of “above.” “Cover” is defined as above and in contact with. “Continuous” is defined as marked by uninterrupted extension in space. As used herein, an “edge” of a layer refers to a line or region on a surface delineating where the layer ends.
A structural element of an implantable medical device, such as a stent, suitable for coating embodiments disclosed herein may include a surface having an abluminal side, a luminal side, and two sidewalls extending between the abluminal side and the luminal side. Several embodiments include coating layers above the abluminal side, and optionally over a minor portion of one or both of the sidewalls adjacent to the abluminal side. Some of these abluminal or substantially abluminal coating embodiments include controlled release of active agents from a reservoir layer and/or improved adhesion due to primer layer(s). In the embodiments of the coatings described below, the surface of the structural element below the coating is cavity free.
One embodiment of a coating on a structural element of an implantable medical device may include a continuous first layer disposed above a majority of the abluminal side. The continuous first layer may optionally be above a portion of at least one of the side-walls extending from the abluminal side. The luminal side and portions of the sidewalls may be free from the first layer.
The coating may further include a continuous second layer covering the first layer such that no portion of the first layer is not covered by the second layer. The luminal side of the structural element may be free from the second layer. In some embodiments, the second layer may cover a portion of the structural element not covered by the first layer. In one embodiment of the coating, a majority of the sidewalls may be free from the first layer and the second layer.
It may be advantageous to have a third layer above the reservoir layer that may function as a topcoat layer, primer layer, and/or biobeneficial layer. A topcoat layer may control the release of active agent from the reservoir layer. Additionally, a third layer functioning as a primer layer may improve the adhesion between a second layer and another layer above the second layer. In some embodiments, a continuous third layer may cover the second layer such that no portion of the second layer is not covered by the third layer. Additionally, the third layer may cover a portion of the structural element not covered by the second layer.
In one embodiment, a majority of the sidewalls may be free from the third layer. Alternatively, the third layer may cover a portion of or all of the sidewalls.
In a further embodiment, the luminal side of the structural element may be free from the third layer. Alternatively, the third layer may cover a portion of or the entire luminal side.
In certain embodiments, at least one of the first or second layers may be a reservoir layer that includes a pure or substantially pure active agent. In one such embodiment, the first layer may be a reservoir layer. In this embodiment, the second layer may be a topcoat or barrier layer that functions to control the release of active agent from the reservoir layer. The second layer may additionally or alternatively function as a primer layer that improves adhesion between the reservoir layer and another layer above the second layer.
In certain embodiments, coating layers in an abluminal or substantially abluminal coating may be strip-shaped with at least one edge of a coating layer parallel to a longitudinal axis of the structural element. As an illustration,
In alternate embodiment, the second layer may be a reservoir layer. In this embodiment, the first layer may then be primer layer that improves adhesion between a reservoir layer and a surface or another layer.
As discussed above, it may be advantageous to have third layer above the reservoir layer that functions as a topcoat and/or biobeneficial layer.
Other embodiments of a coating on a structural element may include a continuous first layer disposed above a majority of the abluminal side of the structural element and optionally above a portion of at least one of the side-walls extending from the abluminal side. The luminal side and portions of the sidewalls may be free from the first layer. The coating may also include a continuous second layer covering a portion of the first layer such that at least a portion of the first layer is not covered by the second layer. A majority of the sidewalls may be free from the first layer and the second layer. In an embodiment, the second layer may be a reservoir layer and the first layer may be a primer layer that improves adhesion of the reservoir layer to the surface of the structural element.
Additionally, an embodiment exemplified in
The structural member may further include a fourth layer covering the third layer such that no portion of the third layer is not covered by the fourth layer. The fourth layer may be a biobeneficial coating layer that increases biocompatibility of the coating.
Furthermore, numerous variations of the coating embodiments described above are possible. Such variations may be configured to achieve release control of active agent from a reservoir layer, improve adhesion between layers, and/or improve biocompatibility of the coating. In certain embodiments, abluminal or substantially abluminal coating embodiments may have multiple primer and reservoir layers with the layers alternating between the two types of layers through the thickness of the coating. Such embodiments may be useful, for example, for a course of treatment that occurs in stages where each stage requires the use of a different type or types of active agents.
Moreover, multiple primer and reservoir embodiments may utilize the release control topcoat-reservoir embodiment exemplified in
One embodiment of a multiple primer and reservoir layer coating may include repeat units of the embodiment exemplified in
Another embodiment of a multiple primer and reservoir layer coating may include repeat units of the embodiment exemplified in
A further embodiment of a multiple primer and reservoir layer coating may include the embodiment exemplified in
Additionally, the embodiment exemplified in
In addition, a multiple primer and reservoir coating may include the coating shown in
Additionally,
Various methods may be used to form coatings as described herein including, but not limited to, ink-jet-type coating, electrostatic coating, roll coating, thermal deposition with masking, plasma polymerization with masking, direct application of polymer/solvent solution by micro-syringe, direct polymer melt application, and spray coating with photomasking. For example, a controlled deposition system ink-jet-type coating method can be used that applies various substances only to certain targeted portions of an implantable medical device. A representative example of such a system, and a method of using the same, is described in U.S. Pat. No. 6,395,326 to Castro et al. A controlled deposition system can be capable of depositing a substance on an implantable medical device having a complex geometry, and otherwise apply the substance so that coating is limited to particular portions of the device. The system can have a dispenser and a holder that supports the medical substrate. The dispenser and/or holder can be capable of moving in very small intervals, for example, less than about 0.001 inch. Furthermore, the dispenser and/or holder can be capable of moving in the x-, y-, or z-direction, and be capable of rotating about a single point.
The controlled deposition system can include a dispenser assembly. The dispenser assembly can be a simple device including a reservoir, which holds a composition prior to delivery, and a nozzle having an orifice through which the composition is delivered. One exemplary type of dispenser assembly can be an assembly that includes an ink-jet-type printhead. Another exemplary type of a dispenser assembly can be a microinjector capable of injecting small volumes ranging from about 2 to about 70 nL, such as NanoLiter 2000 available from World Precision Instruments or Pneumatic PicoPumps PV830 with Micropipette available from Cell Technology System. Such microinjection syringes may be employed in conjunction with a microscope of suitable design.
Furthermore, selective coating of an implantable medical device may be performed using photomasking techniques. Deposition and removal of a mask can be used to selectively coat surfaces of substrates. Masking deposition is known to one having ordinary skill in the art.
Additionally, the substances of the present invention can also be selectively deposited by an electrostatic deposition process. Such a process can produce an electrically charged or ionized coating substance. The electric charge causes the coating substance to be differentially attracted to the device, thereby resulting in higher transfer efficiency. The electrically charged coating substance can be deposited onto selected regions of the device by causing different regions of the device to have different electrical potentials.
An electrostatic coating method was used to coat the stent with a total solid of 328 μg using a 2% by weight solution of PEA-TEMPO in ethanol. PEA-TEMPO may be obtained from Guidant Corporation. The stent was translated and rotated under an electrospray nozzle. A different electrical potential on the luminal and abluminal surfaces was created by using a plastic sleeve over a spray mandrel. The plastic sleeve repelled the same charged droplets which prevented the droplets from depositing onto the luminal side of the stent. This resulted in a thinner coating layer on the luminal surface than the abluminal surface. A syringe pump was controlled at 1 cc/hr, and voltage was set at 5 kV. The coated stent was oven dried at 50° C. for 30 minutes.
Another of the same type of stent was coated using conventional spray coating to compare with the electrostatically coated stent. The stent was coated with 300 μg of 2% by weight solution of PEA-TEMPO in ethanol. The coated stent was oven dried at 50° C. for 30 minutes.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2072303 | Herrmann et al. | Mar 1937 | A |
2386454 | Frosch et al. | Oct 1945 | A |
2647017 | Coulliette | Jul 1953 | A |
2701559 | Cooper | Feb 1955 | A |
3288728 | Gorham | Nov 1966 | A |
3687135 | Stroganov et al. | Aug 1972 | A |
3773737 | Goodman et al. | Nov 1973 | A |
3839743 | Schwarcz | Oct 1974 | A |
3849514 | Gray, Jr. et al. | Nov 1974 | A |
3900632 | Robinson | Aug 1975 | A |
4075045 | Rideout | Feb 1978 | A |
4104410 | Malecki | Aug 1978 | A |
4110497 | Hoel | Aug 1978 | A |
4132357 | Blackinton | Jan 1979 | A |
4164524 | Ward et al. | Aug 1979 | A |
4226243 | Shalaby et al. | Oct 1980 | A |
4321711 | Mano | Mar 1982 | A |
4323071 | Simpson et al. | Apr 1982 | A |
4329383 | Joh | May 1982 | A |
4338942 | Fogarty | Jul 1982 | A |
4343931 | Barrows | Aug 1982 | A |
4346028 | Griffith | Aug 1982 | A |
4439185 | Lundquist | Mar 1984 | A |
4489670 | Mosser et al. | Dec 1984 | A |
4516972 | Samson et al. | May 1985 | A |
4529792 | Barrows | Jul 1985 | A |
4538622 | Samson et al. | Sep 1985 | A |
4554929 | Samson et al. | Nov 1985 | A |
4573470 | Fogarty | Mar 1986 | A |
4596574 | Urist | Jun 1986 | A |
4599085 | Riess et al. | Jul 1986 | A |
4608984 | Fogarty | Sep 1986 | A |
4611051 | Hayes et al. | Sep 1986 | A |
4612009 | Drobnik et al. | Sep 1986 | A |
4616593 | Kawamura et al. | Oct 1986 | A |
4616652 | Simpson | Oct 1986 | A |
4629563 | Wrasidlo | Dec 1986 | A |
4633873 | Dumican et al. | Jan 1987 | A |
4638805 | Powell | Jan 1987 | A |
4656083 | Hoffman et al. | Apr 1987 | A |
4656242 | Swan et al. | Apr 1987 | A |
4699611 | Bowden | Oct 1987 | A |
4702252 | Brooks et al. | Oct 1987 | A |
4718907 | Karwoski et al. | Jan 1988 | A |
4722335 | Vilasi | Feb 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4732152 | Wallstén et al. | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4740207 | Kreamer | Apr 1988 | A |
4743252 | Martin, Jr. et al. | May 1988 | A |
4748982 | Horzewski et al. | Jun 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4774039 | Wrasidlo | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4816339 | Tu et al. | Mar 1989 | A |
4818559 | Hama et al. | Apr 1989 | A |
4828561 | Woodroof | May 1989 | A |
4850999 | Planck | Jul 1989 | A |
4865870 | Hu et al. | Sep 1989 | A |
4871542 | Vilhardt | Oct 1989 | A |
4877030 | Beck et al. | Oct 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4879135 | Greco et al. | Nov 1989 | A |
4880683 | Stow | Nov 1989 | A |
4882168 | Casey et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4902289 | Yannas | Feb 1990 | A |
4906423 | Frisch | Mar 1990 | A |
4931287 | Bae et al. | Jun 1990 | A |
4932353 | Kawata et al. | Jun 1990 | A |
4941870 | Okada et al. | Jul 1990 | A |
4943346 | Mattelin | Jul 1990 | A |
4950227 | Savin et al. | Aug 1990 | A |
4955899 | Della Corna et al. | Sep 1990 | A |
4967606 | Wells et al. | Nov 1990 | A |
4977901 | Ofstead | Dec 1990 | A |
4988356 | Crittenden et al. | Jan 1991 | A |
4994033 | Shockey et al. | Feb 1991 | A |
4994298 | Yasuda | Feb 1991 | A |
4994560 | Kruper, Jr. et al. | Feb 1991 | A |
5015505 | Cetnar | May 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5019096 | Fox, Jr. et al. | May 1991 | A |
5028597 | Kodama et al. | Jul 1991 | A |
5037392 | Hillstead | Aug 1991 | A |
5037427 | Harada et al. | Aug 1991 | A |
5040548 | Yock | Aug 1991 | A |
5047050 | Arpesani | Sep 1991 | A |
5049132 | Shaffer et al. | Sep 1991 | A |
5053048 | Pinchuk | Oct 1991 | A |
5059166 | Fischell | Oct 1991 | A |
5059169 | Zilber | Oct 1991 | A |
5059211 | Stack et al. | Oct 1991 | A |
5062829 | Pryor et al. | Nov 1991 | A |
5064435 | Porter | Nov 1991 | A |
5078720 | Burton et al. | Jan 1992 | A |
5081394 | Morishita et al. | Jan 1992 | A |
5084065 | Weldon et al. | Jan 1992 | A |
5085629 | Goldberg et al. | Feb 1992 | A |
5087244 | Wolinsky et al. | Feb 1992 | A |
5087394 | Keith | Feb 1992 | A |
5100429 | Sinofsky et al. | Mar 1992 | A |
5100992 | Cohn et al. | Mar 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5104410 | Chowdhary | Apr 1992 | A |
5108416 | Ryan et al. | Apr 1992 | A |
5108417 | Sawyer | Apr 1992 | A |
5108755 | Daniels et al. | Apr 1992 | A |
5112457 | Marchant | May 1992 | A |
5116318 | Hillstead | May 1992 | A |
5116365 | Hillstead | May 1992 | A |
5123917 | Lee | Jun 1992 | A |
5127362 | Iwatsu et al. | Jul 1992 | A |
5133742 | Pinchuk | Jul 1992 | A |
5134192 | Feijen et al. | Jul 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5156623 | Hakamatsuka et al. | Oct 1992 | A |
5156911 | Stewart | Oct 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5163951 | Pinchuk et al. | Nov 1992 | A |
5163952 | Froix | Nov 1992 | A |
5163958 | Pinchuk | Nov 1992 | A |
5165919 | Sasaki et al. | Nov 1992 | A |
5167614 | Tessmann et al. | Dec 1992 | A |
5171445 | Zepf | Dec 1992 | A |
5176638 | Don Michael | Jan 1993 | A |
5188734 | Zepf | Feb 1993 | A |
5192311 | King et al. | Mar 1993 | A |
5197977 | Hoffman, Jr. et al. | Mar 1993 | A |
5205822 | Johnson et al. | Apr 1993 | A |
5213561 | Weinstein et al. | May 1993 | A |
5213576 | Abiuso et al. | May 1993 | A |
5219980 | Swidler | Jun 1993 | A |
5222971 | Willard et al. | Jun 1993 | A |
5225750 | Higuchi et al. | Jul 1993 | A |
5226889 | Sheiban | Jul 1993 | A |
5226913 | Pinchuk | Jul 1993 | A |
5229045 | Soldani | Jul 1993 | A |
5229172 | Cahalan et al. | Jul 1993 | A |
5232444 | Just et al. | Aug 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5234457 | Andersen | Aug 1993 | A |
5236447 | Kubo et al. | Aug 1993 | A |
5242399 | Lau et al. | Sep 1993 | A |
5254089 | Wang | Oct 1993 | A |
5254091 | Aliahmad et al. | Oct 1993 | A |
5258020 | Froix | Nov 1993 | A |
5258419 | Rolando et al. | Nov 1993 | A |
5269802 | Garber | Dec 1993 | A |
5272012 | Opolski | Dec 1993 | A |
5278200 | Coury et al. | Jan 1994 | A |
5279594 | Jackson | Jan 1994 | A |
5282823 | Schwartz et al. | Feb 1994 | A |
5282860 | Matsuno et al. | Feb 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5289831 | Bosley | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5292516 | Viegas et al. | Mar 1994 | A |
5298260 | Viegas et al. | Mar 1994 | A |
5300295 | Viegas et al. | Apr 1994 | A |
5304200 | Spaulding | Apr 1994 | A |
5306250 | March et al. | Apr 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5306294 | Winston et al. | Apr 1994 | A |
5306501 | Viegas et al. | Apr 1994 | A |
5306786 | Moens et al. | Apr 1994 | A |
5308641 | Cahalan et al. | May 1994 | A |
5314472 | Fontaine | May 1994 | A |
5318531 | Leone | Jun 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5330500 | Song | Jul 1994 | A |
5330768 | Park et al. | Jul 1994 | A |
5336518 | Narayanan et al. | Aug 1994 | A |
5342283 | Good | Aug 1994 | A |
5342348 | Kaplan | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342621 | Eury | Aug 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5344455 | Keogh et al. | Sep 1994 | A |
5350800 | Verhoeven et al. | Sep 1994 | A |
5356433 | Rowland et al. | Oct 1994 | A |
5360401 | Turnland et al. | Nov 1994 | A |
5360443 | Barone et al. | Nov 1994 | A |
5364354 | Walker et al. | Nov 1994 | A |
5366504 | Andersen et al. | Nov 1994 | A |
5368560 | Rambo et al. | Nov 1994 | A |
5370684 | Vallana et al. | Dec 1994 | A |
5380299 | Fearnot et al. | Jan 1995 | A |
5383925 | Schmitt | Jan 1995 | A |
5383927 | DeGoicoechea et al. | Jan 1995 | A |
5385580 | Schmitt | Jan 1995 | A |
5387450 | Stewart | Feb 1995 | A |
5389106 | Tower | Feb 1995 | A |
5399666 | Ford | Mar 1995 | A |
5405472 | Leone | Apr 1995 | A |
5409495 | Osborn | Apr 1995 | A |
5411466 | Hess | May 1995 | A |
5411477 | Saab | May 1995 | A |
5412035 | Schmitt et al. | May 1995 | A |
5415938 | Cahalan et al. | May 1995 | A |
5417981 | Endo et al. | May 1995 | A |
5423849 | Engelson et al. | Jun 1995 | A |
5423885 | Williams | Jun 1995 | A |
5429618 | Keogh | Jul 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5443458 | Eury et al. | Aug 1995 | A |
5443496 | Schwartz et al. | Aug 1995 | A |
5443500 | Sigwart | Aug 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5451233 | Yock | Sep 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5456661 | Narcisco, Jr. | Oct 1995 | A |
5456713 | Chuter | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5460610 | Don Michael | Oct 1995 | A |
5462990 | Hubbell et al. | Oct 1995 | A |
5464450 | Buscemi et al. | Nov 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5470313 | Crocker et al. | Nov 1995 | A |
5470603 | Staniforth et al. | Nov 1995 | A |
5476476 | Hillstead | Dec 1995 | A |
5476509 | Keogh et al. | Dec 1995 | A |
5485496 | Lee et al. | Jan 1996 | A |
5496346 | Horzewski et al. | Mar 1996 | A |
5500013 | Buscemi et al. | Mar 1996 | A |
5501227 | Yock | Mar 1996 | A |
5502158 | Sinclair et al. | Mar 1996 | A |
5507768 | Lau et al. | Apr 1996 | A |
5511726 | Greenspan et al. | Apr 1996 | A |
5514154 | Lau et al. | May 1996 | A |
5514379 | Weissleder et al. | May 1996 | A |
5516560 | Harayama et al. | May 1996 | A |
5516881 | Lee et al. | May 1996 | A |
5527337 | Stack et al. | Jun 1996 | A |
5537729 | Kolobow | Jul 1996 | A |
5538493 | Gerken et al. | Jul 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545408 | Trigg et al. | Aug 1996 | A |
5551954 | Buscemi et al. | Sep 1996 | A |
5554120 | Chen et al. | Sep 1996 | A |
5554182 | Dinh et al. | Sep 1996 | A |
5556413 | Lam | Sep 1996 | A |
5558642 | Schweich, Jr. et al. | Sep 1996 | A |
5562728 | Lazarus et al. | Oct 1996 | A |
5569463 | Helmus et al. | Oct 1996 | A |
5571135 | Fraser et al. | Nov 1996 | A |
5571166 | Dinh et al. | Nov 1996 | A |
5571567 | Shah | Nov 1996 | A |
5578046 | Liu et al. | Nov 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5584877 | Miyake et al. | Dec 1996 | A |
5588962 | Nicholas et al. | Dec 1996 | A |
5591199 | Porter et al. | Jan 1997 | A |
5591224 | Schwartz et al. | Jan 1997 | A |
5591227 | Dinh et al. | Jan 1997 | A |
5591607 | Gryaznov et al. | Jan 1997 | A |
5593403 | Buscemi | Jan 1997 | A |
5593434 | Williams | Jan 1997 | A |
5595722 | Grainger et al. | Jan 1997 | A |
5599301 | Jacobs et al. | Feb 1997 | A |
5599307 | Bacher et al. | Feb 1997 | A |
5599352 | Dinh et al. | Feb 1997 | A |
5599922 | Gryaznov et al. | Feb 1997 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5607467 | Froix | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5610241 | Lee et al. | Mar 1997 | A |
5611775 | Machold et al. | Mar 1997 | A |
5616338 | Fox, Jr. et al. | Apr 1997 | A |
5618298 | Simon | Apr 1997 | A |
5618299 | Khosravi et al. | Apr 1997 | A |
5620420 | Kriesel | Apr 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5628755 | Heller et al. | May 1997 | A |
5628781 | Williams et al. | May 1997 | A |
5628785 | Schwartz et al. | May 1997 | A |
5628786 | Banas et al. | May 1997 | A |
5629077 | Turnlund et al. | May 1997 | A |
5631135 | Gryaznov et al. | May 1997 | A |
5632771 | Boatman et al. | May 1997 | A |
5632840 | Campbell | May 1997 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5644020 | Timmermann et al. | Jul 1997 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5649951 | Davidson | Jul 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5653691 | Rupp et al. | Aug 1997 | A |
5656080 | Staniforth et al. | Aug 1997 | A |
5656082 | Takatsuki et al. | Aug 1997 | A |
5658995 | Kohn et al. | Aug 1997 | A |
5667523 | Bynon et al. | Sep 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5667796 | Otten | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5674242 | Phan et al. | Oct 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5693376 | Fetherston et al. | Dec 1997 | A |
5695498 | Tower | Dec 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5697967 | Dinh et al. | Dec 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5702754 | Zhong | Dec 1997 | A |
5702818 | Cahalan et al. | Dec 1997 | A |
5707385 | Williams | Jan 1998 | A |
5711763 | Nonami et al. | Jan 1998 | A |
5711812 | Chapek et al. | Jan 1998 | A |
5711958 | Cohn et al. | Jan 1998 | A |
5713949 | Jayaraman | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5718726 | Amon et al. | Feb 1998 | A |
5720726 | Marcadis et al. | Feb 1998 | A |
5721131 | Rudolph et al. | Feb 1998 | A |
5722984 | Fischell et al. | Mar 1998 | A |
5723219 | Kolluri et al. | Mar 1998 | A |
5725549 | Lam | Mar 1998 | A |
5726297 | Gryaznov et al. | Mar 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5728751 | Patnaik | Mar 1998 | A |
5730698 | Fischell et al. | Mar 1998 | A |
5733326 | Tomonto et al. | Mar 1998 | A |
5733327 | Igaki et al. | Mar 1998 | A |
5733330 | Cox | Mar 1998 | A |
5733564 | Lehtinen | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5741554 | Tisone | Apr 1998 | A |
5741881 | Patnaik | Apr 1998 | A |
5746745 | Abele et al. | May 1998 | A |
5746998 | Torchilin et al. | May 1998 | A |
5756457 | Wang et al. | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5759205 | Valentini | Jun 1998 | A |
5759474 | Rupp et al. | Jun 1998 | A |
5765682 | Bley et al. | Jun 1998 | A |
5766204 | Porter et al. | Jun 1998 | A |
5766239 | Cox | Jun 1998 | A |
5766710 | Turnlund et al. | Jun 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5769884 | Solovay | Jun 1998 | A |
5770609 | Grainger et al. | Jun 1998 | A |
5772864 | Møller et al. | Jun 1998 | A |
5776184 | Tuch | Jul 1998 | A |
5780807 | Saunders | Jul 1998 | A |
5782742 | Crocker et al. | Jul 1998 | A |
5783657 | Pavlin et al. | Jul 1998 | A |
5788626 | Thompson | Aug 1998 | A |
5788979 | Alt et al. | Aug 1998 | A |
5800392 | Racchini | Sep 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5804318 | Pinchuk et al. | Sep 1998 | A |
5807244 | Barot | Sep 1998 | A |
5810871 | Tuckey et al. | Sep 1998 | A |
5810873 | Morales | Sep 1998 | A |
5811151 | Hendriks et al. | Sep 1998 | A |
5811447 | Kunz et al. | Sep 1998 | A |
5820917 | Tuch | Oct 1998 | A |
5823996 | Sparks | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5824056 | Rosenberg | Oct 1998 | A |
5826586 | Mishra et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5830179 | Mikus et al. | Nov 1998 | A |
5830217 | Ryan | Nov 1998 | A |
5830461 | Billiar | Nov 1998 | A |
5830879 | Isner | Nov 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5833651 | Donovan et al. | Nov 1998 | A |
5833659 | Kranys | Nov 1998 | A |
5834582 | Sinclair et al. | Nov 1998 | A |
5836962 | Gianotti | Nov 1998 | A |
5836965 | Jendersee et al. | Nov 1998 | A |
5837008 | Berg et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5837835 | Gryaznov et al. | Nov 1998 | A |
5840009 | Fischell et al. | Nov 1998 | A |
5840083 | Braach-Maksvytis | Nov 1998 | A |
5843033 | Ropiak | Dec 1998 | A |
5843119 | Schulewitz | Dec 1998 | A |
5843172 | Yan | Dec 1998 | A |
5846247 | Unsworth et al. | Dec 1998 | A |
5849859 | Acemoglu | Dec 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5853408 | Muni | Dec 1998 | A |
5854207 | Lee et al. | Dec 1998 | A |
5854376 | Higashi | Dec 1998 | A |
5855598 | Pinchuk | Jan 1999 | A |
5855612 | Ohthuki et al. | Jan 1999 | A |
5855618 | Patnaik et al. | Jan 1999 | A |
5857998 | Barry | Jan 1999 | A |
5858556 | Eckhart et al. | Jan 1999 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5858990 | Walsh | Jan 1999 | A |
5860954 | Ropiak | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5866113 | Hendriks et al. | Feb 1999 | A |
5868781 | Killion | Feb 1999 | A |
5869127 | Zhong | Feb 1999 | A |
5871436 | Eury | Feb 1999 | A |
5871437 | Alt | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5874101 | Zhong et al. | Feb 1999 | A |
5874109 | Ducheyne et al. | Feb 1999 | A |
5874165 | Drumheller | Feb 1999 | A |
5874355 | Huang et al. | Feb 1999 | A |
5876426 | Kume et al. | Mar 1999 | A |
5876433 | Lunn | Mar 1999 | A |
5876743 | Ibsen et al. | Mar 1999 | A |
5877224 | Brocchini et al. | Mar 1999 | A |
5877263 | Patnaik et al. | Mar 1999 | A |
5879713 | Roth et al. | Mar 1999 | A |
5883011 | Lin et al. | Mar 1999 | A |
5888533 | Dunn | Mar 1999 | A |
5891192 | Murayama et al. | Apr 1999 | A |
5893840 | Hull et al. | Apr 1999 | A |
5893852 | Morales | Apr 1999 | A |
5895407 | Jayaraman | Apr 1999 | A |
5897911 | Loeffler | Apr 1999 | A |
5897955 | Drumheller | Apr 1999 | A |
5898178 | Bunker | Apr 1999 | A |
5902631 | Wang et al. | May 1999 | A |
5902875 | Roby et al. | May 1999 | A |
5905168 | Dos Santos et al. | May 1999 | A |
5906759 | Richter | May 1999 | A |
5910564 | Gruning et al. | Jun 1999 | A |
5914182 | Drumheller | Jun 1999 | A |
5914387 | Roby et al. | Jun 1999 | A |
5916234 | Lam | Jun 1999 | A |
5916870 | Lee et al. | Jun 1999 | A |
5919893 | Roby et al. | Jul 1999 | A |
5921416 | Uchara | Jul 1999 | A |
5922005 | Richter et al. | Jul 1999 | A |
5922393 | Jayaraman | Jul 1999 | A |
5925552 | Keogh et al. | Jul 1999 | A |
5925720 | Kataoka et al. | Jul 1999 | A |
5928916 | Keogh | Jul 1999 | A |
5932299 | Katoot | Aug 1999 | A |
5935135 | Bramfitt et al. | Aug 1999 | A |
5942209 | Leavitt et al. | Aug 1999 | A |
5947993 | Morales | Sep 1999 | A |
5948018 | Dereume et al. | Sep 1999 | A |
5948428 | Lee et al. | Sep 1999 | A |
5951881 | Rogers et al. | Sep 1999 | A |
5954744 | Phan et al. | Sep 1999 | A |
5955509 | Webber et al. | Sep 1999 | A |
5957975 | Lafont et al. | Sep 1999 | A |
5958385 | Tondeur et al. | Sep 1999 | A |
5962138 | Kolluri et al. | Oct 1999 | A |
5965720 | Gryaznov et al. | Oct 1999 | A |
5968091 | Pinchuk et al. | Oct 1999 | A |
5968092 | Buscemi et al. | Oct 1999 | A |
5969422 | Ting et al. | Oct 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5972029 | Fuisz | Oct 1999 | A |
5972505 | Phillips et al. | Oct 1999 | A |
5976155 | Foreman et al. | Nov 1999 | A |
5976182 | Cox | Nov 1999 | A |
5980564 | Stinson | Nov 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5981568 | Kunz et al. | Nov 1999 | A |
5984449 | Tajika et al. | Nov 1999 | A |
5986169 | Gjunter | Nov 1999 | A |
5997468 | Wolff et al. | Dec 1999 | A |
5997517 | Whitbourne | Dec 1999 | A |
6010445 | Armini et al. | Jan 2000 | A |
6010530 | Goicoechea | Jan 2000 | A |
6010573 | Bowlin | Jan 2000 | A |
6011125 | Lohmeijer et al. | Jan 2000 | A |
6013099 | Dinh et al. | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6019789 | Dinh et al. | Feb 2000 | A |
6024918 | Hendriks et al. | Feb 2000 | A |
6027510 | Alt | Feb 2000 | A |
6027526 | Limon et al. | Feb 2000 | A |
6030371 | Pursley | Feb 2000 | A |
6033582 | Lee et al. | Mar 2000 | A |
6033719 | Keogh | Mar 2000 | A |
6034204 | Mohr et al. | Mar 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6045899 | Wang et al. | Apr 2000 | A |
6048964 | Lee et al. | Apr 2000 | A |
6051021 | Frid | Apr 2000 | A |
6051576 | Ashton et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6054553 | Groth et al. | Apr 2000 | A |
6056906 | Werneth et al. | May 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6059752 | Segal | May 2000 | A |
6059810 | Brown et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6060518 | Kabanov et al. | May 2000 | A |
6063092 | Shin | May 2000 | A |
6066156 | Yan | May 2000 | A |
6071266 | Kelley | Jun 2000 | A |
6071305 | Brown et al. | Jun 2000 | A |
6074659 | Kunz et al. | Jun 2000 | A |
6080099 | Slater et al. | Jun 2000 | A |
6080177 | Igaki et al. | Jun 2000 | A |
6080190 | Schwartz | Jun 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6083258 | Yadav | Jul 2000 | A |
6086610 | Duerig et al. | Jul 2000 | A |
6090330 | Gawa et al. | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6093463 | Thakrar | Jul 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6096525 | Patnaik | Aug 2000 | A |
6099455 | Columbo et al. | Aug 2000 | A |
6099559 | Nolting | Aug 2000 | A |
6099561 | Alt | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6103230 | Billiar et al. | Aug 2000 | A |
6106454 | Berg et al. | Aug 2000 | A |
6106530 | Harada | Aug 2000 | A |
6106889 | Beavers et al. | Aug 2000 | A |
6107416 | Patnaik et al. | Aug 2000 | A |
6110180 | Foreman et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6110483 | Whitbourne et al. | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6117479 | Hogan et al. | Sep 2000 | A |
6117979 | Hendriks et al. | Sep 2000 | A |
6120477 | Campbell et al. | Sep 2000 | A |
6120491 | Kohn et al. | Sep 2000 | A |
6120535 | McDonald et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120788 | Barrows | Sep 2000 | A |
6120847 | Yang et al. | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6123712 | Di Caprio et al. | Sep 2000 | A |
6125523 | Brown et al. | Oct 2000 | A |
6126686 | Badylak et al. | Oct 2000 | A |
6127173 | Eckstein et al. | Oct 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6129928 | Sarangapani et al. | Oct 2000 | A |
6132809 | Hynes et al. | Oct 2000 | A |
6136333 | Cohn et al. | Oct 2000 | A |
6139573 | Sogard et al. | Oct 2000 | A |
6140127 | Sprague | Oct 2000 | A |
6140431 | Kinker et al. | Oct 2000 | A |
6143354 | Koulik et al. | Nov 2000 | A |
6143370 | Panagiotou et al. | Nov 2000 | A |
6149574 | Trauthen et al. | Nov 2000 | A |
6150630 | Perry et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
4776337 | Palmaz | Dec 2000 | A |
6156373 | Zhong et al. | Dec 2000 | A |
6159227 | Di Caprio et al. | Dec 2000 | A |
6159229 | Jendersee et al. | Dec 2000 | A |
6159951 | Karpeisky et al. | Dec 2000 | A |
6159978 | Myers et al. | Dec 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6166130 | Rhee et al. | Dec 2000 | A |
6168617 | Blaeser et al. | Jan 2001 | B1 |
6168619 | Dinh et al. | Jan 2001 | B1 |
6169170 | Gryaznov et al. | Jan 2001 | B1 |
6171609 | Kunz | Jan 2001 | B1 |
6172167 | Stapert et al. | Jan 2001 | B1 |
6174316 | Tuckey et al. | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6177523 | Reich et al. | Jan 2001 | B1 |
6180632 | Myers et al. | Jan 2001 | B1 |
6183505 | Mohn, Jr. et al. | Feb 2001 | B1 |
6187045 | Fehring et al. | Feb 2001 | B1 |
6193727 | Foreman et al. | Feb 2001 | B1 |
6203551 | Wu | Mar 2001 | B1 |
6209621 | Treacy | Apr 2001 | B1 |
6210715 | Starling et al. | Apr 2001 | B1 |
6211249 | Cohn et al. | Apr 2001 | B1 |
6214115 | Taylor et al. | Apr 2001 | B1 |
6214407 | Laube et al. | Apr 2001 | B1 |
6214901 | Chudzik et al. | Apr 2001 | B1 |
6217586 | Mackenzie | Apr 2001 | B1 |
6217721 | Xu et al. | Apr 2001 | B1 |
6224626 | Steinke | May 2001 | B1 |
6224675 | Prentice et al. | May 2001 | B1 |
6224894 | Jamiolkowski et al. | May 2001 | B1 |
6228845 | Donovan et al. | May 2001 | B1 |
6231590 | Slaikeu et al. | May 2001 | B1 |
6231600 | Zhong | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6242041 | Katoot et al. | Jun 2001 | B1 |
6245076 | Yan | Jun 2001 | B1 |
6245099 | Edwin et al. | Jun 2001 | B1 |
6245103 | Stinson | Jun 2001 | B1 |
6245753 | Byun et al. | Jun 2001 | B1 |
6245760 | He et al. | Jun 2001 | B1 |
6248129 | Froix | Jun 2001 | B1 |
6248344 | Ylanen et al. | Jun 2001 | B1 |
6251135 | Stinson et al. | Jun 2001 | B1 |
6251136 | Guruwaiya et al. | Jun 2001 | B1 |
6251142 | Bernacca et al. | Jun 2001 | B1 |
6253443 | Johnson | Jul 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6258099 | Mareiro et al. | Jul 2001 | B1 |
6258121 | Yang et al. | Jul 2001 | B1 |
6258371 | Koulik et al. | Jul 2001 | B1 |
6262034 | Mathiowitz et al. | Jul 2001 | B1 |
6270788 | Koulik et al. | Aug 2001 | B1 |
6273850 | Gambale | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6277110 | Morales | Aug 2001 | B1 |
6277449 | Kolluri et al. | Aug 2001 | B1 |
6279368 | Escano et al. | Aug 2001 | B1 |
6281262 | Shikinami | Aug 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283949 | Roorda | Sep 2001 | B1 |
6284305 | Ding et al. | Sep 2001 | B1 |
6284333 | Wang et al. | Sep 2001 | B1 |
6287332 | Bolz et al. | Sep 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6293966 | Frantzen | Sep 2001 | B1 |
6294836 | Paranjpe et al. | Sep 2001 | B1 |
6296603 | Turnlund et al. | Oct 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6303901 | Perry et al. | Oct 2001 | B1 |
6306176 | Whitbourne | Oct 2001 | B1 |
6312459 | Huang et al. | Nov 2001 | B1 |
6319520 | Wuthrich et al. | Nov 2001 | B1 |
6322588 | Ogle et al. | Nov 2001 | B1 |
6322847 | Zhong et al. | Nov 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6335029 | Kamath et al. | Jan 2002 | B1 |
6344035 | Chudzik et al. | Feb 2002 | B1 |
6346110 | Wu | Feb 2002 | B2 |
6358556 | Ding et al. | Mar 2002 | B1 |
6362099 | Gandikota et al. | Mar 2002 | B1 |
6364903 | Tseng et al. | Apr 2002 | B2 |
6375458 | Moorleghem et al. | Apr 2002 | B1 |
6375826 | Wang et al. | Apr 2002 | B1 |
6379379 | Wang | Apr 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387118 | Hanson | May 2002 | B1 |
6387121 | Alt | May 2002 | B1 |
6387379 | Goldberg et al. | May 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6395325 | Hedge et al. | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6406738 | Hogan et al. | Jun 2002 | B1 |
6409761 | Jang | Jun 2002 | B1 |
6413272 | Igaki | Jul 2002 | B1 |
6419692 | Yang et al. | Jul 2002 | B1 |
6420189 | Lopatin | Jul 2002 | B1 |
6423092 | Datta et al. | Jul 2002 | B2 |
6436816 | Lee et al. | Aug 2002 | B1 |
6444567 | Besser et al. | Sep 2002 | B1 |
6447835 | Wang et al. | Sep 2002 | B1 |
6451373 | Hossainy et al. | Sep 2002 | B1 |
6454738 | Tran et al. | Sep 2002 | B1 |
6455424 | McTeer et al. | Sep 2002 | B1 |
6461632 | Gogolewski | Oct 2002 | B1 |
6462284 | Hashimoto | Oct 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6468906 | Chan et al. | Oct 2002 | B1 |
6479565 | Stanley | Nov 2002 | B1 |
6481262 | Ching et al. | Nov 2002 | B2 |
6482834 | Spada et al. | Nov 2002 | B2 |
6485512 | Cheng | Nov 2002 | B1 |
6488701 | Nolting et al. | Dec 2002 | B1 |
6488773 | Ehrhardt et al. | Dec 2002 | B1 |
6491666 | Santini, Jr. et al. | Dec 2002 | B1 |
6492615 | Flanagan | Dec 2002 | B1 |
6494862 | Ray et al. | Dec 2002 | B1 |
6494908 | Huxel et al. | Dec 2002 | B1 |
6495156 | Wenz et al. | Dec 2002 | B2 |
6495200 | Chan et al. | Dec 2002 | B1 |
6503538 | Chu et al. | Jan 2003 | B1 |
6503556 | Harish et al. | Jan 2003 | B2 |
6503954 | Bhat et al. | Jan 2003 | B1 |
6504307 | Malik et al. | Jan 2003 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
6510722 | Ching et al. | Jan 2003 | B1 |
6511748 | Barrows | Jan 2003 | B1 |
6517888 | Weber | Feb 2003 | B1 |
6517889 | Jayaraman | Feb 2003 | B1 |
6521284 | Parsons et al. | Feb 2003 | B1 |
6524232 | Tang et al. | Feb 2003 | B1 |
6524347 | Myers et al. | Feb 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6527863 | Pacetti et al. | Mar 2003 | B1 |
6528526 | Myers et al. | Mar 2003 | B1 |
6530950 | Alvarado et al. | Mar 2003 | B1 |
6530951 | Bates et al. | Mar 2003 | B1 |
6537589 | Chae et al. | Mar 2003 | B1 |
6539607 | Fehring et al. | Apr 2003 | B1 |
6540776 | Sanders Millare et al. | Apr 2003 | B2 |
6540777 | Stenzel | Apr 2003 | B2 |
6544223 | Kokish | Apr 2003 | B1 |
6544543 | Mandrusov et al. | Apr 2003 | B1 |
6544582 | Yoe | Apr 2003 | B1 |
6554758 | Turnlund et al. | Apr 2003 | B2 |
6554854 | Flanagan | Apr 2003 | B1 |
6555059 | Myrick et al. | Apr 2003 | B1 |
6555157 | Hossainy | Apr 2003 | B1 |
6558733 | Hossainy et al. | May 2003 | B1 |
6562136 | Chappa et al. | May 2003 | B1 |
6565599 | Hong et al. | May 2003 | B1 |
6565659 | Pacetti et al. | May 2003 | B1 |
6569191 | Hogan | May 2003 | B1 |
6569193 | Cox et al. | May 2003 | B1 |
6572644 | Moein | Jun 2003 | B1 |
6572672 | Yadav et al. | Jun 2003 | B2 |
6574851 | Mirizzi | Jun 2003 | B1 |
6582417 | Ledesma et al. | Jun 2003 | B1 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6585926 | Mirzaee | Jul 2003 | B1 |
6592614 | Lenker et al. | Jul 2003 | B2 |
6592617 | Thompson | Jul 2003 | B2 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6605114 | Yan et al. | Aug 2003 | B1 |
6605154 | Villareal | Aug 2003 | B1 |
6605874 | Leu et al. | Aug 2003 | B2 |
6610087 | Zarbatany et al. | Aug 2003 | B1 |
6613072 | Lau et al. | Sep 2003 | B2 |
6616765 | Hossaony et al. | Sep 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6625486 | Lundkvist et al. | Sep 2003 | B2 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6635269 | Jennissen | Oct 2003 | B1 |
6635964 | Maex et al. | Oct 2003 | B2 |
6645135 | Bhat | Nov 2003 | B1 |
6645195 | Bhat et al. | Nov 2003 | B1 |
6645243 | Vallana et al. | Nov 2003 | B2 |
6645547 | Shekalim et al. | Nov 2003 | B1 |
6656162 | Santini, Jr. et al. | Dec 2003 | B2 |
6656216 | Hossainy et al. | Dec 2003 | B1 |
6656506 | Wu et al. | Dec 2003 | B1 |
6660034 | Mandrusov et al. | Dec 2003 | B1 |
6663662 | Pacetti et al. | Dec 2003 | B2 |
6663880 | Roorda et al. | Dec 2003 | B1 |
6664187 | Ngo et al. | Dec 2003 | B1 |
6664335 | Krishnan | Dec 2003 | B2 |
6666214 | Canham | Dec 2003 | B2 |
6666880 | Chiu et al. | Dec 2003 | B1 |
6667049 | Janas et al. | Dec 2003 | B2 |
6669723 | Killion et al. | Dec 2003 | B2 |
6669980 | Hansen | Dec 2003 | B2 |
6673105 | Chen | Jan 2004 | B1 |
6673154 | Pacetti et al. | Jan 2004 | B1 |
6673385 | Ding et al. | Jan 2004 | B1 |
6676697 | Richter | Jan 2004 | B1 |
6676700 | Jacobs et al. | Jan 2004 | B1 |
6677357 | Zhu et al. | Jan 2004 | B2 |
6679980 | Andreacchi | Jan 2004 | B1 |
6689099 | Mirzaee | Feb 2004 | B2 |
6689375 | Wahlig et al. | Feb 2004 | B1 |
6695920 | Pacetti et al. | Feb 2004 | B1 |
6702850 | Byun et al. | Mar 2004 | B1 |
6703307 | Lopatin et al. | Mar 2004 | B2 |
6706013 | Bhat et al. | Mar 2004 | B1 |
6706273 | Roessler | Mar 2004 | B1 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6709514 | Hossainy | Mar 2004 | B1 |
6712845 | Hossainy | Mar 2004 | B2 |
6713119 | Hossainy et al. | Mar 2004 | B2 |
6716444 | Castro et al. | Apr 2004 | B1 |
6719934 | Stinson | Apr 2004 | B2 |
6719989 | Matsushima et al. | Apr 2004 | B1 |
6720402 | Langer et al. | Apr 2004 | B2 |
6723120 | Yan | Apr 2004 | B2 |
6733768 | Hossainy et al. | May 2004 | B2 |
6740040 | Mandrusov et al. | May 2004 | B1 |
6743462 | Pacetti | Jun 2004 | B1 |
6746773 | Llanos et al. | Jun 2004 | B2 |
6749626 | Bhat et al. | Jun 2004 | B1 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6753007 | Haggard et al. | Jun 2004 | B2 |
6753071 | Pacetti et al. | Jun 2004 | B1 |
6758859 | Dang et al. | Jul 2004 | B1 |
6759054 | Chen et al. | Jul 2004 | B2 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6774278 | Ragheb et al. | Aug 2004 | B1 |
6776792 | Yan et al. | Aug 2004 | B1 |
6783793 | Hossainy et al. | Aug 2004 | B1 |
6818063 | Kerrigan | Nov 2004 | B1 |
6846323 | Yip et al. | Jan 2005 | B2 |
6849089 | Stoll | Feb 2005 | B2 |
6860946 | Hossainy et al. | Mar 2005 | B2 |
6861088 | Weber et al. | Mar 2005 | B2 |
6865810 | Stinson | Mar 2005 | B2 |
6869443 | Buscemi et al. | Mar 2005 | B2 |
6878160 | Gilligan et al. | Apr 2005 | B2 |
6887270 | Miller et al. | May 2005 | B2 |
6887485 | Fitzhugh et al. | May 2005 | B2 |
6890546 | Mollison et al. | May 2005 | B2 |
6899731 | Li et al. | May 2005 | B2 |
6981985 | Brown et al. | Jan 2006 | B2 |
20010007083 | Roorda | Jul 2001 | A1 |
20010014717 | Hossainy et al. | Aug 2001 | A1 |
20010016753 | Caprio et al. | Aug 2001 | A1 |
20010020011 | Mathiowitz et al. | Sep 2001 | A1 |
20010029351 | Falotico et al. | Oct 2001 | A1 |
20010037145 | Guruwaiya et al. | Nov 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20010051608 | Mathiowitz et al. | Dec 2001 | A1 |
20020002399 | Huxel et al. | Jan 2002 | A1 |
20020004060 | Heublein et al. | Jan 2002 | A1 |
20020004101 | Ding et al. | Jan 2002 | A1 |
20020005206 | Falotico et al. | Jan 2002 | A1 |
20020007213 | Falotico et al. | Jan 2002 | A1 |
20020007214 | Falotico | Jan 2002 | A1 |
20020007215 | Falotico et al. | Jan 2002 | A1 |
20020009604 | Zamora et al. | Jan 2002 | A1 |
20020016625 | Falotico et al. | Feb 2002 | A1 |
20020032414 | Ragheb et al. | Mar 2002 | A1 |
20020032434 | Chudzik et al. | Mar 2002 | A1 |
20020051730 | Bodnar et al. | May 2002 | A1 |
20020062148 | Hart | May 2002 | A1 |
20020065553 | Weber | May 2002 | A1 |
20020071822 | Uhrich | Jun 2002 | A1 |
20020077693 | Barclay et al. | Jun 2002 | A1 |
20020082679 | Sirhan et al. | Jun 2002 | A1 |
20020082680 | Shanley et al. | Jun 2002 | A1 |
20020087123 | Hossainy et al. | Jul 2002 | A1 |
20020091433 | Ding et al. | Jul 2002 | A1 |
20020094440 | Llanos et al. | Jul 2002 | A1 |
20020111590 | Davila et al. | Aug 2002 | A1 |
20020116050 | Kocur | Aug 2002 | A1 |
20020120326 | Michal | Aug 2002 | A1 |
20020138133 | Lenz et al. | Sep 2002 | A1 |
20020142039 | Claude | Oct 2002 | A1 |
20020155212 | Hossainy | Oct 2002 | A1 |
20020161114 | Gunatillake et al. | Oct 2002 | A1 |
20020165608 | Llanos et al. | Nov 2002 | A1 |
20020176849 | Slepian | Nov 2002 | A1 |
20020183581 | Yoe et al. | Dec 2002 | A1 |
20020187632 | Marsh | Dec 2002 | A1 |
20020188037 | Chudzik et al. | Dec 2002 | A1 |
20020188277 | Roorda et al. | Dec 2002 | A1 |
20030003221 | Zhong et al. | Jan 2003 | A1 |
20030004141 | Brown | Jan 2003 | A1 |
20030028243 | Bates et al. | Feb 2003 | A1 |
20030028244 | Bates et al. | Feb 2003 | A1 |
20030031780 | Chudzik et al. | Feb 2003 | A1 |
20030032767 | Tada et al. | Feb 2003 | A1 |
20030033001 | Igaki | Feb 2003 | A1 |
20030036794 | Ragheb et al. | Feb 2003 | A1 |
20030039689 | Chen et al. | Feb 2003 | A1 |
20030040712 | Ray et al. | Feb 2003 | A1 |
20030040790 | Furst | Feb 2003 | A1 |
20030054090 | Hansen | Mar 2003 | A1 |
20030055482 | Schwager et al. | Mar 2003 | A1 |
20030059520 | Chen et al. | Mar 2003 | A1 |
20030060877 | Falotico et al. | Mar 2003 | A1 |
20030065377 | Davila et al. | Apr 2003 | A1 |
20030072868 | Harish et al. | Apr 2003 | A1 |
20030073961 | Happ | Apr 2003 | A1 |
20030077310 | Pathak et al. | Apr 2003 | A1 |
20030083646 | Sirhan et al. | May 2003 | A1 |
20030083739 | Cafferata | May 2003 | A1 |
20030088307 | Shulze et al. | May 2003 | A1 |
20030093107 | Parsonage et al. | May 2003 | A1 |
20030097088 | Pacetti | May 2003 | A1 |
20030097173 | Dutta | May 2003 | A1 |
20030099712 | Jayaraman | May 2003 | A1 |
20030100865 | Santini, Jr. et al. | May 2003 | A1 |
20030105518 | Dutta | Jun 2003 | A1 |
20030105530 | Pirhonen | Jun 2003 | A1 |
20030113439 | Pacetti et al. | Jun 2003 | A1 |
20030113445 | Martin | Jun 2003 | A1 |
20030138487 | Hogan et al. | Jul 2003 | A1 |
20030150380 | Yoe | Aug 2003 | A1 |
20030157241 | Hossainy et al. | Aug 2003 | A1 |
20030158517 | Kokish | Aug 2003 | A1 |
20030171053 | Sanders | Sep 2003 | A1 |
20030185964 | Weber et al. | Oct 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030190406 | Hossainy et al. | Oct 2003 | A1 |
20030203617 | Lane et al. | Oct 2003 | A1 |
20030207020 | Villareal | Nov 2003 | A1 |
20030208259 | Penhasi | Nov 2003 | A1 |
20030209835 | Chun et al. | Nov 2003 | A1 |
20030211230 | Pacetti et al. | Nov 2003 | A1 |
20030226833 | Shapovalov et al. | Dec 2003 | A1 |
20030236565 | DiMatteo et al. | Dec 2003 | A1 |
20040018296 | Castro et al. | Jan 2004 | A1 |
20040029952 | Chen et al. | Feb 2004 | A1 |
20040047978 | Hossainy et al. | Mar 2004 | A1 |
20040047980 | Pacetti et al. | Mar 2004 | A1 |
20040052858 | Wu et al. | Mar 2004 | A1 |
20040052859 | Wu et al. | Mar 2004 | A1 |
20040054104 | Pacetti | Mar 2004 | A1 |
20040060508 | Pacetti et al. | Apr 2004 | A1 |
20040062853 | Pacetti et al. | Apr 2004 | A1 |
20040063805 | Pacetti et al. | Apr 2004 | A1 |
20040071861 | Mandrusov et al. | Apr 2004 | A1 |
20040072922 | Hossainy et al. | Apr 2004 | A1 |
20040073298 | Hossainy | Apr 2004 | A1 |
20040086542 | Hossainy et al. | May 2004 | A1 |
20040086550 | Roorda et al. | May 2004 | A1 |
20040093077 | White et al. | May 2004 | A1 |
20040096504 | Michal | May 2004 | A1 |
20040098095 | Burnside et al. | May 2004 | A1 |
20040098117 | Hossainy et al. | May 2004 | A1 |
20040111149 | Stinson | Jun 2004 | A1 |
20040127970 | Saunders | Jul 2004 | A1 |
20040142015 | Hossainy et al. | Jul 2004 | A1 |
20040143317 | Stinson et al. | Jul 2004 | A1 |
20040167610 | Fleming, III | Aug 2004 | A1 |
20040213893 | Boulais | Oct 2004 | A1 |
20040236417 | Yan et al. | Nov 2004 | A1 |
20050187607 | Akhtar et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
2 008 312 | Jul 1990 | CA |
2 007 648 | Apr 1991 | CA |
1 322 628 | Oct 1993 | CA |
1 336 319 | Jul 1995 | CA |
1 338 303 | May 1996 | CA |
042 24 401 | Jan 1994 | DE |
044 07 079 | Sep 1994 | DE |
197 31 021 | Jan 1999 | DE |
199 16 086 | Oct 1999 | DE |
198 56 983 | Dec 1999 | DE |
0 108 171 | May 1984 | EP |
0 144 534 | Jun 1985 | EP |
0 301 856 | Feb 1989 | EP |
0 380 668 | Apr 1989 | EP |
0 351 314 | Jan 1990 | EP |
0 364 787 | Apr 1990 | EP |
0 396 429 | Nov 1990 | EP |
0 397 500 | Nov 1990 | EP |
0 464 755 | Jan 1992 | EP |
0 493 788 | Jul 1992 | EP |
0 526 606 | Sep 1992 | EP |
0 514 406 | Nov 1992 | EP |
0 517 075 | Dec 1992 | EP |
0 540 290 | May 1993 | EP |
0 553 960 | Aug 1993 | EP |
0 554 082 | Aug 1993 | EP |
0 565 251 | Oct 1993 | EP |
0 578 998 | Jan 1994 | EP |
0 604 022 | Jun 1994 | EP |
0 621 017 | Oct 1994 | EP |
0 623 354 | Nov 1994 | EP |
0 627 226 | Dec 1994 | EP |
0 649 637 | Apr 1995 | EP |
0 665 023 | Aug 1995 | EP |
0 701 802 | Mar 1996 | EP |
0 701 803 | Mar 1996 | EP |
0 709 068 | May 1996 | EP |
0 716 836 | Jun 1996 | EP |
0 732 087 | Sep 1996 | EP |
0 832 618 | Sep 1996 | EP |
0 756 853 | Feb 1997 | EP |
0 809 999 | Dec 1997 | EP |
0 832 655 | Apr 1998 | EP |
0 834 293 | Apr 1998 | EP |
0 850 604 | Jul 1998 | EP |
0 850 651 | Jul 1998 | EP |
0 879 595 | Nov 1998 | EP |
0 910 584 | Apr 1999 | EP |
0 923 953 | Jun 1999 | EP |
0 953 320 | Nov 1999 | EP |
0 970 711 | Jan 2000 | EP |
0 972 498 | Jan 2000 | EP |
0 974 315 | Jan 2000 | EP |
0 982 041 | Mar 2000 | EP |
1 023 879 | Aug 2000 | EP |
1 034 752 | Sep 2000 | EP |
1 075 838 | Feb 2001 | EP |
1 103 234 | May 2001 | EP |
1 192 957 | Apr 2002 | EP |
1 273 314 | Jan 2003 | EP |
0 869 847 | Mar 2003 | EP |
0 941 072 | Jan 2004 | EP |
2 753 907 | Apr 1998 | FR |
2 247 696 | Mar 1992 | GB |
2 316 086 | Jan 2000 | GB |
2 316 342 | Jan 2000 | GB |
2 333 975 | Jan 2000 | GB |
2 336 551 | Jan 2000 | GB |
2 356 586 | May 2001 | GB |
2 356 587 | May 2001 | GB |
2 333 474 | Jun 2001 | GB |
2 334 685 | Jun 2001 | GB |
2 356 585 | Jul 2001 | GB |
2 374 302 | Aug 2001 | GB |
2 370 243 | Jun 2002 | GB |
2 384 199 | Jul 2003 | GB |
49-48336 | Dec 1974 | JP |
54-1831O | Jul 1979 | JP |
60-28504 | Jul 1985 | JP |
21199867 | May 1994 | JP |
8-33718 | Feb 1996 | JP |
10-151190 | Jun 1998 | JP |
2919971 | Jul 1999 | JP |
2001-190687 | Jul 2001 | JP |
0872531 | Oct 1981 | SU |
0876663 | Oct 1981 | SU |
0905228 | Feb 1982 | SU |
0790725 | Feb 1983 | SU |
1016314 | May 1983 | SU |
0811750 | Sep 1983 | SU |
1293518 | Feb 1987 | SU |
1477423 | May 1989 | SU |
WO 8903232 | Apr 1989 | WO |
WO 9001969 | Mar 1990 | WO |
WO 9004982 | May 1990 | WO |
WO 9006094 | Jun 1990 | WO |
WO 9111176 | Aug 1991 | WO |
WO 9112846 | Sep 1991 | WO |
WO 9117744 | Nov 1991 | WO |
WO 9117789 | Nov 1991 | WO |
WO 9210218 | Jun 1992 | WO |
WO 9306792 | Apr 1993 | WO |
WO 9409760 | May 1994 | WO |
WO 9421196 | Sep 1994 | WO |
WO 9510989 | Apr 1995 | WO |
WO 9511817 | May 1995 | WO |
WO 9524929 | Sep 1995 | WO |
WO 9529647 | Nov 1995 | WO |
WO 9533422 | Dec 1995 | WO |
WO 9628115 | Sep 1996 | WO |
WO 9633672 | Oct 1996 | WO |
WO 9635516 | Nov 1996 | WO |
WO 9640174 | Dec 1996 | WO |
WO 9710011 | Mar 1997 | WO |
WO 9745105 | Dec 1997 | WO |
WO 9746590 | Dec 1997 | WO |
WO 9804415 | Feb 1998 | WO |
WO 9807390 | Feb 1998 | WO |
WO 9808463 | Mar 1998 | WO |
WO 9817331 | Apr 1998 | WO |
WO 9820863 | May 1998 | WO |
WO 9823228 | Jun 1998 | WO |
WO 9832398 | Jul 1998 | WO |
WO 9836784 | Aug 1998 | WO |
WO 9901118 | Jan 1999 | WO |
WO 9903515 | Jan 1999 | WO |
WO 9916386 | Apr 1999 | WO |
WO 9938546 | Aug 1999 | WO |
WO 9942147 | Aug 1999 | WO |
WO 9963981 | Dec 1999 | WO |
WO 0002599 | Jan 2000 | WO |
WO 0012147 | Mar 2000 | WO |
WO 0018446 | Apr 2000 | WO |
WO 0064506 | Nov 2000 | WO |
WO 0101890 | Jan 2001 | WO |
WO 0115751 | Mar 2001 | WO |
WO 0117459 | Mar 2001 | WO |
WO 0117577 | Mar 2001 | WO |
WO 0143727 | Jun 2001 | WO |
WO 0145763 | Jun 2001 | WO |
WO 0149338 | Jul 2001 | WO |
WO 0151027 | Jul 2001 | WO |
WO 0152772 | Jul 2001 | WO |
WO 0157144 | Aug 2001 | WO |
WO 0174414 | Oct 2001 | WO |
WO 0191918 | Dec 2001 | WO |
WO 0203890 | Jan 2002 | WO |
WO 0226162 | Apr 2002 | WO |
WO 0234311 | May 2002 | WO |
WO 0247731 | Jun 2002 | WO |
WO 0249771 | Jun 2002 | WO |
WO 02056790 | Jul 2002 | WO |
WO 02058753 | Aug 2002 | WO |
WO 02087550 | Nov 2002 | WO |
WO 02102283 | Dec 2002 | WO |
WO 03000308 | Jan 2003 | WO |
WO 03007918 | Jan 2003 | WO |
WO 03007919 | Jan 2003 | WO |
WO 03022323 | Mar 2003 | WO |
WO 03028780 | Apr 2003 | WO |
WO 03037223 | May 2003 | WO |
WO 03039612 | May 2003 | WO |
WO 03061841 | Jul 2003 | WO |
WO 03072084 | Sep 2003 | WO |
WO 03072086 | Sep 2003 | WO |
WO 03080147 | Oct 2003 | WO |
WO 03082368 | Oct 2003 | WO |
WO 03099169 | Dec 2003 | WO |
WO 2004000383 | Dec 2003 | WO |
WO 2004009145 | Jan 2004 | WO |
WO 2004017947 | Mar 2004 | WO |
WO 2004017976 | Mar 2004 | WO |
WO 2004023985 | Mar 2004 | WO |
WO 2004024339 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060136048 A1 | Jun 2006 | US |