The disclosure of Japanese Patent Application No. 2016-137881 filed on Jul. 12, 2016 including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
The present invention relates to abnormal discharge detection devices and abnormal discharge detection methods, and more particularly to devices and methods for detecting an abnormal fluid discharge operation in a fluid supply device using a piezoelectric element.
Pumps using a piezoelectric element as an actuator are known in the art. Such pumps are also called diaphragm pumps. Since these pumps can discharge a very small amount of fluid, these pumps are used for fluid supply devices that are required to supply fluid with reduced frequency.
For example, Japanese Patent Application Publication No. 2004-108388 (JP 2004-108388 A) and Japanese Patent Application Publication No. 2012-102803 (JP 2012-102803 A) disclose a fluid supply device using such a pump, specifically an oil supply device (oil supply unit) integral with a rolling bearing.
If there is an abnormality in the pump mounted on the fluid supply device, fluid may not be discharged from the pump. In particular, in the case where the fluid supply device is an oil supply unit mounted integrally with a rolling bearing, an abnormality may occur in the pump due to vibration etc., which may result in poor lubrication of the rolling bearing.
It is one object of the present invention to provide an abnormal discharge detection device and an abnormal discharge detection method which can accurately detect an abnormal fluid discharge operation in a fluid supply device.
According to an aspect of the present invention, an abnormal discharge detection device detects an abnormal fluid discharge operation in a fluid supply device, the fluid supply device including a drive unit that outputs a pulsed drive voltage, a piezoelectric element that is repeatedly deformed when the pulsed drive voltage is applied, and a storage unit that stores therein fluid to be supplied, and the fluid supply device discharging the fluid from the storage unit as volume of the storage unit decreases with the deformation of the piezoelectric element. The abnormal discharge detection device includes: a measurement unit that measures a terminal voltage of the piezoelectric element; and a determination unit that determines if the discharge operation is being performed normally or not based on whether or not the terminal voltage measured with the measurement unit has changed with time during application of a pulse of the drive voltage.
The foregoing and further features and advantages of the invention will become apparent from the following description of example embodiments with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein:
A preferred embodiment will be described with reference to the accompanying drawings. In the following description, the same components and constituent elements are denoted with the same reference characters. Such components and constituent elements have the same names and functions. Accordingly, description thereof will not be repeated.
The bearing body 20 has an inner ring 21, an outer ring 22, a plurality of rolling elements (balls) 23, and an annular cage 24. The cage 24 holds the plurality of rolling elements 23. The inner ring 21 is a cylindrical member that is fitted on the shaft 7. The inner ring 21 has a raceway groove (hereinafter referred to as the inner ring raceway groove 25) in its outer periphery. The outer ring 22 is a cylindrical member that is fixed to an inner peripheral surface of the bearing housing 8. The outer ring 22 has a raceway groove (hereinafter referred to as the outer ring raceway groove 26) in its inner periphery. The inner ring 21 and the outer ring 22 are concentrically disposed with an annular space 28 therebetween. In the present embodiment, the inner ring 21 rotates with the shaft 7 relative to the outer ring 22. The plurality of rolling elements 23 are arranged in the annular space 28 between the inner ring 21 and the outer ring 22 and roll in the inner ring raceway groove 25 and the outer ring raceway groove 26.
The cage 24 is disposed in the annular space 28. The cage 24 is an annular member. The cage 24 has a plurality of pockets 27 formed at regular intervals in the circumferential direction in order to hold the plurality of rolling elements 23. The cage 24 has a plurality of annular portions 31, 32 and a plurality of cage bars 33. The pair of annular portions 31, 32 are located on both sides in the axial direction of the rolling elements 23. The cage bars 33 connect the annular portions 31, 32 to each other. The plurality of cage bars 33 are formed at intervals in the circumferential direction. The pockets 27 are regions each surrounded by the annular portions 31, 32 and two of the cage bars 33 which are adjacent to each other in the circumferential direction. A single rolling element 23 is accommodated in each pocket 27, so that the cage 24 can hold the plurality of rolling elements 23 side by side in the circumferential direction.
The oil supply unit 40 serving as a fluid supply device is disposed next to the annular space 28 of the bearing body 20. Specifically, the oil supply unit 40 is disposed on one side in the axial direction of the annular space 28 of the bearing body 20. The oil supply unit 40 can supply lubricant (oil) to the annular space 28. Lubricant (oil) is one example of fluid. The oil supply unit 40 has a case 41 and a nozzle 42. The nozzle 42 extends in the axial direction from the case 41.
A tank 62 and a pump 61 are disposed in the space inside the case 41 of the oil supply unit 40. The tank 62 stores lubricant therein. The pump 61 can store lubricant therein. The pump 61 has a pressure chamber 63, a diaphragm (vibrating plate) 64 (
When the volume of the pressure chamber 63 decreases, a small amount of lubricant is discharged from the pressure chamber 63 into the annular space 28 through the nozzle 42 accordingly. Lubricant is discharged from the pressure chamber 63 and supplied to the annular space 28 at a very low flow rate that is lower than, e.g., picoliter flow rates. When the volume of the pressure chamber 63 increases, the pump 61 sucks lubricant from the tank 62 accordingly and supplies the lubricant into the pressure chamber 63.
Referring to
The drive unit 70 is connected to a terminal 68 of the piezoelectric element 69 by a power line 67. The drive unit 70 outputs a constant pulsed drive voltage to the terminal 68 via the power line 67. The terminal 68 is connected to the electrodes 66. The piezoelectric body 65 is, e.g., a piezo element, and is deformed when a drive voltage is applied to the electrodes 66.
When the drive unit 70 applies a drive voltage to the electrodes 66, the piezoelectric body 65 is deformed (extended) to press the diaphragm 64 toward the pressure chamber 63. The diaphragm 64 thus presses the pressure chamber 63, whereby the volume of the pressure chamber 63 decreases accordingly. A small amount of lubricant is thus discharged from the pressure chamber 63 into the annular space 28 through the nozzle 42. This operation is also referred to as a discharge operation.
When the drive unit 70 stops applying the drive voltage to the electrodes 66 and the drive voltage applied to the electrodes 66 is reduced, the piezoelectric body 65 that has been extended contracts and returns to its original position and thus stops pressing the diaphragm 64. Since the piezoelectric body 65 stops pressing the diaphragm 64, the volume of the pressure chamber 63 returns to its original volume, so that lubricant is introduced from the tank 62 into the pressure chamber 63. That is, the pump 61 sucks lubricant from the tank 62. This operation is also referred to as a suction operation.
Since the drive unit 70 applies a constant pulsed drive voltage to the piezoelectric element 69, the pump 61 alternately repeats suction and discharging operations. An operation of supplying lubricant from the oil supply unit 40 to the bearing body 20 (oil supply operation) is thus repeated.
The control unit 80 also functions as an abnormal discharge detection device that detects an abnormal discharge operation in the oil supply unit 40.
The principle of detecting an abnormality in the oil supply unit 40 by the detection device will be described with reference to
If the terminal voltage has changed with time as shown in
If the terminal voltage has not changed with time as shown in
If the terminal voltage has not changed with time as shown in
If the terminal voltage has neither the reference waveform of
The control unit 80 determines if the terminal voltage has increased with time during application of a pulse of drive voltage or not based on at least two terminal voltages measured at at least two measurement times during application of a pulse of drive voltage. For example, measurement times t1, t2 are set in advance in the control unit 80 (t1<t2). The measurement times t1, t2 are the points that divide the period of application T of a pulse of drive voltage into three approximately equal periods. Preferably, a measurement time t3 immediately after application T of a pulse of drive voltage is also set in the control unit 80 (t2<t3). The control unit 80 determines if terminal voltages E1, E2 measured at the measurement times t1, t2 by the measurement unit 13 have changed (increased) with time during the period from the measurement time t1 to the measurement time t2.
E3≦TA≦E1 (1)
TB≦E2 (2)
TB≦E1 (3)
TB≦E2 (4)
E3≦TA (5)
E1≈E2 (6)
The first and second conditions are an example of conditions that are used to detect an abnormal discharge operation. That is, the first and second conditions are an example of a method for determining if the terminal voltage has changed with time during application of a pulse of drive voltage. As described above, the control unit 80 uses threshold voltages stored in advance therein. Whether the terminal voltage has changed with time during application of a pulse of drive voltage can thus be determined by a simple process. The control unit 80 may not use the terminal voltage E3, namely the terminal voltage immediately after application of a pulse of drive voltage, in this method. This makes the determination process simpler.
If the terminal voltages E1 to E3 do not satisfy the above expressions (1), (2) but satisfy the above expressions (3) to (6), namely if the terminal voltages E1 to E3 satisfy the second condition (No in step S103 and Yes in step S107), the control unit 80 determines that there is an abnormality in the circuit in the pump 61 or the connection portion (step S109).
If the terminal voltages E1 to E3 do not satisfy the above expressions (1) to (6), namely if the terminal voltages E1 to E3 satisfy neither the first condition nor the second condition (No in step S103 and No in step S107), the control unit 80 determines that there is an abnormality in the control unit 80 (abnormality in a circuit in the drive unit 70 etc.) (step S111).
Preferably, the abnormal discharge detection device includes a transmission unit that outputs information. The transmission unit may be wireless communication or may be a light emitting diode (LED), a buzzer, etc. In the case where the abnormal discharge detection device includes the transmission unit, the control unit 80 is also connected to the transmission unit to control transmission of the transmission unit. If an abnormal discharge operation is detected in step S109 or step S111, the control unit 80 preferably controls the transmission unit to send an error notification (step S113). The error notification may be a notification that distinguishes between the determination result of step S109 and the determination result of step S111.
For example, the abnormal discharge detection device that detects an abnormal discharge operation in the fluid supply device, namely the oil supply unit 40, determines if a discharge operation is being performed normally or not based on whether or not the terminal voltage has changed with time during application of a pulse of drive voltage. This eliminates the need for a special device such as a sensor, whereby an abnormal discharge operation can be detected easily and accurately. This makes it possible to quickly deal with abnormal fluid supply.
The abnormal discharge detection device measures the terminal voltage at at least two measurement times t1, t2 during application of a pulse of drive voltage to determine if the terminal voltage has changed with time during application of a pulse of drive voltage or not based on at least two measured terminal voltages E1, E2. Whether a discharge operation is being performed normally or not can thus be easily determined.
The abnormal discharge detection device stores in advance the threshold voltages TA, TB for each measurement time and compares the each of at least two terminal voltages E1, E2 with a corresponding one of the threshold voltages TA, TB. The abnormal discharge detection device can thus easily and accurately determine if the terminal voltage has changed with time during application of a pulse of drive voltage. Accordingly, whether a discharge operation is being performed normally or not can be easily and accurately determined.
The first and second conditions are an example of conditions that are used to detect an abnormal discharge operation. That is, the first and second conditions are an example of a method for determining if the terminal voltage has changed with time during application of a pulse of drive voltage. As described above, the control unit 80 uses threshold voltages stored in advance therein. Whether the terminal voltage has changed with time during application of a pulse of drive voltage can thus be determined by a simple process. The control unit 80 may not use the terminal voltage E3, namely the terminal voltage immediately after application of a pulse of drive voltage, in this method. This makes the determination process simpler.
A first modification will be described below.
In another method for determining if the terminal voltage has changed with time during application of a pulse of drive voltage, the control unit 80 may compare the terminal voltages El, E2 to determine if the terminal voltages E1, E2 satisfy E1≦E2. Whether the terminal voltage has changed with time during application of a pulse of drive voltage or not can thus be determined by a simple process. Accordingly, whether a discharge operation is being performed normally or not can be easily determined.
A second modification will be described below.
In still another method for determining if the terminal voltage has changed with time during application of a pulse of drive voltage, the control unit 80 may store in advance a rate of change a in terminal voltage per unit time. The rate of change a corresponds to the rate of change (gradient) in terminal voltage which is shown in the reference waveform of
In the above description, the oil supply unit 40 mounted on the bearing device 100 is shown as an example of the fluid supply device. However, the fluid supply device is not limited to the oil supply unit that supplies oil to a bearing. For example, the fluid supply device may be any device that supplies fluid by using a piezoelectric body such as a piezo element, like an oil supply unit that supplies oil to a hydraulic motor, a gear, etc.
The embodiment disclosed herein is illustrative in all respects and should not be construed as restrictive. The scope of the present invention is defined by the claims rather than by the foregoing description, and the present invention is intended to include all changes that are made without departing from the spirit and scope of the claims.
According to the present invention, an abnormality in a pump mounted on a fluid supply device can be accurately detected.
Number | Date | Country | Kind |
---|---|---|---|
2016-137881 | Jul 2016 | JP | national |