The present invention relates to an abnormality diagnosis device and an abnormality diagnosis method.
Conventionally, an abnormality in a motor in which a load imbalance has occurred is diagnosed by analyzing the FFT waveform of the drive current of the motor and detecting a sideband wave that fluctuates due to the abnormality.
For example, in Patent Document 1, an abnormality diagnosis of a motor is performed by calculating the difference between the power supply frequency level and the side wave level of the rotation frequency of the motor.
However, in the method of Patent Document 1, there are many parameters required to identify the frequency band in which the abnormality appears, and it takes time and effort to set. For example, when calculating the rotation frequency of a motor, it is necessary to set many parameters such as a drive frequency of the motor, the number of poles of the motor, and slip, etc.
The present invention has been made to solve the above problems, and an object of the present invention is to provide an abnormality diagnosis device capable of diagnosing an abnormality of a motor without setting many parameters.
To solve the problem, the present invention provides an abnormality diagnostic device comprising:
a current measuring unit that measures a load current of a motor;
a frequency analyzing unit that performs frequency analysis of the load current; and
a deterioration degree calculating unit that calculates a degree of deterioration by adding up intensity values set in advance from top in a preset frequency range.
Further, to solve the problem, the present invention provides an abnormality diagnosis method comprising:
a step of measuring a load current of a motor by a current measuring unit;
a step of performing frequency analysis of the load current by a frequency analyzing unit; and
a step of calculating a degree of deterioration by adding up intensity values set in advance from top in a preset frequency range by a deterioration degree calculating unit.
According to the present invention, it is possible to provide an abnormality diagnosis device capable of diagnosing an abnormality of a motor without setting many parameters.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, the first embodiment of the present invention will be described in detail with reference to the drawings.
The inverter 10 is connected to a three-phase power supply and combines an AC-DC converter that converts three-phase alternating current into direct current and a DC-AC inverter to convert three-phase alternating current into an arbitrary frequency and voltage. By using the inverter 10, the phase and frequency of the drive current are changed according to the rotation position of the rotor of the motor 20, so that high drive efficiency and smooth rotation with less vibration can be realized from low speed to high speed. The inverter 10 is not an essential component, and the abnormality diagnosis system 100 of the present embodiment can be realized even if the inverter 10 is not provided.
The motor 20 is a three-phase motor and is driven by three-phase alternating current from the inverter 10. The motor 20 includes a stator and a rotor (not shown). The rotor rotates a rotating shaft supported by bearings.
The current sensor 30 is a sensor that measures the load current of the motor 20. The current sensor 30 is connected to the abnormality diagnosis device 40, and the load current of the motor 20 measured by the current sensor 30 is input to the abnormality diagnosis device 40.
The abnormality diagnosis device 40 includes a current measuring unit that measures the load current of the motor 20, a frequency analyzing unit that performs frequency analysis of the load current, and an abnormality determination unit that adds up a preset number of intensity values set in advance from top in a preset frequency range to calculate the degree of deterioration. Details of the abnormality diagnosis device 40 will be described later.
The dedicated tool 50 is a device connected to the abnormality diagnosis device 40 by a LAN or the like, and is composed of, for example, a personal computer or the like. By connecting the dedicated tool 50 to the abnormality diagnosis device 40, it becomes possible to monitor the state of the motor 20. The dedicated tool 50 is not an essential component, and the abnormality diagnosis system 100 of the present embodiment can be realized even if the dedicated tool 50 is not provided.
The calculation unit 41 has the functions of an AD conversion unit 410, an FFT analysis unit 411, a deterioration degree calculating unit 412, and the abnormality determination unit 413. The AD conversion unit 410 functions as a current measuring unit that carries out AD conversion of the load current of the motor 20 detected by the current sensor 30. The FFT analysis unit 411 functions as a frequency analyzing unit for performing frequency analysis of the load current. The deterioration degree calculating unit 412 calculates the deterioration degree by adding up a preset number of the intensity values set in advance from top in a preset frequency range. The abnormality determination unit 413 has a function as an input unit for inputting a threshold value and a function as an abnormality determination unit for determining whether or not the motor 20 has deteriorated by comparing the input threshold value with the degree of deterioration. The threshold value is input from, for example, the dedicated tool 50.
The EIP port 42 is a port for enabling communication between the abnormality diagnosis device 40 and the dedicated tool 50 by the EtherNet/IP network protocol.
The display unit 43 is composed of, for example, electronic paper or the like, and displays the degree of deterioration or the like calculated by the abnormality diagnosis device 40.
The output contact 44 is a contact for transmitting the output of the abnormality diagnosis device 40 to an external device.
The power supply circuit 45 is a circuit that is connected to an external power supply and supplies the power supply necessary for the operation of each part of the abnormality diagnosis device 40.
In the present embodiment, the DC component and harmonics that have fluctuations not caused by the abnormality of the motor 20 are removed from the FFT waveform of the drive current of the motor 20, and the preset number of data are added up. This saves the trouble of setting necessary for identifying the sideband wave, and can identify the deterioration and failure of the motor 20.
For example, in the FFT waveform of the drive current of the motor 20 in which the load imbalance has occurred as shown in
However, in the present embodiment, as shown in
Next, the FFT analysis unit 411 of the abnormality diagnosis device 40 performs frequency-analysis of the load current by the discrete Fourier transform (
Next, the deterioration degree calculating unit 412 of the abnormality diagnosis device 40 cuts the fundamental wave and the harmonic from the current data (
Next, the deterioration degree calculating unit 412 of the abnormality diagnosis device 40 calculates the deterioration degree by adding up a preset number of the intensity values set in advance from top (
Degree of deterioration=A×[(Added up Intensity values of the Top N noises)/signal values] (Equation 1)
In the above equation, N indicates the number of data to be added up, and A indicates the coefficient for adjusting the sensitivity.
After that, the abnormality determination unit 413 of the abnormality diagnosis device 40 may perform the abnormality determination by comparing the threshold value with the calculated deterioration degree.
Next, the calculation process of the degree of deterioration in this embodiment will be described. In the following example, the number of poles of the motor 20 is four, and the power supply frequency of 60 Hz is directly driven.
The appearance of the abnormality of the motor 20 differs depending on the failure mode. Therefore, in the present embodiment, three methods for calculating the degree of deterioration are provided according to the failure mode.
The first failure mode is a failure mode due to unbalance, misalignment, or breakage of the rotor bar. The second failure mode is a failure mode due to cavitation. The third failure mode is a failure mode due to bearing deterioration. Hereinafter, the processing for calculating the degree of deterioration in each failure mode will be described.
As an example, the calculation process of the degree of deterioration in the case of a failure mode due to imbalance will be described.
In this example, the FFT analysis unit 411 performs FFT with a resolution of 0.25 Hz, and in the frequency range of 0 Hz to second harmonic (0 Hz to 120 Hz), the top 10 of intensity values are added up. Then, the degree of deterioration is calculated by the following equation.
Degree of deterioration=600×[(Added up Intensity values of noises of Frequency0-secondary harmonic)/signal values] (Equation 2)
However, the top 10 are just examples, and the strength values of 6 to 20 may be added up.
As can be seen from
As an example, the calculation process of the degree of deterioration in the case of the failure mode due to cavitation will be described.
In this example, the FFT analysis unit 411 performed an FFT with a resolution of 0.25 Hz, and in the frequency range of the fundamental frequency±15 Hz, the top 60 intensity values were added up, and the degree of deterioration was calculated by the following equation.
Degree of deterioration=200×[(Added up Intensity values of noises of Frequency±15 Hz)/signal values] (Equation 3)
However, the top 60 pieces are just an example, and the number may be changed as appropriate and the strength values may be added up.
As can be seen from
As an example, the process of calculating the degree of deterioration in the case of a failure mode due to bearing deterioration will be described.
In this example, the FFT analysis unit 411 performs an FFT with a resolution of 0.25 Hz, and in the frequency range of the second harmonic to the twentieth harmonic (120 Hz to 1200 Hz), the top 4000 intensity values are added up. Then, the degree of deterioration is calculated by the following equation.
Degree of deterioration=100×[(Added up Intensity values of noises of Frequency2nd-20th harmonic)/signal values] (Equation 4)
However, the top 4000 pieces are an example, and the number may be changed as appropriate and the strength values may be added up.
As can be seen from
As described above, according to the present embodiment, the degree of deterioration is calculated by adding up the intensity values of the preset numbers from top in the preset frequency range, so that it is possible to perform abnormality diagnosis of the motor without setting many parameters such as a drive frequency of the motor, a number of poles of the motor, and slippage, etc.
Next, the second embodiment of the present invention will be described in detail with reference to the drawings.
In the above-described first embodiment, an embodiment in which a predetermined number of intensity values are added up to calculate the degree of deterioration has been described. On the other hand, in the present embodiment, an embodiment in which the degree of deterioration is calculated by adding up the intensity values above a certain level will be described.
As shown in
In this case, for example, if the intensity values are added up with a small number such as the top 10, the top 10 may contain a lot of noise due to the influence of the inverter, and the sensitivity for detecting a signal due to an abnormality may decrease.
The noise intensity values due to the influence of inverter drive differ depending on the control method of the inverter used, the manufacturer, etc., so it cannot be removed uniformly. Therefore, it is conceivable to add up more intensity values instead of adding up a certain number of intensity values from the top.
However, as shown in
Therefore, in the present embodiment, it is decided to remove signals below a certain level and add up intensity values above a certain level to calculate the degree of deterioration. However, as a result of the experiment, it is known that the noise due to the abnormality has an intensity value of −50 dB or more. Therefore, in the present embodiment, for example, by taking a margin of −10 dB and adding up the intensity values of −60 dB or more, it is decided to add up all the remaining signals after removing minute noises. As a result, it was confirmed that the signals to be detected can be surely added up after removing minute noises, and the deterioration tendency can be detected.
The noises generated by the influence of the inverter drive are constant regardless of the abnormality, but the signal to be detected changes depending on the abnormality. However, according to the present embodiment, by adding up the intensity values of a certain level or higher, it is possible to obtain a sufficient number of intensity values of the signals to be detected, and it is possible to prevent a decrease in sensitivity for detecting signals due to an abnormality.
The hardware configuration of the abnormality diagnosis device 40 in the present embodiment is the same as the configuration of the abnormality diagnosis device 40 in the first embodiment shown in
The abnormality diagnosis device 40 of the present embodiment includes a calculation unit 41, an EIP port 42, a display unit 43, an output contact 44, and a power supply circuit 45, as in the first embodiment. The deterioration degree calculating unit 412 in the present embodiment is different from the first embodiment in that the deterioration degree calculating unit 412 calculates the deterioration degree by adding up the intensity values of a certain level or higher in a preset frequency range. Other configurations are the same as those in the first embodiment.
Next, the FFT analysis unit 411 of the abnormality diagnosis device 40 performs frequency-analysis of the load current by the discrete Fourier transform (
Next, the deterioration degree calculating unit 412 of the abnormality diagnosis device 40 cuts the fundamental wave and the harmonic from the current data, and further cuts the noise below a certain level (
Next, the deterioration degree calculating unit 412 of the abnormality diagnosis device 40 calculates the deterioration degree by adding up the intensity values set in advance from top (
After that, the abnormality determination unit 413 of the abnormality diagnosis device 40 may perform the abnormality determination by comparing the threshold value with the calculated deterioration degree.
Next, the calculation process of the degree of deterioration in this embodiment will be described. In the following example, the number of poles of the motor 20 is four, and the power supply frequency of 60 Hz is directly driven.
In this embodiment, as an example, a process of calculating the degree of deterioration in the case of a failure mode due to imbalance will be described.
In this example, the FFT analysis unit 411 performs FFT with a resolution of 0.25 Hz, and in the frequency range of 0 Hz to second harmonic (0 Hz to 120 Hz), and adds up the intensity values of −60 dB or more. Then, it calculates the degree of deterioration by the following equation.
Degree of deterioration=600×[(Added up Intensity values of noises of Frequency0-secondary harmonic)/signal values] (Equation 5)
As can be seen from
It may be combined with the first embodiment. When the present embodiment and the first embodiment are combined, the abnormality diagnosis device 40, particularly the deterioration degree calculating unit 412 may have a function of calculating the degree of deterioration by adding up the intensity values of a preset numbers of a certain level or higher in a preset frequency range from top.
The above embodiment is an example, and various modifications can be made without departing from the scope of the present invention.
In the above-described embodiment, a mode in which the load current waveforms output in 4 seconds are added up every 4 seconds has been described. However, the present invention is not limited to such an aspect, and a total period for adding up can be appropriately determined in consideration of the amount of data and the accuracy.
Although the abnormality diagnostic apparatus and the abnormality diagnosis method according to the embodiment of the present invention have been described in the present specification, the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2019-048914 | Mar 2019 | JP | national |
2019-217193 | Nov 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/002572 | 1/24/2020 | WO | 00 |