The present disclosure is directed to medical imaging systems. More specifically, the present disclosure is directed to systems and methods that alone or collectively facilitate real-time imaging.
Coronary artery disease causes in excess of 1.5 million cases of myocardial infarction annually, and is the leading cause of death in the United States, resulting in more than 500,000 deaths per year. The accurate diagnosis and quantification of coronary artery disease is critical to subsequent treatment decisions. Despite the emergence of new techniques for the visualization and analysis of vascular structures, digital subtraction angiography (DSA) remains the preferred procedure to help clinicians to make clinical-decisions in all kinds of vascular diseases. Digital subtraction angiography (DSA) is a well-established modality for the visualization of blood vessels in the human body.
During a DSA procedure a first series of frames are taken which represents the body anatomy in static form. They are called mask frames. Then dye is injected in the body through a catheter to visualize the blood vessel. The dye-injected frames are called the bolus frames. A subtraction procedure is preformed between the averaged bolus frame and the averaged mask frame to get DSA image. The patient is positioned on the X-ray imaging system while an X-ray movie is acquired and a DSA image is generated for an interventional cardiologist or a radiologist. Ideally, the DSA image mainly contains the dye-enhanced blood vessels and they appear dark. However, the artifacts due to patient motion and system noise frequently reduce the diagnostic value of the images.
In the produced DSA image, a pathological aspect is associated with a vascular area where there is a significant deviation from the diameter of the healthy vascular. In particular, a stenosis is associated with a significant narrowing of the vascular and is quantified by parameters such as the percentage of stenosis. Stenosis limits blood flow by raising the resistance to flow through the vessel. In X-ray angiography (DSA image), the contrast agent ensures that the outlines of the blood flow are revealed on the X-ray to indicate any narrowing of the blood vessel. Direct visual examination of cine film coronary angiograms and manual estimation of the degree of vascular stenosis were complicated and subject to a large inter- and intra-observer variability.
The present invention includes a system and method (i.e., utility) for determining the severity of a stenosis in a blood vessel. In one aspect, a method for improving DSA image quality includes: (1) registration of the mask and bolus images prior to subtracting procedure to reduce the artifacts from misalignment; (2) enhancement of the registered DSA image; and (3) detecting the boundary of blood vessel and quantitatively measuring percentage stenosis, which may be done automatically. This last step is sometimes referred to as Quantitative coronary angiography (QCA). Aspects of the present invention allow such QCA to be performed by a computer with minimal user input.
The utility allows for the semi-automated quantitative measurement (QCA) of a lumen (e.g., blood vessel or artery). The utility involves a registration step of the mask and the bolus images prior to subtracting procedure and QCA measurement. Generally, such registration is a motion compensation step can reduce the artifacts from misalignment and improve the accuracy of QCA measurement. As will be appreciate, in coronary applications movement of the heart is nearly constant and motion compensation significantly improves overall image quality for QCA purposes.
In one arrangement, the motion compensation is performed using an algorithm that involves an inverse-consistency constrain which implies that the correspondence provided by the registration in one direction matches closely with the correspondence in the opposite direction. This may entail a B-spline parameterization. Other image registration methods can also be applied in the proposed system to match the mask and bolus images.
In one arrangement, the registration is performed hierarchically using a multi-resolution strategy in both, spatial domain and in domain of basis functions. The registration can be performed at ¼, ½ and full resolution using knot spacing of 8, 16 and 32. In addition to being faster, the multi-resolution strategy helps in improving the registration by matching global structures at lowest resolution and then matching local vessel structures as the resolution is refined. Due to the bi-directional approach, thin blood vessels edges are more prominent thereby avoiding the local minima both in iterative nature of thin vessel edge estimation and iterative nature of correction of bolus image. The subtraction process is applied on corrected bolus images.
Image enhancement prior to QCA measurement also improves the overall QCA measurement. In one arrangement the registered DSA image is further enhanced by background diffusion to remove noise and nonlinear normalization for better visualization. This image enhancement increases the contrast between the blood vessels and the background. This results in much improved contrast and very crisp subtraction images, in which the regions of interest are easily identifiable. Enhancement of the registered DSA image can be performed using an anisotropic diffusion technique and a nonlinear normalization technique. Other similar image enhancement techniques can also be applied in the proposed utility to enhance DSA images before QCA measurement.
The utility allows a user to input various types of lumen identification a center line method where a user identifies an approximate center of the lumen and an edge method where a user identifies initial edges of the lumen. Both methods can obtain percentage stenosis automatically with minimal user interaction. With the initial points selected by the user, the QCA measurement may include one or more of the following three sub-processes: (1) initial edge detection; (2) edge refinement; and (3) lesion measurement. Initial edge detection is performed where a user inputs centerline information. In any case, the utility may refine the edges of the lumen. In one arrangement, an active contour model algorithm may be used to refine the edges by deforming a contour to lock onto features of interest within in an image. Other edge detection or segmentation techniques can also be applied in the system for QCA measurement.
For each stenosis or lesion, the following data are calculated: (a) minimum and maximum diameter; (b) lesion length (the beginning and end of the lesion are determined automatically); (c) Stenosis reference (“normal”) diameter; and (d) percent stenosis. Other measurements can also be included in the proposed system.
To improve the overall speed of the utility, the entire software architecture may be implemented on a GPU based framework, which makes visualization and computation faster by up to factor of 30. Thus the entire utility may implemented substantially in real-time. Further, the utility may be used with various imaging modalities and may be used with 2-D or 3-D images.
Reference will now be made to the accompanying drawings, which assist in illustrating the various pertinent features of the various novel aspects of the present disclosure. Although the present invention will now be described primarily in conjunction with angiography utilizing X-ray imaging, it should be expressly understood that aspects of the present invention may be applicable to other medical imaging applications. For instance, angiography may be performed using a number of different medical imaging modalities, including biplane X-ray/DSA, magnetic resonance (MR), computed tomography (CT), ultrasound, and various combinations of these techniques. In this regard, the following description is presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commensurate with the following teachings, and skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments described herein are further intended to explain known modes of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other embodiments and with various modifications required by the particular application(s) or use(s) of the present invention.
The projection images (e.g., CT images) are acquired at different time instants and consist of a movie with a series of frames before, during and after the dye injection. The series of frames include mask images that are free of contrast-enhancing dye in their field of view 108 and bolus images that contain contrast-enhancing dye in their field of view 108. That is, bolus frames are images that are acquired after injected dye has reached the field of view 108. The movie acquisition system 102 is operative to detect the frames before and after dye injection automatically to make feasible a real-time acquisition system. One approach for identifying frames before and after dye injection is to find intensity differences between successive frames, such that a large intensity difference is detected between the first frame after dye has reached the field of view (FOV) and the frame acquired before it. However, the patient may undergo some motion during the image acquisition causing such an intensity difference between even successive mask images. To avoid this, the movie acquisition system 102 may align successive frames together, such that the motion artifacts are minimized. The first image acquired after the dye has reached the FOV will therefore cause a high intensity difference with the previous frame not containing the dye in FOV. The subtraction image or ‘DSA image’ obtained by subtracting a mask frame from a bolus frame (or vice versa) will contain a near-zero value everywhere if both images belong to background.
Generally, the subtraction image or DSA image is obtained by computing a difference between pixel intensities of the mask image and the bolus image. The enhancement system 104 may then enhance the contrast of the subtraction image. Such enhancement may include rescaling the intensities of the pixels in the subtraction image and/or the removal of noise from the subtraction image.
The acquisition and/or enhancement systems are computerized systems that may run application software and computer programs which can be used to control the system components, provide user interfaces, and/or provide features of the imaging system. The software may be originally provided on computer-readable media, such as compact disks (CDs), magnetic tape, or other mass storage medium. Alternatively, the software may be downloaded from electronic links such as a host or vendor website. The software is installed onto a hard drive and/or electronic memory of the system, and is accessed and controlled by the operating system. Software updates are also electronically available on mass storage media or downloadable from the host or vendor website. The software, as provided on the computer-readable media or downloaded from electronic links, represents a computer program product usable with a programmable computer processor having computer-readable program code embodied therein. The software contains one or more programming modules, subroutines, computer links, and compilations of executable code, which perform the functions of the imaging system. The user interacts with the software via keyboard, mouse, voice recognition, and other user-interface devices (e.g., user I/O devices) connected to the computer system.
where, I1(x) and I2(x) represent the intensity of image at location x, x represents the domain of the image. hi,j(x)=x+ui,j(x) represents the transformation that maps image Ii to image Ij in the Eulerian frame of reference and u(x) represents the displacement field. L is a differential operator and the second term in Eq. (1) represents an energy function. σ, ρ and χ are weights to adjust relative importance of the cost function.
In Equation (1), the first term represents the symmetric squared intensity cost function and represents the integration of squared intensity difference between deformed reference image and the target image in both directions. The second term represents the energy regularization cost term and penalizes high derivatives of u(x). L is represented as a Laplacian operator mathematically given as: L=∇2. The third and last term represents the inverse consistency cost function, which penalizes differences between transformation in one direction and inverse of transformation in opposite direction. The total cost 308 is computed 306 using Eq. 1 as a first step in registration.
The optimization problem posed in Eq. (2) is solved by using a B-spline parameterization as is known in the art. B-splines are used due to ease of computation, good approximation properties and their local support. It is also easier to incorporate landmarks in the cost term if we use spatial basis function. The above optimization problem is solved by solving for B-spline coefficients ci's, such that
where, βi(x) represents the value of B-spline at location x, originating at index i. In this registration method, cubic B-splines are used. A gradient descent scheme is implemented based on the above parameterization. The total gradient cost is calculated and updated 310 with respect to the transformation parameters in every iteration. The transformation parameters are updated using the gradient descent update rule. Images are deformed into shape of one another using the updated correspondence and the cost function and gradient costs are calculated 314 until convergence 316 when the frames are registered 318. The registration is performed hierarchically using a multi-resolution strategy in both, spatial domain and in domain of basis functions. The registration is performed at ¼, ½ and full resolution using knot spacing of 8, 16 and 32. In addition to being faster, the multi-resolution strategy helps in improving the registration by matching global structures at lowest resolution and their matching local structures as the resolution is refined.
Referring again to
Initially, the DSA image 214 is provided for look-up-table (LUT) based diffusion 402 or anisotropic diffusion. Such diffusion 402 is described in relation to equations 3-6. Such an anisotropic diffusion and is based on partial differential equation (PDE) for noise smoothing. Given an image l(x,y,t) at time scale t, the diffusion process is expressed as:
where ∇ is the gradient operator, div is the divergence operator, and c(x,y,t) is the diffusion coefficient at location (x,y) at time t, With applying the divergence operator, Eq. (3) can be rewritten as
where Δ is the Laplacian operator. The diffusion coefficient c(x,y,t) is the key in the smoothing process and it should encourage homogenous-region smoothing and inhibit the smoothing across the boundaries. It is chosen as a function of the magnitude of the gradient of the brightness function, i.e.
c(x,y,t)=g(∥∇I(x,y,t)∥) (5)
The suggested functions for g(·) are the following two
where K is the diffusion constant which controls the edge magnitude threshold. Generally speaking, a larger K produces a smoother result in a homogenous region than a smaller one. Here we apply diffusion technique on the input DSA images to smooth background thereby reducing the structured noise. Also, the algorithm may be implemented using compute unified device architecture (CUDA), which is developed by nVidia to run general purpose computations on a Graphics Processing Unit (GPU). The result of the diffusion process 402 is a diffused image 404.
To increase the contrast between the blood vessels of and background in the DSA image, a nonlinear normalization method 406 is used. The principle is to force the background to suppress the non-vascular structures and noise, while gradually enhancing the foreground vascular structures. The nonlinear normalization 406 is currently implemented as a LUT filter that is based on the pre-defined parameters and is set forth in relation to equation 7.
Letting Iin(x,y) be the input DSA image (after diffusion), the nonlinear normalization, defined as Iout(X,Y) is mathematically given as:
Here Ii is a pre-defined threshold, y1>1.0 and y2<1.0 for class-based contrast enhancement. So if the intensity range of dye lies in lower half of the image and the background lies in the higher half of the image, the blood vessels are enhanced in limits. The result of this non-linear normalization is the enhanced DSA image 218.
After these processes, the DSA image quality has been improved greatly. Such improvement in the image facilitates QCA measurement as set forth herein. However, it will be appreciated that the QCA measurement set forth herein is considered novel in and of itself.
Set forth herein are two semi-automatic algorithms to compute percentage stenosis with minimum user intervention. As shown in
The operator can then choose “measure from centerline” (center line method 512), or “measure from sides” (vessel edge method 514). If “measure from centerline” is chosen the operator needs to select 516 several points 604 along the centerline of vessel 600 as illustrated in
The QCA measurement process is set forth in
When the user chooses initial points 604 along the centerline 610, initial edge detection in QCA is performed by calculating the gradients of in a direction perpendicular to the centerline across the lumen and finding their peak values. See
If the user chooses initial points along the two boundary lines, those points are used as the initial edge points and above initial edge detection step is omitted.
After initial edge point detection, a group of edge points are identified along two boundaries of the vessel. See
V={v1, v2 . . . vn}
v
i=(xi,yi), i=1, . . . n (9)
The points in the contour iteratively approach the boundary of an object through the solution of an energy minimization problem. For each point in the neighborhood of vi, an energy term 902 is computed:
E
i
=αE
int(vi)+βEext(vi) (10)
where Eint(vi) is an energy function dependent on the shape of the contour and Eext(vi) is an energy function dependent on the image properties, such as the gradient, near point vi. α and β are constants providing the relative weighting of the energy terms.
The internal energy function is intended to enforce a shape on the deformable contour and to maintain a constant distance between the points in the contour. Additional terms can be added to influence the motion of the contour. The internal energy function used herein is defined as follows:
αEint(vi)=bEcon(vi)+cEcur(vi) (11)
where Econ(vi) is the continuity energy that enforces the shape of the contour and Ecur(vi) is a curvature energy that causes the contour to grow or shrink. c and b provide the relative weighting of the energy terms.
The external energy function attracts the deformable contour to interesting features, such as object boundaries, in an image. Here image gradient is used. The image gradient should be large at the object boundary (β, <0). Therefore, the following external energy function is investigated:
βEint(vi)=βEgrad(vi) (12)
In summary, energy function at each vi is minimized:
E
i
=bE
con(vi)+cEcur(vi)+βEgrad(vi) (13)
In (8), b>0,c>0 and β<0.
This process iteratively updates the initial edge points 904 until the energy function is minimized or a maximum number of iterations are achieved The result are refined edge points 910 as illustrated in
After these first two processes 720, 740, the edges of the lumen are identifies a dimensions need to be calculated for lesion measurement 740. See
One method to determine lumen dimensions is set forth in the process flow sheet of
The proposed system provides a number of advantages. For instance, may be used in the quantitative measurement of a blood vessel and the system includes three sub-systems: motion compensation, image enhancement, and stenosis measurement. The whole system results in a more intelligent and more accurate system for improving QCA measurement. Another advantage is that the proposed system can involve a registration step to align the mask and bolus images prior to subtracting procedure and QCA measurement. This motion compensation step can reduce the artifacts from misalignment (due to patient movement) and improve the accuracy of QCA measurement. Another advantage is that the proposed system can involve an image enhancement step prior to QCA measurement; the resulted DSA image is further enhanced by background diffusion and nonlinear normalization for better visualization. This image enhancement increases the contrast between the blood vessels and the background. This results in much improved contrast and very crisp subtraction images, in which the regions of interest are easily identifiable.
It will be appreciated that the entire software architecture in the proposed system may be implemented on a GPU based framework, which makes visualization and computation faster by up to factor of 30. The entire scheme may therefore be implemented as a real-time scheme.
The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commensurate with the above teachings, and skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other embodiments and with various modifications required by the particular application(s) or use(s) of the present invention. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application No. 61/057,725 having a filing date of May 30, 2008, the entire contents of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61058725 | Jun 2008 | US |