1. Field of the Invention
This invention relates generally to a seal section for an electrical submersible pump. More particularly, the invention relates to a bellows in a seal section of an electrical submersible pump.
2. Background
Electrical submersible pumps (ESPs) have been used to lift fluid from bore holes, particularly for oil production. In operation, a pump of an electrical submersible pump is placed below the fluid level in the bore hole. The well fluid often contains corrosive compounds such as brine water, CO2, and H2S that can shorten the run life of an ESP when the ESP is submerged in the well fluid. Corrosion resistant units have been developed that have motors that utilize seals and barriers to exclude the corrosive agents from the internal mechanisms of the ESP.
A typical submersible pump has a motor, a pump above the motor, and a seal section between the motor and the pump. The seal section allows for expansion of the dielectric oil contained in the rotor gap of the motor. Temperature gradients resulting from an ambient and motor temperature rise cause the dielectric oil to expand. The expansion of the oil is accommodated by the seal section. Additionally, the seal section is provided to equalize the casing annulus pressure with the internal dielectric motor fluid. The equalization of pressure across the motor helps keep well fluid from leaking past sealed joints in the motor. It is important to keep well fluids away from the motor because well fluid that gets into the motor will cause early dielectric failure. Measures commonly employed to prevent well fluids from getting into the motor include the use of elastomeric bladders as well as labyrinth style chambers to isolate the well fluid from the clean dielectric motor fluid. Multiple mechanical shaft seals keep the well fluid from leaking down the shaft. The elastomeric bladder provides a positive barrier to the well fluid. The labyrinth chambers provide fluid separation based on the difference in densities between well fluid and motor oil. Any well fluid that gets past the upper shaft seals or the top chamber is contained in the lower labyrinth chambers as a secondary protection means.
One problem with the use of an elastomeric bladder is that, in high temperature applications, elastomeric bladders may experience a short usable life or may not be suitable for use. Elastomeric materials having a higher temperature tolerance tend to be very expensive. An alternative is to replace the elastomeric bladder with a bellows made of metal or another material that may expand as necessary, but which is suitable for use in high temperature applications, and/or which provide improved reliability over an elastomeric bladder.
Bellows have been used previously in submersible pump applications and other pumping systems. For example, the use of bellows is taught in U.S. Pat. Nos. 2,423,436, 6,059,539, and 6,242,829. Previous use of bellows in an ESP has required that the bellows be placed in an awkward configuration, e.g., as taught in U.S. Pat. No. 2,423,436, or that the bellows be located below the motor in an ESP to avoid interfering with a shaft that traverses the length of the ESP to deliver power from the motor to the pump.
It is desirable to be able to use a bellows to replace an elastomeric expansion bag, and that the bellows be configured in a similar manner to the more commonly used elastomeric expansion bag.
According to the present invention there is provided an improvement in a positive barrier to well fluid in a submersible pump, wherein the barrier is suitable for high temperature applications.
A multi-diameter bellows provides a positive barrier to well fluids. The multi-diameter bellows is preferably located in a seal section to assist in allowing expansion of the dielectric oil, to equalize the casing annulus pressure with the internal dielectric motor fluid and to isolate the well fluid from the clean dielectric motor fluid. The multi-diameter bellows of the invention may be made from materials that are less expensive and are suitable for higher temperatures than an elastomeric bag.
The multi-diameter bellows of the invention is preferably located in a bellows chamber of a seal section of an electrical submersible pump, wherein the seal section is located between a pump and a motor. The bellows chamber has a first end and a second end. A shaft communicates the motor with the pump, and runs through the bellows chamber in the seal section. The bellows is located in the bellows chamber and surrounds the shaft. The bellows is made of a first collapsible section and a second collapsible section. The first collapsible section communicates with the first end of the bellows chamber. The first collapsible section has a first cross-sectional area, e.g., a relatively large diameter. The second collapsible section communicates with the second end of the bellows chamber. The second collapsible section has a second cross-sectional area, e.g., a relatively small diameter. A first coupling member, e.g., a coupling ring, is provided between the first collapsible section and the second collapsible section and also surrounds said shaft. A volume within the bellows is varied by movement of the first coupling member towards either of the first end and the second end.
In a second embodiment of the bellows of the invention, a large diameter section is attached to the bellows chamber at a first end. A second end of the large diameter section has a coupling member thereon, which transitions the bellows from the first large diameter section to a small diameter section. On the other end of the small diameter section, a second coupling member is provided to transition the small diameter section to a second large diameter section, which is affixed to the other end of the bellows chamber. In both embodiments, the ends of the bellows are fixed. The volume within the bellows is varied by movement of the coupling member or coupling members. For example, to increase the volume of the bellows, the coupling member or coupling members are displaced to minimize the volume of the small diameter section and to maximize the volume of the large diameter sections. Conversely, to decrease the volume of the bellows, the coupling members are displaced to maximize the volume of the small diameter section and to minimize the volume of the large diameter section. One advantage of the second bellows embodiment is that the bellows is still partially functional even if one of the coupling members becomes stuck, thereby increasing reliability of the seal section.
A better understanding of the present invention, its several aspects, and its advantages will become apparent to those skilled in the art from the following detailed description, taken in conjunction with the attached drawings, wherein there is shown and described the preferred embodiment of the invention, simply by way of illustration of the best mode contemplated for carrying out the invention.
Before explaining the present invention in detail, it is important to understand that the invention is not limited in its application to the details of the embodiments and steps described herein. The invention is capable of other embodiments and of being practiced or carried out in a variety of ways. It is to be understood that the phraseology and terminology employed herein is for the purpose of description and not of limitation.
Referring now to
A lower guide tube collar 38 is located within collar receptacle 34 of lower sleeve block 30. A lower head 40 is at least partially located within housing 20 and is located above lower sleeve block 30. Lower head 40, housing 20 and lower sleeve block 30 define a lower bellows chamber 42. Lower head 40 defines a ring receptacle 44 on a lower end and a sleeve receptacle 46 above ring receptacle 44. Lower head 40 also defines a lower shaft seal receptacle 48 on an upper end. Fluid bypass conduit 50 and fluid passageway 52 are also defined by the lower head 40. Fluid passageway 52 communicates with an annular space that surrounds lower shaft 26 and also with lower bellows chamber 42. A check valve 54 is provided in fluid passageway 52 to prevent fluid from passing from the lower bellows chamber 42 back into fluid passageway 52.
A guide tube ring 56 is located within ring receptacle 44. A ring retainer collar 58 is threadably received on a guide tube ring 56. Ring retainer collar 58 is preferably provided with a ridge 60 for engaging an inside surface of housing 20. A lower guide tube 64 is located inside lower bellows chamber 42. Lower guide tube 64 is attached at a first end to the guide tube ring 56 and at a second end to lower guide tube collar 38 and surrounds lower shaft 26. Lower guide tube 64 is preferably provided with orifices 66 proximate an upper end up the lower guide tube 64. A first embodiment of a multi-diameter bellows 68 surrounds lower guide tube 64. Multi-diameter bellows 68 has a small diameter portion 70 and a large diameter portion 72. Bellows 68 may be made of metal or other high temperature resistant materials or other suitable materials as desired.
Referring now to
Referring back to
Referring now to
An upper guide tube ring 132 is located within ring receptacle 120. An upper guide tube 138 is attached to the lower guide tube collar 114 on a lower end and is attached to the upper guide tube ring 132 at an upper end. A second embodiment of a multi-diameter bellows 140 surrounds the upper guide tube 138. Multi-diameter bellows 140 has a first large diameter portion 142, a second large diameter portion 144, and a small diameter portion 146. Bellows 140 may be made of metal or other high temperature resistant materials or other suitable materials as desired.
Referring now to
Multi-diameter bellows 140 also is preferably provided with a plurality of stabilizer disks 160 that have runners 162 provided on an inner diameter of the stabilizer disks 160 for slidably engaging upper guide tube 138. The stabilizer disks 160 communicate with an outer diameter of the first large diameter portion 142 and with an outer diameter of second large diameter portion 144. The stabilizer disks 160 preferably have a first side attached to a first segment of the first or second large diameter portions 142, 144 and a second side attached to a second segment of the first or second large diameter portions 142, 144. Stabilizer disks 160 are preferably provided with orifices 161 formed therein for permitting fluid to pass through the stabilizer disks 160 within the multi-diameter bellows 140.
Referring back to
In practice, dielectric fluid surrounding motor 14 is heated by operation of motor 14 and/or by conducting heat from the well environment. As a result, the dielectric fluid expands and migrates through base 22 past first sleeve 28 and up lower shaft 26. The dielectric fluid may continue to migrate past second sleeve 36, through lower sleeve block 30 and into the annular space between the lower shaft 26 and the lower guide tube 64. Once dielectric fluid migrates into lower guide tube 64, the dielectric fluid passes through orifices 66 in lower guide tube 64 and into the small diameter portion 70 of the multi-diameter bellows 68. The dielectric fluid may then fill the small diameter portion 70 and large diameter portion 72 of the multi-diameter bellows 68.
Once the volume within the multi-diameter bellows 68 is full of fluid, then coupling ring 78 will propagate along lower guide tube 64 to increase the volume within the large diameter portion 72 until such time as the small diameter portion 70 is fully compressed. When the small diameter portion 70 is fully compressed, then the multi-diameter bellows 68 is at full capacity. Once the multi-diameter bellows 68 is at full capacity, the dielectric fluid will migrate through fluid passageway 52 in lower head 40 and out through check valve 54 into the lower bellows chamber 42. Once lower bellows chamber 42 becomes full, the fluid may continue to migrate upwardly through fluid bypass conduit 50, which allows the fluid to bypass lower shaft seal 88.
If necessary, the dielectric fluid will continue to migrate upwardly in the seal section 10 past coupling 90 and into the upper seal section 18 where fluid will migrate through upper base 100 past fourth sleeve 105 and through the annular space surrounding the upper shaft 104, and through fifth sleeve 112 in upper sleeve block 106. Dielectric fluid will then continue to migrate up through the annular space between the upper shaft 104 and the upper guide tube 138 where the fluid migrates out of upper guide tube 138 and into the multi-diameter bellows 140.
The dielectric fluid fills first large diameter portion 142, small diameter portion 146, and second large diameter portion 144 of multi-diameter bellows 140. Once the internal volume of the multi-diameter bellows 140 is completely full of fluid, first coupling ring 152 and second coupling ring 156 propagate along upper guide tube 138 toward one another, thereby expanding the volume of the first large diameter portion 142 and second large diameter portion 144 while compressing small diameter portion 146. As more fluid is added to the multi-diameter bellows 140, the first large diameter portion 142 and second large diameter portion 144 will continue to expand until small diameter portion 146 is fully compressed as shown in
Although two embodiments of multi-diameter bellows are shown, i.e. multi-diameter bellows 68 and multi-diameter bellows 140, located in a seal section 10 having a lower section 16 and an upper section 18, it should be understood that either the multi-diameter bellows 68 or 140 may be used in a seal section 10 having only a single section. Additionally, either multi-diameter bellows 68 or 140 may be used in a seal section 10 having three or more sections as desired. Although seal section 10 is shown for purposes of example having both a first embodiment 68 and a second embodiment 140, the seal section 10 could be used with two or more of the first embodiments 68 or second embodiments 140 as desired.
One advantage of the multi-diameter bellows 68, 140 is that the upper end 76, 148 and lower end 74, 150 are fixed, therefore the multi-diameter bellows 68, 140 occupy the same linear space of the seal section regardless of the volume of fluid located therein. The volume of the multi-diameter bellows 68, 140 is varied by movement of the coupling rings 78, 152 and 156.
An additional advantage of the end mounted multi-diameter bellows 68, 140 is that the bellows 68, 140 surround the shafts 26, 104. As a result, the multi-diameter bellows 68, 140 may be used above the pump motor 14 in the same manner as elastomeric bags have been used previously.
While the invention has been described with a certain degree of particularity, it is understood that the invention is not limited to the embodiment(s) set for herein for purposes of exemplification, but is to be limited only by the scope of the attached claim or claims, including the full range of equivalency to which each element thereof is entitled.
Number | Name | Date | Kind |
---|---|---|---|
2423436 | Blom | Jul 1947 | A |
3947709 | Waltman | Mar 1976 | A |
4406462 | Witten | Sep 1983 | A |
4421999 | Beavers et al. | Dec 1983 | A |
4436488 | Witten | Mar 1984 | A |
4992689 | Bookout | Feb 1991 | A |
5622222 | Wilson et al. | Apr 1997 | A |
6059539 | Nyilas et al. | May 2000 | A |
6242829 | Scarsdale | Jun 2001 | B1 |
6307290 | Scarsdale | Oct 2001 | B1 |
6688860 | Du et al. | Feb 2004 | B2 |
20020192090 | Du et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
1080366 | Jan 1994 | CN |
2336474 | Oct 1999 | GB |
Number | Date | Country | |
---|---|---|---|
20040146415 A1 | Jul 2004 | US |