This invention relates generally to textile sleeves for protecting elongate members, and more particularly to braided textile sleeves.
Tubular textile sleeves are known for use to provide protection to internally contained elongate members, such as wire harnesses, fluid or gas conveying tubes, or cables, for example. It is further known to braid tubular textile sleeves for protecting elongate members contained therein. Modern vehicle applications for such sleeves are requiring greater protection to the elongate members, such as against increased environmental temperatures and increased resistance to abrasion. These increased demands require the sleeves to pass various test parameters, such as exposure to increased temperatures and exposure to specifically defined abrasion test specifications, such as abrasion tools being passed along both the length of the sleeve and transversely to the length of the sleeve without abrading through the full braided layer of the sleeve or causing any damage to the elongate member contained therein. Known braided sleeve constructions, under some test parameters, are unable to meet the test specifications, and thus, further development is needed. Of course, it is to be appreciated that the resulting sleeves must not only meet the various thermal and abrasion resistant test requirements, but also must be economical in manufacture; have a relatively small envelope and remain flexible to facilitate installation over meandering paths, which tend to be contrary to the ability to form a sleeve that meets increasingly stringent test parameters.
A braided sleeve constructed in accordance with this invention is able to meet the increasingly demanding temperature and abrasion resistant test parameters discussed above, while also having a relatively small envelope and remaining flexible, while other benefits may become readily recognized by those possessing ordinary skill in the art.
A textile sleeve having a seamless, flexible, abrasion resistant tubular wall of braided yarns is provided. The yarns of the wall are braided to withstand elevated temperatures, such as up to about 175° C., and to resist abrasion through the full wall thickness under specified test parameters, while also remaining sufficiently flexible such that the sleeve can be routed about meandering paths including sharp bends without kinking.
In accordance with another aspect of the invention, a protective textile sleeve is provided having a flexible, tubular wall of braided yarns. At least some of the yarns are provided as a plurality of monofilaments and at least some of the yarns are provided as a plurality of multifilaments. The plurality of multifilaments are braided in a plurality of separate bundles. Each of the bundles includes at least two multifilaments, wherein the flexible, tubular wall has an outer surface density of between about 500-700 g/m2.
In accordance with another aspect of the invention, the multifilaments have a denier of between about 1000-1200 dTex.
In accordance with another aspect of the invention, the multifilaments have a tenacity between about 60-85 cN/tex.
In accordance with another aspect of the invention, the multifilaments are polyester.
In accordance with another aspect of the invention, the monofilaments have a diameter between about 0.35-0.40 mm.
In accordance with another aspect of the invention, the monofilaments have a tenacity between about 40-55 cN/tex.
In accordance with another aspect of the invention, the monofilaments have a Young's Modulus of about 3 GPa.
In accordance with another aspect of the invention, the plurality of multifilaments and the plurality of monofilaments are braided in a respective ratio of about 2:1.
A protective textile sleeve constructed in accordance with another aspect of the invention has a flexible, tubular wall of braided yarns, with at least some of the yarns being provided as a plurality of monofilaments and at least some of the yarns being provided as a plurality of multifilaments. The plurality of multifilaments are braided as a plurality of separate bundles, with each of the bundles including at least two multifilaments. Further, the monofilaments have a tenacity between about 40-55 cN/tex, thereby being embedded into the multifilaments to lock the multifilaments in an “as braided” location to enhance the abrasion resistance of the sleeve wall.
A protective textile sleeve constructed in accordance with another aspect of the invention has a flexible, tubular wall of braided yarns, with at least some of the yarns being provided as a plurality of monofilaments and at least some of the yarns being provided as a plurality of multifilaments. The plurality of multifilaments are braided in a plurality of separate bundles, with each of the bundles including at least two multifilaments, wherein the monofilaments have a Young's Modulus of about 3 GPa, thereby being embedded into the multifilaments to lock the multifilaments in an “as braided” location to enhance the abrasion resistance of the sleeve wall.
In accordance with another aspect of the invention, a method of constructing a protective textile sleeve is provided. The method includes braiding a flexible, tubular wall from a plurality of monofilaments having a tenacity between about 40-55 cN/tex and a plurality of multifilaments having a denier of between about 1000-1200 dTex. The plurality of multifilaments are braided as a plurality of separate bundles, with each of the separate bundles including at least two multifilaments. The method includes embedding the plurality of monofilaments into the plurality of multifilaments during the braiding process to effectively lock the plurality of multifilaments in place.
In accordance with another aspect of the invention, the method further includes providing the multifilaments having a tenacity between about 60-85 cN/tex.
In accordance with another aspect of the invention, the method further includes providing the monofilaments having a diameter between about 0.35-0.40 mm.
In accordance with another aspect of the invention, the method further includes providing the monofilaments having a Young's Modulus of about 3 GPa.
These and other aspects, features and advantages of the invention will become readily apparent to those skilled in the art in view of the following detailed description of the presently preferred embodiments and best mode, appended claims, and accompanying drawings, in which:
Referring in more detail to the drawings,
The wall 14 can be constructed having any suitable length and diameter and is braided having a tight braid structure to increase the impermeability of the wall 14 against the ingress of external fluid and/or debris into the cavity 20 without need for a secondary coating of any kind. Accordingly, the sleeve 10 is made cost effective given its ability to provide protection to the elongate member 28 without need for multiple wall layers or a secondary coating material. In accordance with one aspect of the invention, the wall 14 is formed with bundled, dual strands or ends of the multifilaments 11 in side-by-side, mirrored relation and with single strands or ends of the monofilaments 12, wherein the bundled multifilaments 11 are braided with the single monofilament strands 12.
The monofilaments 12 play in important role in the performance of the sleeve 10 and provide the sleeve 10 with its ability to resist abrasion, and function in part to lock the bundled multifilaments 11 in their “as braided” location during use, thereby enhancing the abrasion resistance of the wall 14 provided by the “locked and fixed” high tenacity multifilaments 11. The multifilaments of polyester are provided having a linear density of between about 1000-1200 dTex, and in one exemplary embodiment were provided having an 1100 denier and a count-related yarn tenacity between about 60-85 cN/tex, wherein cN/tex yarn=cN/tex fiber(×)substance utilization %(/)100, and in particular, were provided as high tenacity PET sold under the tradename Diolen®, by way of example and without limitation. The ability of the monofilaments 12 to lock the multifilaments 11 in position is due in part to the diameter of the monofilaments, which is provided between about 0.35-0.40 mm, and also the high modulus and rigidity in the radial direction (lack of ability to be radially deformed elastically) of the monofilaments (it is to be understood that although the monofilaments 112 are rigid in the radial direction that they remain flexible along their length, thereby allowing the sleeve 10 to remain highly flexible), having a relatively high Young's Modulus of elasticity, such as about 3 GPa, and a tenacity between about 40-55 cN/tex, and in one particularly preferred embodiment, by way of example and without limitation, high tenacity thermoplastic polyamide, such as high tenacity nylon. With the monofilaments 12 having a relatively high Young's Modulus, they are able to be embedded into the multifilaments 11, thereby acting to lock the multifilaments 11 in place in an “as braided” location. To the contrary, if the monofilaments were provided having a relatively low Young's Modulus, the monofilaments would be more elastic, both axially and radially, and as such, would not be embedded into the multifilaments to the degree needed to lock the multifilaments in an “as braided” location. As such, with a relatively low Young's Modulus monofilament, an increased surface area density of the wall would be needed, such as about 900 g/m2, to provide the degree of abrasion resistance needed to pass the abrasion test and to protect the elongate member against damage. Of course, it should be recognized that an increased surface area would come at an increased cost, add bulk, and further, would reduce the flexibility of the sleeve.
Tests used to validate the abrasion resistance of the sleeve 10 include a tool 30, having an applied mass of 200 g, that is oriented with the length of the tool 30 extending generally transversely to the longitudinal axis 22 of the sleeve 10 (5A and 5B). In accordance with one test, the tool 30 is moved along the length of the sleeve 10 at a frequency of 10 Hz, such as shown in
During construction of the sleeve 10, including braiding the bundled multifilaments 11 and single monofilaments 12 with one another, as discussed above, the desired length of the sleeve 10 is preferably cut to length in the braiding process. Cutting the desired finished length of the sleeve 10 in the braiding process has been found to facilitate maintaining the round outer peripheral shape of the sleeve 10, thereby facilitating insertion of the elongate member 28 through the cavity 20.
The table illustrated in
It is to be understood that the above detailed description is with regard to some presently preferred embodiments, and that other embodiments readily discernible from the disclosure herein by those having ordinary skill in the art are incorporated herein and considered to be within the scope of any ultimately allowed claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/408,962, filed Oct. 17, 2016, and also U.S. Provisional Application Ser. No. 62/286,106, filed Jan. 22, 2016, which are both incorporated herein by way of reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4836080 | Kite, III et al. | Jun 1989 | A |
4989422 | Barlow et al. | Feb 1991 | A |
5197370 | Gladfelter | Mar 1993 | A |
7074470 | Niwa | Jul 2006 | B2 |
7797919 | Kirth | Sep 2010 | B2 |
8910554 | Kinugasa | Dec 2014 | B2 |
9394636 | Gao | Jul 2016 | B2 |
10167582 | Pilgeram | Jan 2019 | B1 |
20040091655 | Niwa | May 2004 | A1 |
20040109965 | Klinklin | Jun 2004 | A1 |
20100108171 | Relats Manent | May 2010 | A1 |
20100274282 | Olson | Oct 2010 | A1 |
20140220276 | Gao et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1422728 | May 2004 | EP |
9014455 | Nov 1990 | WO |
Entry |
---|
International Search Report, dated Jul. 12, 2017 (PCT/US2017/014485). |
Number | Date | Country | |
---|---|---|---|
20170211215 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62286106 | Jan 2016 | US | |
62408962 | Oct 2016 | US |