The present invention relates to abrasion resistant films. More particularly it relates to abrasion resistant films for biocontainers.
The use of single use bags and other biocontainers is growing in the pharmaceutical and biopharmaceutical business. These bags replace stainless tanks, totes and bins for the processing and transportation of liquids and solids such as raw materials, intermediates and finished goods.
Such film are typically multilayered plastic film structures. They are typically laminates of 4 or more layers (generally between 4 and 10 layers). They generally have 3 or more zones or layers, an inner contact zone which is in contact with the liquid within the bag and which is one or more layers of a generally inert material such as polyethylene that is not likely to release extractables, such as oils or fillers into the content of the bag; an intermediate zone, which often has one or more gas impermeable layers such as ethylene vinyl acetate (EVA), polyethylene vinyl alcohol (EVOH), and the like; and an outer strength zone which provides support, burst resistance and some measure of protection to the remaining zones of the biocontainer and which is generally formed of one or more layers of plastics such as polyethylene, polypropylene, polyethylene-vinyl acetate (EVA), polyethylene teraphthalate (PET), polyamide (nylon), and the like.
Biocontainers are generally inspected and gross leak tested for defects before they are shipped to the user, however, current films in biocontainers lack the strength, toughness and durability to survive the multiple manipulation steps used in atypical biotech facility to unpackage, install and use such a biocontainer. Due mostly to operator handling there is still the chance for a cut, puncture or abrasion to occur to the biocontainer. This can lead to not only loss of the biocontainer but also of its contents which in the case of pharmaceuticals especially biopharmaceuticals represents a significant monetary loss.
What is needed is a new biocontainer and film for biocontainers which is resistant to cuts, punctures and abrasions.
A biocontainer film enhanced with an abrasion and cut resistant substrate. Such substrates can be combined with current existing biocontainer films, by various techniques such as embedding, coextrusion and lamination either in the intermediate zone or the outer zone to maintain the cleanliness and low extractables of the inner zone that has already been validated for biotech manufacturing. The substrate of choice is constructed of materials known to be more resistant to abrasion and cuts or materials that are oriented in a way to prevent puncturing from occurring. It may be formed of polymers or other materials such as polymer, glass, metal, or carbon fibers alone or in combination with polymers. The new substrate is flexible so as to allow for the typical folding of the biocontainer and may also be in the form of a web. The substrate maybe a woven or nonwoven material. The substrate generally has an attachment or binding layer by which the substrate can be attached to the internal or outer surface of the film. Openings can be formed in the substrate to provide a visual opening or window into the interior of the container made by the film or a port. The biocontainer has a selectively closed inner volume that can contain one or more fluids and/or solids. Preferably, the inner volume contains one or more gases and one or more fluids.
It is an object of the present invention to provide a material for biocontainers comprising a film formed of one or more layers, the film having an interior and exterior side, and a substrate attached to the exterior side of the film wherein the substrate is formed of a fibrous material so as to provide abrasion resistance to the material.
It is a further object of the present invention to provide a material formed of a film and a substrate attached to it wherein the substrate is formed with a polymer backing to attach the substrate to the film.
It is an additional object of the present invention to provide a material formed of a film and a substrate attached to it wherein the substrate is formed with a polymer backing to attach the substrate to the film, the substrate is formed of a material selected from the group consisting of woven and non-woven fibrous material and the polymer backing of the substrate is selected from the group consisting of polyolefins, polyurethanes and nylons.
It is an additional object of the present invention to provide a material formed of a film and a substrate attached to it wherein the substrate is formed of a material selected from the group consisting of woven fibrous material selected from the group consisting of a material selected from the group consisting of polymers, metal fibers, glass fibers, and carbon fibers.
It is an additional object of the present invention to provide a material formed of a film and a substrate attached to it wherein the substrate is formed of a material selected from the group consisting of woven fibrous material selected from the group consisting of nylon, polyester, aramids and polyolefins.
It is another object of the present invention to provide a material formed of a film and a substrate attached to it wherein the substrate is formed of a non-woven fibrous material selected from the group consisting of a material selected from the group consisting of polymers, metal fibers and glass fibers.
It is another object of the present invention to provide a material formed of a film and a substrate attached to it wherein the substrate is formed of a non-woven fibrous polymeric material selected from the group consisting of nylons, polyesters, aramids and polyolefins.
It is a further object of the present invention to provide a material formed of a film and a substrate attached to it wherein the film is formed of a multilayered film having a first interior side layer formed of one or more layers forming an inner contact zone, one or more layers of a gas impermeable zone and one or more layers of polymers on the exterior side of the of gas impermeable zone forming an outer strength zone.
It is another object of the present invention to provide a material formed of a film and a substrate attached to it wherein the substrate has one or more openings to form a window or a port opening.
It is an additional object of the present invention to provide a material formed of a film and a substrate attached to it wherein the substrate has one or more elongate openings to form a window.
It is an object of the present invention to provide a material for biocontainers comprising a film formed of one or more layers, the film having an interior and exterior side, and a substrate attached to the exterior side of the film wherein the substrate is formed of a fibrous material so as to provide abrasion resistance to the material and the fibrous material is enveloped or encapsulated in an outer protective layer to increase abrasion resistance and decrease pilling.
It is a further object of the present invention to provide a biocontainer formed of any, all, or selected combinations of the objects above.
It is another object of the present invention to provide a biocontainer formed of any, all, or selected combinations of the objects above which is capable of being pressure tested without the need of constraints or use of low pressures.
It is a further object of the present invention to provide a biocontainer formed of any, all, or selected combinations of the objects above which is capable of dispensing or moving fluid (gas and/or liquid) through the biocontainer by the use of gas pressure contained within the biocontainer (either statically or continually).
These and other objects will become clear from the description, claims, and drawings below.
The film 2 has an inner contact zone 4 which is in contact with the liquid within a biocontainer that formed from the film. The inner contact zone may be formed of one or more layers of material that are inert to the liquids that may be in contact with the film and which is/are also low in extractables that might enter the liquid in contact with the inner contact zone 4 of the film 2. Such materials include but are not limited to various polyolefins such as polyethylene.
Outward of this inner contact zone 4 is an intermediate zone which typically is a gas impermeable zone 6 formed of one or more layers of materials that are gas impermeable. Such materials include but are not limited to polymers such as ethylene vinyl acetates (EVA) and ethylene vinyl alcohols (EVOH) and various metal foils such as aluminum.
Outward of this gas impermeable zone 6 is an outer strength zone 8 formed of one or more layers which provides support, burst resistance and some measure of protection to the remaining zones of the film 2. Such materials include but are not limited to various grades of polyethylene such as high density polyethylene, polypropylene, nylons, polyethylene teraphthalate (PET), EVA, polyamide and the like.
Attached to the outer surface 10 of the outer strength zone 8 is the substrate 12.
In this instance, each of the zones 4, 6, 8 are represented by one layer but as mentioned above each zone may be formed of one or more layers bound together to form a film 2.
Such films 2 are well known and commercially available such as Pureflex™ film available from EMD Millipore Corporation, Billerica, Mass., HYQC-5X-14 film from Thermofisher Inc, Waltham Mass. and FlexSafe or S71 or S40 available from Sartorius Stedim Biotech GmbH of Goettingen Germany.
The substrate 12 as shown is a woven material, although as mentioned above it can equally be a nonwoven or spunbonded material or it may be a netting material such as Delnet film, which is an aperture or porous stretched film.
The substrate can be formed of polymer fibers or yarns, metal fibers or yarns or glass fibers or yarns.
Polymer substrates generally woven, nonwoven or netted can be formed of polymeric materials such as nylons, KEVLAR® and other amides, PET, EVA, polyethylenes, polypropylenes and the like.
Polymeric woven fabrics can be any such fabric. They are commercially available either as a fabric alone or a coated fabric which has a tie resin layer 14 (see below) already integrated into it. Such materials are available from a variety of companies such as Eastex Products Inc. of Holbrook, Mass.; PGI Inc. of Charlotte, N.C.; or Freudenberg & Co KG of Manchester, N.H.
Nonwovens can be for example spunbonded or blown materials and are commercially available for instance as Typar® or Tyvek® sheets from El DuPont De Nemours of Wilmington, Del.
Metal substrates, generally available as woven or nonwoven, can be formed of stainless steel, aluminum and the like. Preferably a noncorrosive metal or a metal treated with a noncorrosive outer layer such as epoxy or nickel are preferred. These are typically provided as a woven cloth or a screen material.
Glass substrates are generally woven or nonwoven. Fiberglass cloths and fiberglass mats are preferred.
Carbon fiber substrates can also be found commercially in woven, web forms such as Panex® 30 or 35 carbon fiber webs from Zoltek Corporation, St Louis, Mo.
The substrate 12 can be attached to the outer zone 8 by an attachment or tie resin layer 14 (see
In
This film 2 is cut to shape into one or several pieces which form the bottom 16, top 18 and side(s) 20 of the biocontainer 22 as shown in
Also shown in
Additionally, one can form port openings in the substrate 12 and film 2 as shown at port opening 34. One can simply cut the opening 34 with a die, punch or knife, whether heated or unheated or a laser, as desired, to the finished material before it is formed into a biocontainer. Other methods of cutting also be used. If desired, one may first cut the substrate 12 before its attachment to the film 2 and then use it as a guide to cut the film 2 beneath it to form the opening 34.
Alternatively, if one uses a transparent or translucent material for the substrate 12, such as nylon, polyethylene or polypropylene, one can simply form a window 30, 32 by heat melting the substrate 12 in the desired area to form the window 30, 32 before the substrate 12 is attached to the film 2. A first means for doing so is to use an iron or heated platen to heat melt the substrate 12 in the desired area with pressure as well as to cause the substrate to form the desired window. Alternatively, a RF heater or an impulse welder could be used to heat and melt the substrate 12. The window 30 can be formed in the substrate 12 before it is attached to the film 2. Alternatively, when the window 30 is formed in the substrate 12 after its attachment to the film 2, the substrate 12 is of a material having a melting point lower than that of the film 2 and it is only heated to the temperature below that of the melting point of the film 2.
An additional method (not shown) for combining multilayered structures is via a hot press laminator. In this process, two different structures such as a substrate 12 and a film 2 are heated and pressed together until cool. This equipment is typically comprised of a series of heating and cooling rolls.
Another method of combining multilayered structures is to apply a layer of hot melt thermoplastic to either the substrate surface that will be adjacent the film or to the film that will be adjacent the substrate and then press them into contact with each other to form a good bond. The biocontainer can be a 2-dimensional biocontainer or a 3-dimensional biocontainer (such as is shown in
Alternative embodiments of
The outer protective layer 20 can be attached to the outer surface of the substrate 12 in the form of an additional resin layer such as a thermoplastic material or film which preferably is at least partially embedded into the substrate 12 as shown. The outer protective layer 20 may be provided with the substrate 12 or added to the substrate 12 before use. Alternatively, it can be formed as part of the film making process as an additional layer especially when a lamination process is used. In another embodiment, sufficient tie resin 14 is used when attaching the substrate 12 so as to enclose or envelope the thickness of the substrate 12 as shown in
In some instances, the outer protective layer 20 does not need a tie resin layer if the layer is partially incorporated into the outer surface of the substrate 12 as a heat bonded material or is integrated as part of the film manufacturing process such as a hot melt layer incorporated or extruded into a portion of the depth of the outer surface of the substrate 12 (
The substrate 12 can be formed of a clear or colored material. In some instances, it is desirable to have the substrate 12 formed of an opaque or light blocking material so that liquids which are sensitive to light, including UV and normal “white” light can be shielded by the substrate 12 to reduce or eliminate damage that would otherwise occur in a clear or transparent bag. Additives to block light, including UV light (additives such as titanium dioxide, zinc oxide and like or organic UV blockers are well known), can also be added to the substrate 12 or the coating or the tie resin layer 14, if used, or one or more layers of the film 2 as desired. Such light blocking additives are well known to one of skill in the art and are available from a variety of sources such as the Colormatrix™ Ultimate™ or the Colormatrix™ Lactra™ or the Oncap™ products from Polyone Corporation.
It is well known that film bags when inflated stretch under pressure. In some instances, inflation can cause the film 2 to stretch in unacceptable ways. For example, where a thinning of the film or other such defect occurs, the film portion that is thinner or has a defect may expand more rapidly than the rest of the film and create a bubble or other deformity in the film surface. This deformity can burst or be subject to greater/quicker wear under abrasion than the rest of the film and may lead to leaks. Likewise even where no thinning or other defect is in the film, an unconstrained film may inflate at different rates due to the way it was folded or unfolded or where it may have a crease or overlap or wrinkle in the film which can also lead to such bubbles or defects. Yet bags are often checked before use by a pressure test to ensure there are no pinholes or unsealed seams that may have been formed by a manufacturing error or by shipment and handling. This test is generally a pressure decay test in which the bag is inflated and then left for a period of time while the pressure and any decay of it is recorded.
However due to the bag's ability to stretch and create deformities, the pressure decay test needs to be done at a low pressure (typically under 1 and generally around 0.5 psi (3.5 KPa) and the bags are typically constrained such as by constraining the bag between two spaced apart restraining plates or being placed in a vacuum chamber or being placed into a holder of defined volume for that bag. Each of these techniques reduce or prevent the likelihood of a defect being formed on inflation. However due to the low pressure used the level of detection is corresponding low, meaning that only significantly large defects will be found (1000-2000 μm for bags ≥1000 L). Likewise, when using a walled chamber of spaced plates, some defects are covered or blinded and do not get detected. Lastly, as the pressure is low, the time involved in running such a test and determining whether a problem exists is extensive (5-10 minute test cycle). There is a need for a better, more accurate and quicker leak detection test before use.
With the present invention, one now has a bag that does not need to be mechanically constrained during a pressure decay test. Instead the outer substrate 12 itself constrains the film 2 and causes it to expand at an even rate thus reducing the potential for deformities, such as bubbles, being formed during the test. Additionally, the outer substrate 12 also allows one to use higher pressures (upwards of 3.5 to 15 psi (24-103 KPa)). This leads to more accurate and high levels of detection, making smaller defects, if they exist, detectable. Likewise, the use of a higher pressure allows for the test to be sped up significantly.
As shown in
If desired, one can maintain the pressure within the bag 60 constant by supplying additional air pressure as the liquid is dispensed. This allows one to maintain the desired head pressure within the bag 60 so that the liquid can be fully dispensed at a constant rate from the bag 60. Alternatively, one can simply apply a fixed head pressure that reduces as liquid is dispensed from the bag 60.
In either embodiment, the use of valves, check valves, clamps, pressure gauges, windows and the like can also be used to maintain the system in its desired state and providing the desired dispensing or movement of liquid 68 out of the bag 60 as needed. All of these elements are well known to one of ordinary skill in the art.
Either embodiment eliminates the need for pumps to move liquid out of the bag 60. This can be of advantage in reducing system cost and complexity and in reducing the potential for shear damage to shear sensitive products that are dispensed from the bag 60 such as various protein solutions and the like.
In a further embodiment of the present invention, the bag 100 may contain one or more grommets or eyes 102 especially at its upper corners 104 so that the bag 100 can be simply hang from a hook or preferably a carrier as shown in
Preferably, and as shown, near the top ends 112 of each of the rods 110 are secondary substantially horizontal rods 114. Each secondary substantially horizontal rod 114 is connected to the adjacent rods 110 to complete the framework 106.
In either embodiment the grommets 102 are attached to the top ends 112 and the bag 100 is allowed to hang inside the framework 106 as shown in
If desired additional secondary substantially horizontal rods 114 (not shown) can be located between the adjacent rods 110 at a location or locations further down toward the base 108 than the first set of rods 108. Alternatively, panels (not shown) may be used in lieu of or in conjunction with the secondary substantially horizontal rods 114.
Three typical Single Use biocontainer films were compared to a composite substrate, made in according to the present invention, for abrasion and puncture resistance.
The substrate when used was extrusion coated onto the outer surface of the film using a polyethylene, copolymer attachment layer The attachment layer as embedded in the substrate was heated to a temperature of 500 degrees (F.)+/−20 degrees (F.) (260° C.+/−11° C.) and laminated under 10 pounds per square inch pressure by a roller.
A Taber Industries Linear Abrasion Tester was procured and a strip of each sample of 1.5 inch by 3 inch (3.8 cm×7.6 cm) was placed between the stylus and backing cylinder. Both the stylus and backing cylinder were capable of carrying an electrical current. The stylus was brought into contact with the surface of the sample or Control and reciprocated linearly over the surface of the material being tested with a stroke of 4 inches and at a cycle rate of 30 cycles per minute until an electrical connection between the stylus and backing cylinder is established (indicating loss of film integrity). The number of cycles each piece took to reach the loss of integrity was recorded. The number of cycles is an indication of the abrasion resistance of the material with the higher number of cycles indicating a more abrasion resistant material. The results are shown in Table 1 below.
Table 1 also indicates that standard puncture test was performed vis ASTM F1306. A pointed, metal tool is projected downward into a frame supported sample of the coated substrate.
1Taber Stylus Abrasion Test: 4 inch stroke length, 30 cycles per minute
2Per ASTM F1306 Puncture Test
The results show that a substrate containing film has dramatically increased abrasion and puncture resistance compared to each of the non-laminated films.
A biocontainer was formed using the substrate/film material according to the embodiment of Example 1. A window was formed in it by simply cutting out the window shape in the substrate before it was attached to the film.
A first biocontainer was formed using a transparent substrate material (nylon woven fabric) which was laminated to the film material according to the embodiment of Example 1. A window formed in it by simply heating and compressing a window shape in the substrate before it was attached to the film. A second biocontainer was formed using a transparent substrate material (polyester nonwoven) which was laminated to the film material according to the embodiment of Example 1. A window formed in it by simply heating and compressing a window shape in the substrate before it was attached to the film.
A biocontainer is formed using the substrate/film material according to the embodiment of Example 1. An outer protective layer is formed on the side of the substrate furthest from the film. A hot melt thermoplastic layer (polyethylene) is coated onto the substrate and compressed with a roller to cause the molten thermoplastic to penetrate into the substrate layer and form the outer protective layer.
A control bag of 28″×20.5″×40″ (71 cm×52 cm×101 cm) was made of Pureflex™ film (EMD Millipore) with a total of four panels for the top, bottom and sides. A polyethylene port having a hose barb extending from its sealing flange, with a through bore of 0.5 inch (1.27 cm) through the interior of the hose barb and flange, was heat sealed to the top panel of the bag to establish an opening between the bag interior and the port. A C-Flex® tube of 4 feet (121.92 cm) in length and having a 0.5 inch (1.27 cm) inside diameter was attached to the exterior of the hose barb and secured to it by a cable tie wrap. An Amesil pinch clamp was placed on the tube about 1 foot (30.48 cm) from the fitting. A bag according to the present invention was made using the same Pureflex™ film. The film had a nylon substrate (Sefar Medifab 03-300-51) secured to the outside surface of the film by extrusion coating. The bag had the same dimensions and same type of port, tubing and clamp located in the same position as the control bag. The clamps were removed from the tubes of each bag and both bags were inflated with air at 2 psi (0.138 bar) until they appeared to be fully inflated and taut. The clamps were then replaced on the tubes and the air was supply was disconnected. A pressure gauge (digital SSI Technologies MGI-200) was attached to the open end of end tube of each bag and the clamps were removed. The pressure was monitored for 15 minutes/hours for any pressure decay within each bag.
A bag of 28″×20.5″×40″ (71 cm×52 cm×101 cm) according to the present invention is made of Pureflex™ film (EMD Millipore). The film has a nylon substrate secured to the outside surface of the film by heat lamination. The biocontainer has a total of four panels for the top, bottom and sides. A first polyethylene inlet port having a hose barb extending from its sealing flange, with a through bore of 0.5 inch (1.27 cm) through the interior of the hose barb and flange, is heat sealed to the top panel of the biocontainer establishing the opening between the bag interior and the port. A second port of the same type and dimensions is attached to the bottom panel of the biocontainer. A silicone tube of 4 feet (121.92 cm) in length and having a 0.5 inch (1.27 cm) inside diameter is attached to the exterior of each hose barb and secured to each by a cable tie wrap. An Amesil pinch clamp is placed on each tube about 1 foot (30.48 cm) from each fitting. The clamps are removed and the top port is connected via the tube to an air pump capable of supplying air at 5 psi (0.345 bar) and the bottom port is connected to a container containing water via its tube. Water is added through the bottom port by removing the pinch clamp and pumping water into the biocontainer until the biocontainer was about 50% full. The bottom pinch clamp is closed and the upper pinch clamp removed. Air is supplied to the biocontainer until it reaches an internal pressure of 5 psi (0.345 bar). The bottom clamp is removed. The water is dispensed from the bag. Air pressure is intermittently supplied to the biocontainer when the pressure drops below 2 psi (0.138 bar). The water is dispensed without use of a pump.
The present application is a Continuation of U.S. application Ser. No. 15/544,644, filed Jul. 19, 2017 which is a US National Stage application of International Application No. PCT/US2016/023534, filed Mar. 22, 2016, which claims the benefit of priority of U.S. Provisional Patent Application No. 62/136,691, filed Mar. 23, 2015, each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3169899 | Steuber | Feb 1965 | A |
3276944 | Levy Martin | Oct 1966 | A |
3388201 | Mazzolini et al. | Jun 1968 | A |
3700541 | Shrimpton et al. | Oct 1972 | A |
4326574 | Pallaroni et al. | Apr 1982 | A |
4812359 | Hall | Mar 1989 | A |
5173345 | Dehennau et al. | Dec 1992 | A |
5180614 | Escabasse | Jan 1993 | A |
5199609 | Ash, Jr. | Apr 1993 | A |
5568657 | Cordova et al. | Oct 1996 | A |
5747134 | Mohammed | May 1998 | A |
5860566 | Lucs | Jan 1999 | A |
6045648 | Palmgren et al. | Apr 2000 | A |
6235825 | Yoshida et al. | May 2001 | B1 |
6957523 | Siccardi | Oct 2005 | B2 |
8053048 | Lang et al. | Nov 2011 | B2 |
20040058603 | Hayes | Mar 2004 | A1 |
20050196630 | Carper et al. | Sep 2005 | A1 |
20090130355 | Chen et al. | May 2009 | A1 |
20110274901 | Ronzani | Nov 2011 | A1 |
20120219609 | Howland | Aug 2012 | A1 |
20120219746 | Powell | Aug 2012 | A1 |
20140083170 | Pavlik | Mar 2014 | A1 |
20150298438 | Nevalainen et al. | Oct 2015 | A1 |
20160177048 | Topolkaraev et al. | Jun 2016 | A1 |
20170305109 | Nathaniel | Oct 2017 | A1 |
20170368790 | Decoste et al. | Dec 2017 | A1 |
20180099495 | Bruce et al. | Apr 2018 | A1 |
20180272019 | Roberts et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
1055641 | May 1979 | CA |
10301984 | Jul 2004 | DE |
102010019837 | Nov 2011 | DE |
0157646 | Oct 1985 | EP |
0114964 | Nov 1986 | EP |
0229475 | Jul 1987 | EP |
0232171 | Aug 1987 | EP |
0259899 | Mar 1988 | EP |
0468579 | Jan 1992 | EP |
0658421 | Jun 1995 | EP |
0698044 | Feb 1996 | EP |
0713445 | May 1996 | EP |
0625951 | Mar 1997 | EP |
0506807 | May 1998 | EP |
0877051 | Nov 1998 | EP |
1391288 | Feb 2004 | EP |
0980894 | Jun 2004 | EP |
1007414 | Jun 2005 | EP |
1587607 | Oct 2005 | EP |
1698523 | Sep 2006 | EP |
1682349 | Apr 2008 | EP |
2077096 | Jul 2009 | EP |
1796571 | Oct 2009 | EP |
1877484 | Jun 2011 | EP |
2344332 | Jul 2012 | EP |
2501247 | Sep 2012 | EP |
1485789 | Jun 1967 | FR |
970070 | Sep 1964 | GB |
991496 | May 1965 | GB |
1067577 | May 1967 | GB |
1580128 | Nov 1980 | GB |
4-74646 | Mar 1992 | JP |
10-237738 | Sep 1998 | JP |
10-237741 | Sep 1998 | JP |
11-198264 | Jul 1999 | JP |
2002-240220 | Aug 2002 | JP |
2003-145608 | May 2003 | JP |
2005-206808 | Aug 2005 | JP |
2007-246148 | Sep 2007 | JP |
2010-264137 | Nov 2010 | JP |
10-2010-0110782 | Oct 2010 | KR |
199413559 | Jun 1994 | WO |
199426793 | Nov 1994 | WO |
199504655 | Feb 1995 | WO |
199516565 | Jun 1995 | WO |
2004064478 | Aug 2004 | WO |
2008040567 | Apr 2008 | WO |
2008150951 | Dec 2008 | WO |
2009151225 | Jun 2010 | WO |
2011063261 | May 2011 | WO |
2012151223 | Nov 2012 | WO |
2012166523 | Dec 2012 | WO |
2013022670 | Feb 2013 | WO |
2014083466 | Jun 2014 | WO |
2016154180 | Sep 2016 | WO |
Entry |
---|
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/023534, dated Jun. 3, 2016, 10 pages. |
International Preliminary Report on Patentability and Written Opinion received for PCT Application No. PCT/US2016/023534, dated Sep. 26, 2017, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20190210321 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62136691 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15544644 | US | |
Child | 16352966 | US |