Abrasive article including shaped abrasive particles

Information

  • Patent Grant
  • 10759024
  • Patent Number
    10,759,024
  • Date Filed
    Tuesday, January 31, 2017
    7 years ago
  • Date Issued
    Tuesday, September 1, 2020
    3 years ago
Abstract
Various shaped abrasive particles are disclosed. Each shaped abrasive particle includes a body having at least one major surface and another surface extending from the major surface.
Description
BACKGROUND
Field of the Disclosure

The following is directed to abrasive articles, and particularly, abrasive articles including shaped abrasive particles.


Description of the Related Art

Abrasive particles and abrasive articles made from abrasive particles are useful for various material removal operations including grinding, finishing, and polishing. Depending upon the type of abrasive material, such abrasive particles can be useful in shaping or grinding a wide variety of materials and surfaces in the manufacturing of goods. Certain types of abrasive particles have been formulated to date that have particular geometries, such as triangular shaped abrasive particles and abrasive articles incorporating such objects. See, for example, U.S. Pat. Nos. 5,201,916; 5,366,523; and 5,984,988.


Three basic technologies that have been employed to produce abrasive particles having a specified shape are (1) fusion, (2) sintering, and (3) chemical ceramic. In the fusion process, abrasive particles can be shaped by a chill roll, the face of which may or may not be engraved, a mold into which molten material is poured, or a heat sink material immersed in an aluminum oxide melt. See, for example, U.S. Pat. No. 3,377,660 (disclosing a process including flowing molten abrasive material from a furnace onto a cool rotating casting cylinder, rapidly solidifying the material to form a thin semisolid curved sheet, densifying the semisolid material with a pressure roll, and then partially fracturing the strip of semisolid material by reversing its curvature by pulling it away from the cylinder with a rapidly driven cooled conveyor).


In the sintering process, abrasive particles can be formed from refractory powders having a particle size of up to 10 micrometers in diameter. Binders can be added to the powders along with a lubricant and a suitable solvent, e.g., water. The resulting mixture, mixtures, or slurries can be shaped into platelets or rods of various lengths and diameters. See, for example, U.S. Pat. No. 3,079,242 (disclosing a method of making abrasive particles from calcined bauxite material including (1) reducing the material to a fine powder, (2) compacting under affirmative pressure and forming the fine particles of said powder into grain sized agglomerations, and (3) sintering the agglomerations of particles at a temperature below the fusion temperature of the bauxite to induce limited recrystallization of the particles, whereby abrasive grains are produced directly to size).


Chemical ceramic technology involves converting a colloidal dispersion or hydrosol (sometimes called a sol), optionally in a mixture, with solutions of other metal oxide precursors, into a gel or any other physical state that restrains the mobility of the components, drying, and firing to obtain a ceramic material. See, for example, U.S. Pat. Nos. 4,744,802 and 4,848,041. Other relevant disclosures on shaped abrasive particles and associated methods of forming and abrasive articles incorporating such particles are available at: http://www.abel-ip.com/publications/.


Still, there remains a need in the industry for improving performance, life, and efficacy of abrasive particles, and the abrasive articles that employ abrasive particles.


SUMMARY

According to a first aspect, a method for forming an abrasive particle includes forming a green particle having a body including at least one exterior corner having a first corner radius and contacting at least a portion of the body to a hydrophobic material and changing the first corner radius to a modified first corner radius.


In another aspect, a shaped abrasive particle includes a body including a first surface, a second surface, and a third surface extending between the first surface and the second surface, and wherein the body includes an exterior corner having a corner radius within a range of at least 0.5 microns and not greater than 15 microns.


In another aspect, a method for forming shaped abrasive particles includes creating a substrate including a sintered ceramic material, and cutting the substrate to form a plurality of shaped abrasive particles from the substrate.


In another aspect, a method of forming abrasive particles includes depositing a free-standing droplet on a substrate; the droplet comprising a mixture including a precursor ceramic material and sintering the free-standing droplet to form a shaped abrasive particle having an elliptical shape.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.



FIG. 1 includes a system for forming a particulate material in accordance with an embodiment.



FIG. 2 includes a flow chart of a method of forming a particulate material in accordance with an embodiment.



FIG. 3 includes a flow chart of a method of forming a particulate material in accordance with an embodiment.



FIG. 4 includes a flow chart of a method of forming a particulate material in accordance with an embodiment.



FIG. 5 includes a flow chart of a method of forming a particulate material in accordance with an embodiment.



FIG. 6 includes a flow chart of a method of forming a particulate material in accordance with an embodiment.



FIG. 7 includes a flow chart of a method of forming a particulate material in accordance with an embodiment.



FIG. 8 includes a perspective view of a shaped abrasive particle in accordance with an embodiment.



FIG. 9 includes a top plan view of a shaped abrasive particle in accordance with an embodiment.



FIG. 10 includes a front plan view of a shaped abrasive particle in accordance with an embodiment.



FIG. 11 includes a side plan view of a shaped abrasive particle in accordance with an embodiment.



FIG. 12 includes a side plan view of a shaped abrasive particle in accordance with an embodiment.



FIG. 13 includes a top plan view of an intermediately formed shaped abrasive particle in accordance with an embodiment.



FIG. 14 includes a perspective view of a shaped abrasive particle in accordance with an embodiment.



FIG. 15 includes a front plan view of a shaped abrasive particle in accordance with an embodiment.



FIG. 16 includes a top plan view of a shaped abrasive particle in accordance with an embodiment.



FIG. 17 includes a detailed view of a shaped abrasive particle in accordance with an embodiment take at Circle 17 in FIG. 15.



FIG. 18 includes a plan view of a shaped abrasive particle in contact with a workpiece in accordance with an embodiment.





DETAILED DESCRIPTION

The following is directed to abrasive articles including shaped abrasive particles. The methods herein may be utilized in forming shaped abrasive particles and using abrasive articles incorporating shaped abrasive particles. The shaped abrasive particles may be utilized in various applications, including for example fixed abrasive articles such as, coated abrasives, bonded abrasives, non-woven abrasive materials and the like. Alternatively, the shaped abrasive particles may be used in free abrasives. Various other uses may be derived for the shaped abrasive particles.


System and Methods for Making Shaped Abrasive Particles


Various systems and methods may be utilized to obtain shaped abrasive particles. Some suitable processes used to fabricate the shaped abrasive particles can include, but is not limited to, depositing, printing (e.g., screen-printing), molding, pressing, casting, sectioning, cutting, dicing, punching, drying, curing, coating, extruding, rolling, embossing, patterning, and a combination thereof.


Shaped abrasive particles are formed such that each particle has substantially the same arrangement of surfaces and edges relative to each other for shaped abrasive particles having the same two-dimensional and three-dimensional shapes. As such, shaped abrasive particles can have a high shape fidelity and consistency in the arrangement of the surfaces and edges relative to other shaped abrasive particles of the same group having the same two-dimensional and three-dimensional shape. By contrast, non-shaped abrasive particles can be formed through different process and have different shape attributes. For example, non-shaped abrasive particles are typically formed by a comminution process, wherein a mass of material is formed and then crushed and sieved to obtain abrasive particles of a certain size. However, a non-shaped abrasive particle will have a generally random arrangement of the surfaces and edges, and generally will lack any recognizable two-dimensional or three dimensional shape in the arrangement of the surfaces and edges around the body. Moreover, non-shaped abrasive particles of the same group or batch generally lack a consistent shape with respect to each other, such that the surfaces and edges are randomly arranged when compared to each other. Therefore, non-shaped grains or crushed grains have a significantly lower shape fidelity compared to shaped abrasive particles.



FIG. 1 includes an illustration of a system 100 for forming a shaped abrasive particle in accordance with one, non-limiting embodiment. As shown, the system 100 may include an extruder 102 in which a piston 104 may move in order to apply a force 106 onto a mixture 108 within the extruder 102. The resulting pressure of the force 106 may extrude the mixture 108 through a die opening 110 in the extruder 102. As the mixture 108 is forced through the die opening 110, the mixture 108 can take on a cross-sectional shape of the die opening. For example, if the die opening 110 is round, the extruded mixture 108 can be round in cross-section. Further, if the die opening 110 is triangular, the extruded mixture 108 can be triangular in cross-section.


It can be appreciated that the die opening 110 can have nearly any regular, or irregular, polygonal shape. For example, the die opening 110 may be triangular with a square end, square with a semi-circular end, or square with a saw tooth end. In other embodiments, the die opening can include various shapes such as, for example, polygons, ellipsoids, numerals, Greek alphabet letters, Latin alphabet letters, Russian alphabet characters, complex shapes including a combination of polygonal shapes, and a combination thereof. In particular instances, the die opening 110 may have a polygonal shape such as a rectangle, a quadrilateral, a pentagon, a hexagon, a heptagon, an octagon, a nonagon, a decagon, and a combination thereof.


As illustrated in FIG. 1, the system 100 can further include first rotating cutter 112 and a second rotating cutter 114. As shown, the pair of rotating cutters 112, 114 may be placed below, and on either side, of the extruder 102. Specifically, each of the rotating cutters 112, 114 can be spaced an equal distance from an extrusion axis 116 along which the mixture can be extruded. It will be appreciated that other operations and tools may be used to section the extrudate and form precursor shaped abrasive particles (i.e., green particles) and the following is representative of one particular process.


The first rotating cutter 112 can include a generally cylindrical body 120 mounted on an axle 122. During operation, the body 120 can rotate around the axle 122. The first rotating cutter 112 can also include a plurality of cutting blades 124 equally spaced around an outer periphery 126 of the body 120 of the first rotating cutter 112. As the body 120 of the first rotating cutter 112 rotates around the axle 122, the cutting blades 124 can also rotate.


Similarly, the second rotating cutter 114 can include a generally cylindrical body 130 mounted on an axle 132. During operation, the body 130 can rotate around the axle 132. The second rotating cutter 114 can also include a plurality of cutting blades 134 equally spaced around an outer periphery 136 of the body 130 of the second rotating cutter 114. As the body 130 of the second rotating cutter 114 rotates around the axle 132, the cutting blades 134 can also rotate.


As further shown in FIG. 1, the system 100 can include a dryer 140 located along the extrusion axis 116 below the rotating cutters 112, 114. Specifically, the dryer 140 can include an interior cavity 142 through which the extrusion axis 116 passes. The dryer 140 can include a fan 144 and the fan 144 can provide heated air to the interior cavity 142 via a manifold 146 place at or near the base of the dryer 140. The heated air can flow through the dryer 140 and can dry green particles as they fall through the dryer 140. In a particular aspect, heated air can flow upwards through the dryer 140 in the direction indicated by arrows 148. Alternatively or additionally, the dryer may use one or more radiant heat sources.



FIG. 1 also indicates that the system 100 can include a conveyor 150 that can be placed below the dryer 140. The conveyor 150 can include a drive wheel 152, a non-drive wheel 154, and a conveyor belt 156 placed there around. As the drive wheel 152 rotates, the drive wheel 152 can move the conveyor belt 156 on the drive wheel 152 and the non-drive wheel 154. The system 100 can also include a collection basket 160 placed near the downstream end of the conveyor 150.


The process of forming shaped abrasive particles using the system 100 can be initiated by forming the mixture 108. The mixture 108 can include a ceramic material and a liquid. In particular, the mixture 108 can be a gel formed of a ceramic powder material and a liquid. In accordance with an embodiment, the gel can be formed of the ceramic powder material as an integrated network of discrete particles.


The mixture 108 may contain a certain content of solid material, liquid material, and additives such that it has suitable rheological characteristics for use with the process detailed herein. That is, in certain instances, the mixture 108 can have a certain viscosity, and more particularly, suitable rheological characteristics that form a dimensionally stable phase of material that can be formed through the process as noted herein. A dimensionally stable phase of material is a material that can be formed to have a particular shape and substantially maintain the shape for at least a portion of the processing subsequent to forming. In certain instances, the shape may be retained throughout subsequent processing, such that the shape initially provided in the forming process is present in the finally-formed object. It will be appreciated that in some instances, the mixture 108 may not be a shape-stable material, and the process may rely upon solidification and stabilization of the mixture 108 by further processing, such as drying.


The mixture 108 can be formed to have a particular content of solid material, such as the ceramic powder material. For example, in one embodiment, the mixture 108 can have a solids content of at least about 25 wt %, such as at least about 35 wt %, or even at least about 38 wt % or at least 40 wt % or at least 45 wt % or at least 50 wt % or at least 55 wt % for the total weight of the mixture 108. Still, in at least one non-limiting embodiment, the solids content of the mixture 108 can be not greater than about 75 wt %, such as not greater than about 70 wt %, not greater than about 65 wt %, not greater than about 55 wt %, not greater than about 45 wt %, or not greater than about 42 wt %. It will be appreciated that the content of the solids materials in the mixture 108 can be within a range between any of the minimum and maximum percentages noted above.


According to one embodiment, the ceramic powder material can include an oxide, a nitride, a carbide, a boride, an oxycarbide, an oxynitride, and a combination thereof. In particular instances, the ceramic material can include alumina. More specifically, the ceramic material may include a boehmite material, which may be a precursor of alpha alumina. The term “boehmite” is generally used herein to denote alumina hydrates including mineral boehmite, typically being Al2O3.H2O and having a water content on the order of 15%, as well as pseudoboehmite, having a water content higher than 15%, such as 20-38% by weight. It is noted that boehmite (including pseudoboehmite) has a particular and identifiable crystal structure, and therefore a unique X-ray diffraction pattern. As such, boehmite is distinguished from other aluminous materials including other hydrated aluminas such as ATH (aluminum trihydroxide), a common precursor material used herein for the fabrication of boehmite particulate materials.


Furthermore, the mixture 108 can be formed to have a particular content of liquid material. Some suitable liquids may include water. In accordance with one embodiment, the mixture 108 can be formed to have a liquid content less than the solids content of the mixture 108. In more particular instances, the mixture 108 can have a liquid content of at least about 25 wt % for the total weight of the mixture 108. In other instances, the amount of liquid within the mixture 108 can be greater, such as at least about 35 wt %, at least about 45 wt %, at least about 50 wt %, or even at least about 58 wt %. Still, in at least one non-limiting embodiment, the liquid content of the mixture 108 can be not greater than about 75 wt %, such as not greater than about 70 wt %, not greater than about 65 wt %, not greater than about 62 wt %, or even not greater than about 60 wt %. It will be appreciated that the content of the liquid in the mixture 108 can be within a range between any of the minimum and maximum percentages noted above.


Furthermore, to facilitate processing and forming shaped abrasive particles according to embodiments herein, the mixture 108 can have a particular storage modulus. For example, the mixture 108 can have a storage modulus of at least about 1×104 Pa, such as at least about 4×104 Pa, or even at least about 5×104 Pa. However, in at least one non-limiting embodiment, the mixture 108 may have a storage modulus of not greater than about 1×107 Pa, such as not greater than about 2×106 Pa. It will be appreciated that the storage modulus of the mixture 108 can be within a range between any of the minimum and maximum values noted above.


The storage modulus can be measured via a parallel plate system using ARES or AR-G2 rotational rheometers, with Peltier plate temperature control systems. For testing, the mixture 108 can be extruded within a gap between two plates that are set to be approximately 8 mm apart from each other. After extruding the gel into the gap, the distance between the two plates defining the gap is reduced to 2 mm until the mixture 108 completely fills the gap between the plates. After wiping away excess mixture 108, the gap is decreased by 0.1 mm and the test is initiated. The test is an oscillation strain sweep test conducted with instrument settings of a strain range between 0.01% to 100%, at 6.28 rad/s (1 Hz), using 25-mm parallel plate and recording 10 points per decade. Within 1 hour after the test completes, the gap is lowered again by 0.1 mm and the test is repeated. The test can be repeated at least 6 times. The first test may differ from the second and third tests. Only the results from the second and third tests for each specimen should be reported.


Furthermore, to facilitate processing and forming shaped abrasive particles according to embodiments herein, the mixture 108 can have a particular viscosity. For example, the mixture 108 can have a viscosity of at least about 2×103 Pa s, such as at least about 3×103 Pa s, at least about 4×103 Pa s, at least about 5×103 Pa s, at least about 6×103 Pa s, at least about 8×103 Pa s, at least about 10×103 Pa s, at least about 20×103 Pa s, at least about 30×103 Pa s, at least about 40×103 Pa s, at least about 50×103 Pa s, at least about 60×103 Pa s, or at least about 65×103 Pa s. In at least one non-limiting embodiment, the mixture 108 may have a viscosity of not greater than about 100×103 Pa s, such as not greater than about 95×103 Pa s, not greater than about 90×103 Pa s, or even not greater than about 85×103 Pa s. It will be appreciated that the viscosity of the mixture 108 can be within a range between any of the minimum and maximum values noted above. The viscosity can be measured in the same manner as the storage modulus as described above.


Moreover, the mixture 108 can be formed to have a particular content of organic materials including, for example, organic additives that can be distinct from the liquid to facilitate processing and formation of shaped abrasive particles according to the embodiments herein. Some suitable organic additives can include stabilizers, binders such as fructose, sucrose, lactose, glucose, UV curable resins, and the like.


Notably, the embodiments herein may utilize a mixture 108 that can be distinct from slurries used in conventional forming operations. For example, the content of organic materials within the mixture 108 and, in particular, any of the organic additives noted above, may be a minor amount as compared to other components within the mixture 108. In at least one embodiment, the mixture 108 can be formed to have not greater than about 30 wt % organic material for the total weight of the mixture 108. In other instances, the amount of organic materials may be less, such as not greater than about 15 wt %, not greater than about 10 wt %, or even not greater than about 5 wt %. Still, in at least one non-limiting embodiment, the amount of organic materials within the mixture 108 can be at least about 0.01 wt %, such as at least about 0.5 wt % for the total weight of the mixture 108. It will be appreciated that the amount of organic materials in the mixture 108 can be within a range between any of the minimum and maximum values noted above.


Moreover, the mixture 108 can be formed to have a particular content of acid or base, distinct from the liquid content, to facilitate processing and formation of shaped abrasive particles according to the embodiments herein. Some suitable acids or bases can include nitric acid, sulfuric acid, citric acid, chloric acid, tartaric acid, phosphoric acid, ammonium nitrate, and ammonium citrate. According to one particular embodiment in which a nitric acid additive is used, the mixture 108 can have a pH of less than about 5, and more particularly, can have a pH within a range between about 2 and about 4.


As shown in FIG. 1, the extruder 102 can be configured so that as the piston 104 moves toward the die opening 110, the mixture 108 can be extruded through the die opening 110 along the extrusion axis 116. In accordance with an embodiment, a particular pressure may be utilized during extrusion. For example, the pressure can be at least about 10 kPa, such as at least about 500 kPa. Still, in at least one non-limiting embodiment, the pressure utilized during extrusion can be not greater than about 6 MPa. It will be appreciated that the pressure used to extrude the mixture 108 can be within a range between any of the minimum and maximum values noted above. In particular instances, the consistency of the pressure delivered by the piston 104 may facilitate improved processing and formation of shaped abrasive particles. Notably, controlled delivery of consistent pressure across the mixture 108 and across the width of the extruder 102 can facilitate improved processing control and improved dimensional characteristics of the shaped abrasive particles.



FIG. 1 shows that an extrudate 170 from the extruder 102 can move along the extrusion axis 116 and pass through the rotating cutters 112, 114. The blades 124, 134, on the rotating cutters 112, 114 can cut the extrudate 170 into green particles 172. In a particular aspect, a release agent may be applied to the blades 124, 134 on the rotating cutters 112, 114 to prevent the green particles 172 from sticking to the blades 124, 134 as they cut the extrudate 170. Such a process can be optional and may not necessarily be used prior to conducting the cutting process. A suitable exemplary mold release agent can include an organic material, such as one or more polymers (e.g., PTFE). In other instances, an oil (synthetic or organic) may be applied as a mold release agent to the surfaces of the blades 124, 134. One suitable oil may be peanut oil. The mold release agent may be applied using any suitable manner, including but not limited to, depositing, spraying, printing, brushing, coating, and the like.


After the extrudate 170 is cut into the green particles 172, the green particles 172 can fall through the dryer 140 where they can be dried and exit the dryer 140 as precursor shaped abrasive particles 174. Drying may include removal of a particular content of certain materials from the green particles 172, including volatiles, such as water or organic materials.


In accordance with an embodiment, the drying process can be conducted at a drying temperature of not greater than about 300° C., such as not greater than about 250° C., not greater than about 200° C., not greater than about 150° C., not greater than about 100° C., not greater than about 80° C., not greater than about 60° C., not greater than about 40° C., or even not greater than about 30° C. Still, in one non-limiting embodiment, the drying process may be conducted at a drying temperature of at least about −20° C., such as at least about −10° C. at least about 0° C. at least about 5° C. at least about 10° C., or even at least about 20° C. It will be appreciated that the drying temperature may be within a range between any of the minimum and maximum temperatures noted above.


In certain instances, drying may be conducted for a particular duration to facilitate the formation of shaped abrasive particles according to embodiments herein. It can be appreciated that increasing the length of the dryer, i.e., the distance through which the green particles 172 fall through the dryer 140, can increase the drying time 140. Further, increasing the speed of an updraft fan may also increase the drying time as the updraft may tend to blow the green particles 172 upwards into the dryer 140.


In a particular aspect, drying can be conducted for a duration sufficient to remove some volatile materials from the green particles and ensure proper formation of the shape abrasive particles. For example, the drying time can be at least 10 seconds or at least 60 seconds or at least 2 minutes or at least 5 minutes or at least 10 minutes or at least 20 minutes or at least 30 minutes or at least 60 minutes. In still other instances, the process of drying may be not greater than about 24 hours, such as not greater than about 12 hours or not greater than about 6 hours or not greater than about 3 hours or not greater than 1 hour. It will be appreciated that the duration of drying can be within a range between any of the minimum and maximum values noted above. It will be appreciated that the drying duration can be altered depending upon various factors, including the material, the average particle size of the shaped abrasive particles, and the like.


Additionally, drying may be conducted at a particular relative humidity to facilitate formation of shaped abrasive particles according to the embodiments herein. For example, drying may be conducted at a relative humidity of at least about 10%, such as at least 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, such as at least about 62%, at least about 64%, at least about 66%, at least about 68%, at least about 70%, at least about 72%, at least about 74%, at least about 76%, at least about 78%, or even at least about 80%. In still other non-limiting embodiments, drying may be conducted at a relative humidity of not greater than about 90%, such as not greater than about 88%, not greater than about 86%, not greater than about 84%, not greater than about 82%, not greater than about 80%, not greater than about 78%, not greater than about 76%, not greater than about 74%, not greater than about 72%, not greater than about 70%, not greater than about 65%, not greater than about 60%, not greater than about 55%, not greater than about 50%, not greater than about 45%, not greater than about 40%, not greater than about 35%, not greater than about 30%, or even not greater than about 25%. It will be appreciated that the relative humidity utilized during drying can be within a range between any of the minimum and maximum percentages noted above.


As the green particles 172 pass through and exit the dryer 140 they may be formed into precursor shaped abrasive particles 174. The precursor shaped abrasive particles 174 can land on the conveyor belt 156 of the conveyor 150. The precursor shaped abrasive particles 174 may then travel downstream on the conveyor belt 156 for further processing. In one embodiment, the precursor shaped abrasive particles 174 can exit the conveyor belt 150 into the collection receptacle 160.


After completing the drying process, but before the precursor shaped abrasive particles 174 are collected for further use in an abrasive article, one or more post-forming processes may be completed. Exemplary post-forming processes can include surface shaping, curing, reacting, radiating, planarizing, calcining, sintering, sieving, doping, drying, and a combination thereof. For example, in one optional process, the precursor shaped abrasive particles 174 may be translated by the conveyor 150 through an optional shaping zone, wherein at least one exterior surface of the precursor shaped abrasive particles 174 may be further shaped.


In still another embodiment, the precursor shaped abrasive particles 174 may be translated through an optional application zone, wherein a dopant material can be applied. In particular instances, the process of applying a dopant material can include selective placement of the dopant material on at least one exterior surface of the precursor shaped abrasive particles 174. In an optional process, the precursor shaped abrasive particles 174 may be treated with one or more acid or base materials. Treatment may occur post-calcination and may affect a distribution of dopant material within the shaped abrasive particle. In alternative instances, an impregnation process may be used instead of doping, where impregnation utilizes an additive introduced to the precursor particles after calcination. Utilization of doping or impregnation may affect distribution of the dopant material within the final shaped abrasive particle which may also facilitate increased performance of the shaped abrasive particle.


The dopant material may be applied utilizing various methods including for example, spraying, dipping, depositing, impregnating, transferring, punching, cutting, pressing, crushing, and any combination thereof. In accordance with an embodiment, applying a dopant material can include the application of a particular material, such as a precursor. In certain instances, the precursor can be a salt, such as a metal salt, that includes a dopant material to be incorporated into the finally-formed shaped abrasive particles. For example, the metal salt can include an element or compound that is the precursor to the dopant material. It will be appreciated that the salt material may be in liquid form, such as in a dispersion comprising the salt and liquid carrier. The salt may include nitrogen, and more particularly, can include a nitrate. In other embodiments, the salt can be a chloride, sulfate, phosphate, and a combination thereof. In one embodiment, the salt can include a metal nitrate, and more particularly, consist essentially of a metal nitrate. In one embodiment, the dopant material can include an element or compound such as an alkali element, alkaline earth element, rare earth element, hafnium, zirconium, niobium, tantalum, molybdenum, vanadium, or a combination thereof. In one particular embodiment, the dopant material includes an element or compound including an element such as lithium, sodium, potassium, magnesium, calcium, strontium, barium, scandium, yttrium, lanthanum, cesium, praseodymium, niobium, hafnium, zirconium, tantalum, molybdenum, vanadium, chromium, cobalt, iron, germanium, manganese, nickel, titanium, zinc, and a combination thereof.


The forming process may further include a sintering process. For certain embodiments herein, sintering can be conducted after the precursor shaped abrasive particles 174 are dried in the dryer 140. Sintering of the precursor shaped abrasive particles 174 may be utilized to densify the precursor shaped abrasive particles 174 and create the finally-formed shaped abrasive particles. In a particular instance, the sintering process can facilitate the formation of a high-temperature phase of the ceramic material. For example, in one embodiment, the precursor shaped abrasive particles 174 may be sintered such that a high-temperature phase of alumina, such as alpha alumina, is formed. In one instance, a shaped abrasive particle can comprise at least about 80 wt % alpha alumina, such as at least 90 wt % alpha alumina for the total weight of the particle. In other instances, the content of alpha alumina may be greater such that the shaped abrasive particle may consist essentially of alpha alumina.


The body of each of the precursor shaped abrasive particles 174 can have a particular two-dimensional shape. For example, the body can have a two-dimensional shape, as viewed in a plane defined by the length and width of the body, and can have a shape including a polygonal shape, ellipsoidal shape, a numeral, a Greek alphabet character, a Latin alphabet character, a Russian alphabet character, a complex shape utilizing a combination of polygonal shapes and a combination thereof. Particular polygonal shapes include rectangular, trapezoidal, pentagonal, hexagonal, heptagonal, octagonal, nonagonal, decagonal, and any combination thereof. In another instance, the finally-formed shaped abrasive particles 174 can have a body having a two-dimensional shape such as an irregular quadrilateral, an irregular rectangle, an irregular trapezoid, an irregular pentagon, an irregular hexagon, an irregular heptagon, an irregular octagon, an irregular nonagon, an irregular decagon, and a combination thereof. An irregular polygonal shape is one where at least one of the sides defining the polygonal shape is different in dimension (e.g., length) with respect to another side. As illustrated in other embodiments herein, the two-dimensional shape of certain shaped abrasive particles 174 can have a particular number of exterior points or external corners. For example, the body of the precursor shaped abrasive particles 174 can have a two-dimensional polygonal shape as viewed in a plane defined by a length and width, wherein the body comprises a two-dimensional shape having at least 4 exterior points (e.g., a quadrilateral), at least 5 exterior points (e.g., a pentagon), at least 6 exterior points (e.g., a hexagon), at least 7 exterior points (e.g., a heptagon), at least 8 exterior points (e.g., an octagon), at least 9 exterior points (e.g., a nonagon), and the like.


Referring to FIG. 2, a method of forming shaped abrasive particles in accordance with one, non-limiting embodiment is illustrated and is generally designated 200. Notably, the process illustrated in FIG. 2 includes the process of using the system as described in accordance with FIG. 1. At step 202, the method can include forming a mixture that includes a precursor ceramic material. In a particular aspect, the mixture can be similar to the mixture 108 described above in conjunction with FIG. 1.


Proceeding to step 204, the method 200 can include extruding the mixture through a shaped opening to form an extrusion having a cross-sectional shape corresponding to the shaped opening. In a particular aspect, the mixture may be extruded through an extruder similar to the extruder 102 described above. At step 206, the method 200 can include cutting the extrusion into green particles. The extrusion, or extrudate, may be cut into green particles as it passes through one or more rotating cutters, e.g., as described above in conjunction with FIG. 1. At step 208, method 200 can include drying the green particles to form shaped abrasive particles. The green particles may be dried by dropping them through a vertical air dryer, e.g., through a dryer that is similar to the dryer 140 depicted in FIG. 1. In another aspect, the green particles may be dried using other methods well known in the art. Finally, at step 210, the method 200 can include collecting the shaped abrasive particles.



FIG. 3 illustrates a flowchart of a method, generally designated 300, of forming shaped abrasive particles in accordance with one, non-limiting embodiment. The process described in FIG. 3 is different than the process described in the flow chart of FIG. 2 and may use a different system as compared to the system described in FIG. 1. As depicted, at step 302, the method 300 can include forming a green particle that has a body that includes at least one exterior corner that has a first corner radius. In a particular aspect, the green particle may be formed using an extrusion process, a molding process, a screen printing process, a stamping process, or some other process known in the art. Specifically, the green particle may be formed using a screen printing process.


Further, in a particular aspect, the green particle may be formed from a mixture that is similar to the mixture 108 described above in conjunction with FIG. 1. Moving to step 304, the method 300 can include contacting at least a portion of the body to a modifying tool. The modifying tool may be made of a particular material and have particular surface properties with respect to the mixture, such that the modifying tool is configured to change the shape of the body after forming but before significant drying of the body. For example, in one embodiment the modifying tool can include a hydrophobic material. In yet another embodiment, the modifying tool can include a hydrophilic material. The use of a tool having a particular material (e.g., a hydrophilic material or a hydrophobic material) may facilitate modification of the shape of the body post-forming by encouraging the mixture to react in a particular manner when placed in contact with the material of the tool. For example, in one embodiment, the modification tool is used to modify the shape of the mixture making the body, and in particular, it is envisioned that the modification tool can be used to change the corner sharpness and edge sharpness of the body post-forming.


The modification tool may be a surface with select regions of hydrophobic and/or hydrophilic material such that when the precursor shaped abrasive particles are placed in contact with the modification tool, the mixture making up the bodies of the precursor shaped abrasive particles is encouraged to move in accordance with the regions defined by the hydrophobic and/or hydrophilic material. In one particular aspect, the modification tool is formed to include a pattern of hydrophilic portions made of a hydrophilic material and such hydrophilic portions are surrounded by hydrophobic portions. The precursor abrasive particles are placed on the hydrophilic portions and the mixture of the body is encouraged to flow and correspond to the general shape of the hydrophilic portions and thus the body of the precursor shaped abrasive particle is modified post formation. It is envisioned that such a method may be used to create precursor shaped abrasive particles with sharper edges and corners than is currently available via conventional molding and printing operations. It will be appreciated that the ability of the mixture to move in relation to the modification tool may depend in part upon the rheological properties of the mixture, including for example viscosity. It may be feasible to use a mixture having a low viscosity and/or low storage modulus to allow for some flow of the mixture in response to the modification tool.


The production tool may be a surface, a patterned surface with protrusions and depressions, a mold having cavities as blind holes and/or apertures, a screen, or any combination thereof.


For example, referring again to FIG. 3, at step 306, the method 300 can include changing the first corner radius to a modified first corner radius. In a particular aspect, the modified first corner radius can be less than the first corner radius. Further, the step of contacting a portion of the body to a hydrophobic material can include placing the green particle in contact with a hydrophobic surface and contacting the green particle with the hydrophobic surface can reduce the first corner radius. For example, the modified first corner radius can be less than 50 microns or less than 30 microns or less than 20 microns or less than 10 microns or less than 5 microns or less than 1 micron.


Thereafter, the method 300 can include sintering the green particle to create a shaped abrasive particle at step 308. Sintering may be conducted according to those methods disclosed herein or as known in the art. It will be understood that the process of FIG. 3 is disclosed as being suitable for modification of the shape of precursor shaped abrasive particles post-formation, but such a modification tool can be used in other instances. For example, such a modification tool may be suitable for use on a sheet of mixture, wherein the precursor abrasive particles have not been formed. In certain embodiments, it is contemplated that the modification tool can be both a shaping tool and a modification tool, such that the shaping and modification can occur simultaneously. Such shaping tools may be formed using any suitable technique, including for example, but not limited to a photolithography process for forming exact and discrete regions on a surface.


Referring now to FIG. 4, a method of forming shaped abrasive particles in accordance with one, non-limiting embodiment is illustrated and is generally designated 400. At step 402, the method 400 can include creating a substrate comprising a sintered ceramic material. Then, at step 404, the method 400 can include cutting the substrate to form a plurality of shaped abrasive particles from the substrate


In particular embodiment, the step of creating a substrate comprising a sintered ceramic material can include creating a mixture comprising a precursor ceramic material, forming the mixture into a green body, and sintering the green body to form a sintered ceramic material in the form of the substrate. In a particular aspect, the mixture can be similar to the mixture 108 described above in conjunction with FIG. 1. In another aspect, the substrate can be in the form a polyhedral shape. Further, the substrate can be in the form of a cuboid.


In a particular aspect, the step of cutting the substrate can be performed with one or more mechanical devices, such as a blade (e.g., a 1A8 abrasive dicing blade). In another aspect, cutting the substrate can be performed using a bonded abrasive thin wheel that includes superabrasive particles contained in a bond matrix. In still another embodiment, a milling operation may be used to cut one or more shaped abrasive particles from the sintered substrate.


Unlike other conventional processes, the process of cutting the substrate and forming shaped abrasive particles is completed on a sintered substrate material. In one embodiment, the sintered ceramic material can include alumina. In particular, the sintered ceramic material can include alpha alumina. In another aspect, the step of cutting the substrate can be accomplished using a computer controlled cutting operation that is configured to create shaped abrasive particles that have complex three-dimensional shapes. Moreover, each of the shaped abrasive particles of the plurality of shaped abrasive particles can have substantially the same shape with respect to each other. However, in another aspect, at least a portion of the shaped abrasive particles of the plurality of shaped abrasive particles have a different two-dimensional shape with respect each other.



FIG. 5 depicts a flowchart of a method of forming shaped abrasive particles in accordance with one, non-limiting embodiment. The method is generally designated 500. As illustrated, at step 502, the method 500 can include forming a mixture that includes a precursor ceramic material. In a particular aspect, the mixture can be similar to the mixture 108 described above in conjunction with FIG. 1. At step 504, the method 500 can include forming the mixture into a green body. In a particular aspect, the green body may be formed using an extrusion process, a molding process, a screen printing process, a stamping process, or some other process known in the art.


Moving to step 506, the method 500 can include sintering the green body to form a sintered ceramic material in the form of a substrate. The green body may be sintered as described above or using another sintering process well known in the art. At step 508, the method 500 can include cutting the substrate to form a plurality of shaped abrasive particles from the substrate.


Referring to FIG. 6, a method of forming shaped abrasive particles in accordance with one, non-limiting embodiment is illustrated and is generally designated 600. At step 602, the method 600 can include forming a mixture that includes a precursor ceramic material. In a particular aspect, the mixture can be similar to the mixture 108 described above in conjunction with FIG. 1. At step 604, the method 600 can include selecting a material for a substrate relative to the material of the mixture to control a contact angle of the mixture on the substrate. Further, at step 606, the method 600 can include depositing a free-standing droplet of the mixture on the substrate. At step 608, the method 600 can include further processing the free-standing droplet to form a shaped abrasive particle that has an upper surface having an elliptical, or curvilinear, shape. Further processing can include any post-formation processes described in any of the embodiments herein, including but not limited to, drying, sintering, and the like. Finally, at step 610, the method 600 can include removing the shaped abrasive particle from the substrate.


In a particular aspect, the step of depositing a free-standing droplet of the mixture on the substrate can include dropping a plurality of drops of the mixture from a deposition assembly. The deposition assembly can have a selectable deposition volume and is configured to control the volume of mixture that is deposited for each free-standing droplet. For example, in at least one embodiment, the process can include using a selective printing process to selectively deposit droplets of a known volume, size and at specified locations on the substrate. Further, the free-standing droplet can include a contact angle with the substrate of less than 50 degrees or less than 40 degrees or less than 30 degrees. In another aspect, the contact angle can be at least 1 degree or at least 2 degrees or at least 5 degrees or at least 8 degrees or at least 10 degrees.


The process described in conjunction with FIG. 6 can be a continuous process and the substrate can be translated under a deposition assembly that continuously deposits a plurality of free-standing droplets onto the substrate as it is translated under the deposition assembly. The method can further include controlling an average particle size of the shaped abrasive particle based on the volume of material deposited in the free-standing droplet. In another aspect, the method can include controlling an average particle size of the shaped abrasive particle based on the material of the substrate and the material of the mixture. Moreover, it is envisioned that the process of FIG. 6 can be combined with the process described in FIG. 3, wherein the droplet may be placed on a modification tool, such that the contact angle and the corner sharpness can be controlled by controlled placement of the mixture onto a modification tool having at least one of hydrophilic portions and/or hydrophobic portions.



FIG. 7 includes a flowchart of a method, generally designated 700, of forming shaped abrasive particles in accordance with one, non-limiting embodiment. As depicted in FIG. 7, at step 702, the method 700 can include forming a mixture that includes a precursor ceramic material. In a particular aspect, the mixture can be similar to the mixture 108 described above in conjunction with FIG. 1. At step 704, the method 700 can include depositing the mixture on a plate. Moreover, at step 706, the method 700 can include directing a beam of energy at the mixture. In one aspect, the beam of energy can be in the form a laser beam. At step 708, the method 700 can include creating localized areas of dryness in the mixture create shaped abrasive particles. Then, at step 710, the method 700 can include separating the shaped abrasive particles from the mixture.


Shaped Abrasive Particles



FIG. 8 through FIG. 12 illustrate various aspects of a shaped abrasive particle 800 that can be made using one or more of the methods described herein. For example, in at least one embodiment, the shaped abrasive particle 800 can be made using the method illustrated in FIG. 3.



FIG. 8 includes a perspective view of the shaped abrasive particle 800. FIG. 9 is a top plan view of the shaped abrasive particle 800. The bottom plan view is the same as the top plan view shown in FIG. 9. FIG. 10 is a front plan view of the shaped abrasive particle 800. The rear plan view of the shaped abrasive particle 800 is the same as the front plan view depicted in FIG. 10. FIG. 11 is a first side plan view of the shaped abrasive particle 800 and FIG. 12 is a second side plan view of the shaped abrasive particle 800.


As illustrated, the shaped abrasive particle 800 can include a body 802 that can be generally shaped like an arrowhead. The body 802 can include a first major surface 804 and a second major surface 806. A side surface 808 can extend between the first major surface 804 and the second major surface 806. The side surface 808 can include a first portion 810, a second portion 812, and a third portion 814. The first portion 810 can form an angle 814 with respect to the second portion 812. The angle 814 can be less than or equal to 75°, such as less than or equal to 60°, less than or equal to 50°, less than or equal to 40°, or less than or equal to 35°. In another aspect, the angle 814 can be greater than or equal to 15°, such as greater than or equal to 20°, greater than or equal to 25°, or greater than or equal to 30°.



FIG. 9 shows that the third portion 814 of the side surface 808 can extend between the first portion 810 and the second portion 812 of the side surface 808. The third portion 814 can be generally elliptical in shape. As shown in FIG. 9, the third portion 814 of the side surface 808 can meet the first portion 810 of the side surface 808 to form a first corner 816. The third portion 814 of the side surface 808 can also meet the second portion 812 of the side surface 808 to form a second corner 818.


In a particular aspect, the shaped abrasive particle 800 can be formed using the method described in conjunction with FIG. 3. As such, before the final shaped abrasive particle 800 is formed, a green particle is formed. FIG. 13 illustrates a green particle 1300 that is an intermediate shaped abrasive particle. The green particle 1300 can include a body 1302 having a first corner 1304 and a second corner 1306. The green particle 1300 can be screen printed onto a modifying tool. After the green particle 1300 is screen printed, but before the green particle 1300 is dried, the green particle 1300 can be placed on a modification tool 1320 having an indentation 1322, or opening, that has a two-dimensional shape that corresponds to the shape of the outer periphery of the shaped abrasive particle 800. The surface of the modification tool 1320 can include particular materials having certain properties (e.g., hydrophobic and/or hydrophilic materials) that can cause the green particle 1300 to be re-shaped to a final shape, e.g., the shape of the indentation 1322 in the modification tool 1320. For example, if the modification tool 1320 is hydrophilic and the green particle 1300 contains water, the green particle 1300 can be pulled into the shape of the indentation 1322. As such, the shape of the green particle 1300 can be modified from the generally triangular shape depicted in FIG. 13 to the arrow shape of the shaped abrasive particle 800 illustrated in FIG. 9.


As such, the final shape can be the shape of the shaped abrasive particle 800 as depicted in FIG. 9. Notably, such a process may be used to create the illustrated shaped abrasive particle having side walls with a depression (e.g., concave shape) and sharp, narrow corners. Specifically in one embodiment, the green particles are rounded particles that are then created into the shape abrasive particles illustrated in FIG. 9. It will be appreciated that certain corners may further be more pointed, such that they may experience some reduction in height at the corners or appear as tapered along the upper surface.


During the process, after contact with the hydrophobic surface a first corner radius of the first corner 1304 of the green particle 1300 can become a modified first corner radius of the first corner 816 of the shaped abrasive particle 800. Further, a second corner radius of the second corner 1306 of the green particle 1300 can be become a modified second corner radius of the second corner 818 of the shaped abrasive particle 800. In a particular aspect, the modified first corner radius is less than the first corner radius and the modified second corner radius is less than the second corner radius. Further, first corner radius 1302 and the second corner 1304 radius of the green particle 1300 can be reduced by placing the green particle 1300 in contact with a hydrophobic and/or hydrophilic surface of the modification tool 1320.


Specifically, the contact of the green particle 1300 with the surface of the modifying tool having the particular materials can facilitate reduction of the first corner radius of the green particle 1300 to the modified first corner radius of the shaped abrasive particle 800. Further, the contact of the green particle 1300 with the hydrophobic surface can reduce the second corner radius of the green particle 1300 to the modified second corner radius of the shaped abrasive particle 800. For example, the modified first corner radius of the shaped abrasive particle 800 can be less than 50 microns or less than 30 microns or less than 20 microns or less than 10 microns or less than 5 microns or less than 1 micron. Also, the modified second corner radius of the shaped abrasive particle 800 can be less than 50 microns or less than 30 microns or less than 20 microns or less than 10 microns or less than 5 microns or less than 1 micron.


The radius of curvature can be measured from a polished cross-section of the first or second face using image analysis such as a Clemex Image Analysis program interfaced with an inverted light microscope or other suitable image analysis software. The radius of curvature for each triangular apex can be estimated by defining three points at each apex when viewed in cross section at 100× magnification. A point is placed at the start of the tip's curve where there is a transition from the straight edge to the start of a curve, at the apex of the tip, and at the transition from the curved tip back to a straight edge. The image analysis software then draws an arc defined by the three points (start, middle, and end of the curve) and calculates a radius of curvature. The radius of curvature for at least 30 apexes are measured and averaged to determine the average tip radius.


In a particular aspect, after the green particle 1300 is modified, as described herein, the result is a shaped abrasive particle 800 that includes at least one exterior corner, e.g., the first corner 816 or the second corner 818, and the at least one exterior corner can include a corner radius within a range of at least 0.5 microns and not greater than 15 microns. As further indicated in FIG. 8, the body 802 of the shaped abrasive particle 800 can have a thickness 820. The thickness 820 of the body 802 can be substantially the same along a length of the body 802.



FIG. 14 through FIG. 17 depict various aspects of a shaped abrasive particle 1400 that can be made using one or more of the methods described herein. In a particular aspect, the shaped abrasive particle 1400 can be made using the method illustrated in FIG. 6.



FIG. 14 includes a perspective view of the shaped abrasive particle 1400. FIG. 15 is a front plan view of the shaped abrasive particle 1400. The rear plan and both side plan views of the shaped abrasive particle 1400 are the same as the front plan view depicted in FIG. 15. FIG. 16 is a top plan view of the shaped abrasive particle 1400. The bottom plan view is the same as the top plan view shown in FIG. 16. FIG. 17 is a detailed view of the shaped abrasive particle 1400 taken at circle 17 in FIG. 15.


As illustrated, the shaped abrasive particle 1400 can include a body 1402. The body 1402 can have the shape of a flattened hemisphere. Specifically, the body 1402 can include a generally flat lower surface 1404 and a generally arcuate upper surface 1406. As depicted in FIG. 17, the arcuate upper surface 1406 can form an angle 1408 with respect to the flat lower surface 1404. In a particular aspect, the angle 1408 can be less than 50 degrees. Further, the angle 1408 can be less than 45 degrees, such as less than 40 degrees, less than 35 degrees, or less than 30 degrees. In another aspect, the angle 1408 can be at least 1 degree, such as at least 2 degrees, at least 3 degrees, at least 4 degrees, at least 5 degrees, at least 8 degrees, or at least 10 degrees.


As indicated in FIG. 15, the body 1402 of the shaped abrasive particle 1400 can have a thickness 1410. The thickness 1410 of the body 1402 is greatest along a central axis 1412 and can decrease from the central axis 1412 outwardly toward an outer peripheral edge 1414 of the body 1402 of the shaped abrasive particle 1400. In a particular aspect, the thickness 1410 at the center of the body 1402 can be greater than or equal to 1 micron. In another aspect, the thickness 1410 at the center of the body 1402 can be greater than or equal to 15 microns, such as greater than or equal to 20 microns, or greater than or equal to 25 microns. In another aspect, the thickness 1410 at the center of the body 1402 can be less than or equal to 5 mm, such as not greater than 3 mm or not greater than 1 mm or not greater than 800 microns or not greater than 600 microns or not greater than 400 microns or not greater than 200 microns or not greater than 100 microns or not greater than 80 microns or not greater than 50 microns or not greater than 20 microns. The thickness can be an average thickness measured from a side view of the abrasive particle. The thickness can be within a range including any of the minimum and maximum values noted above.


As shown in FIG. 16, the body 1402 of the shaped abrasive particle 1400 can have a diameter 1416. In a particular aspect, the diameter 1416 of the body 1402 can be at least 1 micron. In another aspect, the diameter 1416 of the body 1402 can be at least 100 microns, such as at least 500 microns, or at least 1 mm. In another aspect, the diameter 1416 of the body 1402 can be not greater than 5 mm, such as not greater than 4 mm, not greater than 3 mm, or not greater than 2 mm. The diameter can be within a range including any of the minimum and maximum values noted above.


Further, a ratio, RTD, of the maximum thickness 1410 of the body 1402 to the diameter 1416 of the body 1402 can be not greater than 1.0. In particular, RTD may be not greater than 0.5, such as not greater than 0.2, not greater than 0.1, or not greater than 0.05. In another aspect, RTD may be at least 0.00002. Moreover, RTD may be at least 0.0001, such as at least 0.005, at least 0.001, or at least 0.05. RTD can be within a range including any of the minimum and maximum values noted above.



FIG. 18 illustrates a shaped abrasive particle, e.g., the shaped abrasive particle 1400 depicted in FIG. 14 through FIG. 17, in contact with a workpiece 1800. As shown, using the shaped abrasive particle 1400 to grind, or abrade, the workpiece 1800 in a direction orthogonal to the length of the shaped abrasive particle 1400, as indicated by arrow 1802 and arrow 1804 can lead to a wide cutting edge and a low wear flat area.


The shaped abrasive particles described herein can be formed such that each respective body can include a crystalline material, and more particularly, a polycrystalline material. Notably, the polycrystalline material can include abrasive grains. In one embodiment, the body can be essentially free of an organic material, including for example, a binder. More particularly, the body can consist essentially of a polycrystalline material.


In an alternative and non-limiting embodiment, the body of each shaped abrasive particle can be an agglomerate including a plurality of abrasive particles, grit, and/or grains bonded to each other to form the body of the abrasive particle. Suitable abrasive grains can include nitrides, oxides, carbides, borides, oxynitrides, oxyborides, diamond, and a combination thereof. In particular instances, the abrasive grains can include an oxide compound or complex, such as aluminum oxide, zirconium oxide, titanium oxide, yttrium oxide, chromium oxide, strontium oxide, silicon oxide, and a combination thereof. In one particular instance, each shaped abrasive particle can be formed such that the abrasive grains forming the body thereof can include alumina, and more particularly, may consist essentially of alumina. Moreover, in particular instances, the shaped abrasive particle can be formed from a seeded sol-gel.


The abrasive grains (i.e., crystallites) contained within the body may have an average grain size that is generally not greater than about 100 microns. In other embodiments, the average grain size can be less, such as not greater than about 80 microns, not greater than about 50 microns, not greater than about 30 microns, not greater than about 20 microns, not greater than about 10 microns, or even not greater than about 1 micron, not greater than about 0.9 microns, not greater than about 0.8 microns, not greater than about 0.7 microns, or even not greater than about 0.6 microns. Still, the average grain size of the abrasive grains contained within each body can be at least about 0.01 microns, such as at least about 0.05 microns, at least about 0.06 microns, at least about 0.07 microns, at least about 0.08 microns, at least about 0.09 microns, at least about 0.1 microns, at least about 0.12 microns, at least about 0.15 microns, at least about 0.17 microns, at least about 0.2 microns, or even at least about 0.5 microns. It will be appreciated that the abrasive grains can have an average grain size within a range between any of the minimum and maximum values noted above.


In accordance with certain embodiments, one or more of the abrasive particles described herein can be a composite article including at least two different types of grains within the respective body. It will be appreciated that different types of grains are grains having different compositions with regard to each other. For example, the body can be formed such that is includes at least two different types of grains, wherein the two different types of grains can be nitrides, oxides, carbides, borides, oxynitrides, oxyborides, diamond, and a combination thereof.


In accordance with an embodiment, the shaped abrasive particles described herein can have an average particle size, as measured by the largest dimension measurable on the body thereof, of at least about 100 microns. In fact, the shaped abrasive particles can have an average particle size of at least about 150 microns, such as at least about 200 microns, at least about 300 microns, at least about 400 microns, at least about 500 microns, at least about 600 microns, at least about 700 microns, at least about 800 microns, or even at least about 900 microns. Still, the shaped abrasive particles can have an average particle size that is not greater than about 5 mm, such as not greater than about 3 mm, not greater than about 2 mm, or even not greater than about 1.5 mm. It will be appreciated that the abrasive particle 300 can have an average particle size within a range between any of the minimum and maximum values noted above.


The shaped abrasive particles of the embodiments herein, e.g., the bodies thereof, can have particular compositions. For example, the bodies may include a ceramic material, such as a polycrystalline ceramic material, and more particularly an oxide. The oxide may include, for example alumina. In certain instances, the bodies may include a majority content of alumina, such as at least about 80 wt % alumina for the total weight of the body, or such as at least about 90 wt %, at least 95 wt %, at least 95.1 wt %, at least about 95.2 wt %, at least about 95.3 wt %, at least about 95.4 wt %, at least about 95.5 wt %, at least about 95.6 wt %, at least about 95.7 wt %, at least about 95.8 wt %, at least about 95.9 wt %, at least about 96 wt %, at least about 96.1 wt %, at least about 96.2 wt %, at least about 96.3 wt %, at least about 96.4 wt %, at least about 96.5 wt %, at least about 96.6 wt %, at least about 96.7 wt %, at least about 96.8 wt %, at least about 96.9 wt %, at least about 97 wt %, at least about 97.1 wt %, at least about 97.2 wt %, at least about 975.3 wt %, at least about 97.4 wt %, or even at least about 97.5 wt % alumina for the total weight of the body. Still, in another non-limiting embodiment, the bodies may include a content of alumina not greater than about 99.5 wt %, such as not greater than about 99.4 wt %, not greater than about 99.3 wt %, not greater than about 99.2 wt %, not greater than about 99.1 wt %, not greater than about 99 wt %, not greater than about 98.9 wt %, not greater than about 98.8 wt %, not greater than about 98.7 wt %, not greater than about 98.6 wt %, not greater than about 98.5 wt %, not greater than about 98.4 wt %, not greater than about 98.3 wt %, not greater than about 98.2 wt %, not greater than about 98.1 wt %, not greater than about 98 wt %, not greater than about 97.9 wt %, not greater than about 97.8 wt %, not greater than about 97.7 wt %, not greater than about 97.6 wt %, or even not greater than about 97.5 wt % alumina for the total weight of the body 1201. It will be appreciated that the bodies may include a content of alumina within a range between any of the minimum and maximum values noted above.


The bodies of the shaped abrasive particles maybe formed to include certain additives. The additives can be non-organic species, including but not limited to an oxide. In one particular instance, the additive may be a dopant material, which may be present in a particular minor amount sufficient to affect the microstructure of the material, but present in a greater content than a trace amount or less. The dopant material may include an element selected from the group of hafnium, zirconium, niobium, tantalum, molybdenum, vanadium, lithium, sodium, potassium, magnesium, calcium, strontium, barium, scandium, yttrium, lanthanum, cesium, praseodymium, chromium, cobalt, iron, germanium, manganese, nickel, titanium, zinc, and a combination thereof. In still a more particular embodiment, the dopant material may include magnesium, and may be a magnesium-containing species, including but not limited to, magnesium oxide (MgO).


According to one embodiment, the magnesium-containing species can be a compound including magnesium and at least one other element. In at least one embodiment, the magnesium-containing compound can include an oxide compound, such that the magnesium-containing species includes magnesium and oxygen. In yet another embodiment, the magnesium-containing species can include aluminum, and more particularly may be a magnesium aluminate species. For example, in certain instances, the magnesium-containing species can be a spinel material. The spinel material may be stoichiometric or non-stoichiometric spinel.


The magnesium-containing species may be a distinct phase of material formed in the body as compared to another primary phase, including for example, an alumina phase. The magnesium-containing species may be preferentially disposed at the grain boundaries of the primary phase (e.g., alumina grains). In still other instances, the magnesium-containing species may be primarily and uniformly dispersed throughout the volume of the grains of the primary phase.


The magnesium-containing species may be a strength-altering material. For example, in at least one embodiment, the addition of the magnesium-containing species can be configured to reduce the strength of the body compared to a body that does not include the magnesium-containing species.


Certain compositions of the shaped abrasive particles of the embodiments can include a particular content of magnesium oxide. For example, the bodies of any of the shaped abrasive particles may include a content of a magnesium-containing species of at least about 0.5 wt %, such as at least about 0.6 wt %, at least about 0.7 wt %, at least about 0.8 wt %, at least about 0.9 wt %, at least about 1 wt %, at least about 1.1 wt %, at least about 1.2 wt %, at least about 1.3 wt %, at least about 1.4 wt %, at least about 1.5 wt %, at least about 1.6 wt %, at least about 1.7 wt %, at least about 1.8 wt %, at least about 1.9 wt %, at least about 2 wt %, at least about 2.1 wt %, at least about 2.2 wt %, at least about 2.3 wt %, at least about 2.4 wt %, or even at least about 2.5 wt % for the total weight of the body 1201. In still another non-limiting embodiment, the body 1201 may include a content of a magnesium-containing species of not greater than about 5 wt %, such as not greater than about 4.9 wt %, not greater than about 4.8 wt %, not greater than about 4.7 wt %, not greater than about 4.6 wt %, not greater than about 4.5 wt %, not greater than about 4.4 wt %, not greater than about 4.3 wt %, not greater than about 4.2 wt %, not greater than about 4.1 wt %, not greater than about 4 wt %, not greater than about 3.9 wt %, not greater than about 3.8 wt %, not greater than about 3.7 wt %, not greater than about 3.6 wt %, not greater than about 3.5 wt %, not greater than about 3.4 wt %, not greater than about 3.3 wt %, not greater than about 3.2 wt %, not greater than about 3.1 wt %, not greater than about 3 wt %, not greater than about 2.9 wt %, not greater than about 2.8 wt %, not greater than about 2.7 wt %, not greater than about 2.6 wt %, or even not greater than about 2.5 wt %. It will be appreciated that the content of a magnesium-containing species within the bodies may be within a range between any of the minimum and maximum values noted above. Furthermore, in at least one embodiment, the bodies of the shaped abrasive particles may consist essentially of alumina (Al2O3) and the magnesium-containing species.


Moreover, the bodies of the shaped abrasive particle of any of the embodiments herein may be formed of a polycrystalline material including grains, which may be made of materials such as nitrides, oxides, carbides, borides, oxynitrides, diamond, and a combination thereof. Further, the bodies can be essentially free of an organic material, essentially free of rare earth elements, and essentially free of iron. The bodies may be essentially free of nitrides, essentially free of chlorides, essentially free of nitrides, or essentially free of oxynitrides. Being essentially free is understood to mean that the body is formed in a manner to exclude such materials, but the body may not necessarily be completely free of such materials as they may be present in trace amounts or less.


Certain features, for clarity, described herein in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination. Further, reference to values stated in ranges includes each and every value within that range.


Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims.


The specification and illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The specification and illustrations are not intended to serve as an exhaustive and comprehensive description of all of the elements and features of apparatus and systems that use the structures or methods described herein. Separate embodiments may also be provided in combination in a single embodiment, and conversely, various features that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination. Further, reference to values stated in ranges includes each and every value within that range. Many other embodiments may be apparent to skilled artisans only after reading this specification. Other embodiments may be used and derived from the disclosure, such that a structural substitution, logical substitution, or another change may be made without departing from the scope of the disclosure. Accordingly, the disclosure is to be regarded as illustrative rather than restrictive.


The description in combination with the figures is provided to assist in understanding the teachings disclosed herein. The following discussion will focus on specific implementations and embodiments of the teachings. This focus is provided to assist in describing the teachings and should not be interpreted as a limitation on the scope or applicability of the teachings. However, other teachings can certainly be used in this application.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a method, article, or apparatus that comprises a list of features is not necessarily limited only to those features but may include other features not expressly listed or inherent to such method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive-or and not to an exclusive-or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).


Also, the use of “a” or “an” is employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural, or vice versa, unless it is clear that it is meant otherwise. For example, when a single item is described herein, more than one item may be used in place of a single item. Similarly, where more than one item is described herein, a single item may be substituted for that more than one item.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The materials, methods, and examples are illustrative only and not intended to be limiting. To the extent not described herein, many details regarding specific materials and processing acts are conventional and may be found in reference books and other sources within the structural arts and corresponding manufacturing arts.


Many different aspects and embodiments are possible. Some of those aspects and embodiments are described herein. After reading this specification, skilled artisans will appreciate that those aspects and embodiments are only illustrative and do not limit the scope of the present invention. Embodiments may be in accordance with any one or more of the embodiments as listed below.


EMBODIMENTS

Embodiment 1. A method for forming an abrasive particle comprising:


forming a green particle having a body including at least one exterior corner having a first corner radius; and


contacting at least a portion of the body to a hydrophobic material and changing the first corner radius to a modified first corner radius.


Embodiment 2. The method of embodiment 1, wherein the modified first corner radius is less than the first corner radius.


Embodiment 3. The method of embodiment 1, wherein contacting includes placing the green particle in contact with a hydrophobic surface to reduce the first corner radius.


Embodiment 4. The method of embodiment 1, wherein the modified first corner radius is less than 50 microns or less than 30 microns or less than 20 microns or less than 10 microns or less than 5 microns or less than 1 micron.


Embodiment 5. A shaped abrasive particle having a body including a first surface, a second surface, and a third surface extending between the first surface and the second surface, and wherein the body comprises an exterior corner having a corner radius within a range of at least 0.5 microns and not greater than 15 microns.


Embodiment 6. A method for forming shaped abrasive particles comprising:


creating a substrate comprising a sintered ceramic material; and


cutting the substrate to form a plurality of shaped abrasive particles from the substrate.


Embodiment 7. The method of embodiment 6, wherein creating the substrate comprises:


creating a mixture comprising a precursor ceramic material;


forming the mixture into a green body;


sintering the green body to form a sintered ceramic material in the form of a substrate.


Embodiment 8. The method of embodiment 6, wherein the substrate is in the form a polyhedral shape.


Embodiment 9. The method of embodiment 6, wherein the substrate is in the form of a cuboid.


Embodiment 10. The method of embodiment 6, wherein cutting is performed with a 1A8 type dicing blade.


Embodiment 11. The method of embodiment 6, wherein cutting is performed using a bonded abrasive thin wheel comprising superabrasive particles contained in a bond matrix.


Embodiment 12. The method of embodiment 6, wherein the sintered ceramic material comprises alumina.


Embodiment 13. The method of embodiment 6, wherein the sintered ceramic material comprises alpha alumina.


Embodiment 14. The method of embodiment 6, wherein cutting is a computer controlled cutting operation configured to create shaped abrasive particles having complex three-dimensional shapes.


Embodiment 15. The method of embodiment 6, wherein each of the shaped abrasive particles of the plurality of shaped abrasive particles have substantially the same shape with respect to each other.


Embodiment 16. The method of embodiment 6, wherein at least a portion of the shaped abrasive particles of the plurality of shaped abrasive particles have a different two-dimensional shape with respect each other.


Embodiment 17. A method of forming abrasive particles comprising:


depositing a free-standing droplet on a substrate; the droplet comprising a mixture including a precursor ceramic material; and


sintering the free-standing droplet to form a shaped abrasive particle having an elliptical shape.


Embodiment 18. The method of embodiment 17, wherein depositing includes dropping a plurality of drops from a deposition assembly.


Embodiment 19. The method of embodiment 18, wherein the deposition assembly has a selectable deposition volume and is configured to control the volume of mixture that is deposited for each free-standing droplet.


Embodiment 20. The method of embodiment 17, wherein the free-standing droplet comprises a contact angle with the substrate of less than 50 degrees or less than 40 degrees or less than 30 degrees.


Embodiment 21. The method of embodiment 20, wherein the contact angle is at least 1 degree or at least 2 degrees or at least 5 degrees or at least 8 degrees or at least 10 degrees.


Embodiment 22. The method of embodiment 17, further comprising:


selecting a material of the substrate relative to the material of the mixture to control a contact angle of the free-standing droplet on the substrate.


Embodiment 23. The method of embodiment 17, wherein the process is a continuous process and the substrate is translated under a deposition assembly that continuously deposits a plurality of free-standing droplets onto the substrate as it is translated under the deposition assembly.


Embodiment 24. The method of embodiment 17, further comprising controlling an average particle size of the shaped abrasive particle based on the volume of material deposited in the free-standing droplet.


Embodiment 25. The method of embodiment 17, further comprising controlling an average particle size of the shaped abrasive particle based on the material of the substrate and the material of the mixture.


The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.


The Abstract of the Disclosure is provided to comply with Patent Law and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description of the Drawings, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description of the Drawings, with each claim standing on its own as defining separately claimed subject matter.

Claims
  • 1. A shaped abrasive particle having a body including a generally flat lower surface and a generally arcuate upper surface wherein the arcuate supper surface is convex, wherein the arcuate upper surface forms an angle with the flat lower surface wherein the angle is less than 50 degrees and wherein the arcuate upper surface joins the flat lower surface at a peripheral edge.
  • 2. The shaped abrasive particle of claim 1, wherein the body comprises at least about 95 wt % alumina for a total weight of the particle.
  • 3. The shaped abrasive particle of claim 1, wherein the body consists essentially of alumina.
  • 4. The shaped abrasive particle of claim 1, wherein the body comprises a polycrystalline material.
  • 5. The shaped abrasive particle of claim 1, wherein the body is essentially free of a binder.
  • 6. The shaped abrasive particle of claim 1, wherein the body comprises a dopant material selected from the group of hafnium, zirconium, niobium, tantalum, molybdenum, vanadium, lithium, sodium, potassium, magnesium, calcium, strontium, barium, scandium, yttrium, lanthanum, cesium, praseodymium, chromium, cobalt, iron, germanium, manganese, nickel, titanium, zinc, and a combination thereof.
  • 7. The abrasive particle of claim 1, wherein the abrasive particle is incorporated into a fixed abrasive article.
  • 8. The abrasive particle of claim 7, wherein the fixed abrasive article includes a coated abrasive, bonded abrasive, non-woven abrasive or a combination thereof.
  • 9. The shaped abrasive particle of claim 1, wherein the angle is at least 1 degree and not greater than 40 degrees.
  • 10. The shaped abrasive particle of claim 1, wherein the angle is at least 1 degree and not greater than 30 degrees.
  • 11. The shaped abrasive particle of claim 1, wherein the body comprises a thickness greatest along a central axis.
  • 12. The shaped abrasive particle of claim 11, wherein the thickness at the center of the body is at least 1 micron and not greater than 5 mm.
  • 13. The shaped abrasive particle of claim 1, wherein the body comprises a diameter of at least 1 micron and not greater than 5 mm.
  • 14. The shaped abrasive particle of claim 1, wherein the body comprises a ratio, RTD, of not greater than 1.0, wherein the ratio is the maximum thickness of the body to the diameter of the body.
  • 15. The shaped abrasive particle of claim 1, wherein the shaped abrasive particle is configured to grind a workpiece in a direction orthogonal to the length of the shaped abrasive particle.
  • 16. The shaped abrasive particle of claim 1, wherein the body comprises a shape of a flattened hemisphere.
  • 17. A method of grinding a workpiece in a direction orthogonal to the length of the shaped abrasive particle of claim 1.
US Referenced Citations (550)
Number Name Date Kind
345604 Semper Jul 1886 A
1910444 Nicholson May 1933 A
2036903 Webster Apr 1936 A
2049874 Sherk Aug 1936 A
2148400 Crompton, Jr. Feb 1939 A
2248064 Carlton et al. Jul 1941 A
2248990 Heany Jul 1941 A
2290877 Heany Jul 1942 A
2318360 Benner et al. May 1943 A
2376343 Carlton May 1945 A
2563650 Heinemann et al. Aug 1951 A
2880080 Rankin et al. Mar 1959 A
3041156 Rowse et al. Jun 1962 A
3067551 Maginnis Dec 1962 A
3079242 Glasgow Feb 1963 A
3079243 Ueltz Feb 1963 A
3123948 Kistler et al. Mar 1964 A
3141271 Fischer et al. Jul 1964 A
3276852 Lemelson Oct 1966 A
3377660 Marshall et al. Apr 1968 A
3379543 Norwalk Apr 1968 A
3387957 Howard Jun 1968 A
3454385 Amero Jul 1969 A
3477180 Robertson, Jr. Nov 1969 A
3480395 McMullen et al. Nov 1969 A
3481723 Kistler et al. Dec 1969 A
3491492 Ueltz Jan 1970 A
3495359 Smith et al. Feb 1970 A
3536005 Derrickson Oct 1970 A
3590799 Guuchowicz Jul 1971 A
3608050 Carman et al. Sep 1971 A
3608134 Cook Sep 1971 A
3615308 Amero Oct 1971 A
3619151 Sheets, Jr. et al. Nov 1971 A
3637360 Ueltz Jan 1972 A
3670467 Walker Jun 1972 A
3672934 Larry Jun 1972 A
3819785 Argyle et al. Jun 1974 A
3859407 Blanding et al. Jan 1975 A
3874856 Leeds Apr 1975 A
3909991 Coes, Jr. Oct 1975 A
3940276 Wilson Feb 1976 A
3950148 Fukuda Apr 1976 A
3960577 Prochazka Jun 1976 A
3977132 Sekigawa Aug 1976 A
3986885 Lankard Oct 1976 A
3991527 Maran Nov 1976 A
4004934 Prochazka Jan 1977 A
4037367 Kruse Jul 1977 A
4045919 Moritomo Sep 1977 A
4055451 Cockbain et al. Oct 1977 A
4073096 Ueltz et al. Feb 1978 A
4114322 Greenspan Sep 1978 A
4150078 Miller et al. Apr 1979 A
4194887 Ueltz et al. Mar 1980 A
4252544 Takahashi Feb 1981 A
4261706 Blanding et al. Apr 1981 A
4286905 Samanta Sep 1981 A
4304576 Hattori et al. Dec 1981 A
4314827 Leitheiser et al. Feb 1982 A
4341663 Derleth et al. Jul 1982 A
4393021 Eisenberg et al. Jul 1983 A
4452911 Eccles et al. Jun 1984 A
4457767 Poon et al. Jul 1984 A
4469758 Scott Sep 1984 A
4505720 Gabor et al. Mar 1985 A
4541842 Rostoker Jul 1985 A
4548617 Miyatani et al. Oct 1985 A
4570048 Poole Feb 1986 A
4618349 Hashimoto et al. Oct 1986 A
4623364 Cottringer et al. Nov 1986 A
4656330 Poole Apr 1987 A
4657754 Bauer et al. Apr 1987 A
4659341 Ludwig et al. Apr 1987 A
4678560 Stole et al. Jul 1987 A
4711750 Scott Dec 1987 A
4728043 Ersdal et al. Mar 1988 A
4744802 Schwabel May 1988 A
4770671 Monroe Sep 1988 A
4786292 Janz et al. Nov 1988 A
4797139 Bauer Jan 1989 A
4797269 Bauer et al. Jan 1989 A
4799939 Bloecher et al. Jan 1989 A
4829027 Cutler et al. May 1989 A
4832706 Yates May 1989 A
4848041 Kruschke Jul 1989 A
4858527 Masanao Aug 1989 A
4863573 Moore et al. Sep 1989 A
4876226 Fuentes Oct 1989 A
4881951 Wood et al. Nov 1989 A
4917852 Poole et al. Apr 1990 A
4918116 Gardziella et al. Apr 1990 A
4925457 Dekok et al. May 1990 A
4925815 Tani et al. May 1990 A
4930266 Calhoun et al. Jun 1990 A
4942011 Bolt et al. Jul 1990 A
4954462 Wood Sep 1990 A
4960441 Pellow et al. Oct 1990 A
4961757 Rhodes et al. Oct 1990 A
4963012 Tracy Oct 1990 A
4964883 Morris et al. Oct 1990 A
4970057 Wilkens et al. Nov 1990 A
4997461 Markhoff-Matheny et al. Mar 1991 A
5009675 Kunz et al. Apr 1991 A
5009676 Rue et al. Apr 1991 A
5011508 Wald et al. Apr 1991 A
5011510 Hayakawa et al. Apr 1991 A
5014468 Ravipati et al. May 1991 A
5024795 Kennedy et al. Jun 1991 A
5032304 Toyota Jul 1991 A
5035723 Kalinowski et al. Jul 1991 A
5035724 Pukari et al. Jul 1991 A
5042991 Kunz et al. Aug 1991 A
5049166 Kirkendall Sep 1991 A
5049645 Nagaoka et al. Sep 1991 A
5053367 Newkirk et al. Oct 1991 A
5053369 Winkler et al. Oct 1991 A
5076991 Poole et al. Dec 1991 A
5078753 Broberg et al. Jan 1992 A
5081082 Hai-Doo et al. Jan 1992 A
5085671 Martin et al. Feb 1992 A
5090968 Pellow Feb 1992 A
5094986 Matsumoto et al. Mar 1992 A
5098740 Tewari Mar 1992 A
5103598 Kelly Apr 1992 A
5108963 Fu et al. Apr 1992 A
5114438 Leatherman et al. May 1992 A
5120327 Dennis Jun 1992 A
5123935 Kanamaru et al. Jun 1992 A
5129919 Kalinowski et al. Jul 1992 A
5131926 Rostoker et al. Jul 1992 A
5132984 Simpson Jul 1992 A
5139978 Wood Aug 1992 A
5152917 Pieper et al. Oct 1992 A
5160509 Carman et al. Nov 1992 A
5164744 Yoshida et al. Nov 1992 A
5173457 Shorthouse Dec 1992 A
5178849 Bauer Jan 1993 A
5180630 Giglia Jan 1993 A
5185012 Kelly Feb 1993 A
5185299 Wood et al. Feb 1993 A
5190568 Tselesin Mar 1993 A
5194072 Rue et al. Mar 1993 A
5201916 Berg et al. Apr 1993 A
5203886 Sheldon et al. Apr 1993 A
5213591 Celikkaya et al. May 1993 A
5215552 Sung Jun 1993 A
5219462 Bruxvoort et al. Jun 1993 A
5219806 Wood Jun 1993 A
5221294 Carman et al. Jun 1993 A
5224970 Harakawa et al. Jul 1993 A
5227104 Bauer Jul 1993 A
5244477 Rue et al. Sep 1993 A
5244849 Roy et al. Sep 1993 A
5273558 Nelson et al. Dec 1993 A
5277702 Thibault et al. Jan 1994 A
5282875 Wood Feb 1994 A
5288297 Ringwood Feb 1994 A
5300130 Rostoker Apr 1994 A
5304331 Leonard et al. Apr 1994 A
5312789 Wood May 1994 A
5312791 Coblenz et al. May 1994 A
5314513 Miller et al. May 1994 A
5366523 Rowenhorst et al. Nov 1994 A
5366525 Fujiyama Nov 1994 A
5372620 Rowse et al. Dec 1994 A
5373786 Umaba Dec 1994 A
5376598 Preedy et al. Dec 1994 A
5376602 Nilsen Dec 1994 A
5383945 Cottringer et al. Jan 1995 A
5395407 Cottringer et al. Mar 1995 A
5409645 Torre, Jr. et al. Apr 1995 A
5429648 Wu Jul 1995 A
5431967 Manthiram Jul 1995 A
5435816 Spurgeon et al. Jul 1995 A
5437754 Calhoun Aug 1995 A
5441549 Helmin Aug 1995 A
5443603 Kirkendall Aug 1995 A
5447894 Yasuoka et al. Sep 1995 A
5453106 Roberts Sep 1995 A
5454844 Hibbard et al. Oct 1995 A
5470806 Krstic et al. Nov 1995 A
5479873 Shintani et al. Jan 1996 A
5482756 Berger et al. Jan 1996 A
5486496 Talbert et al. Jan 1996 A
5489318 Erickson et al. Feb 1996 A
5496386 Broberg et al. Mar 1996 A
5500273 Holmes et al. Mar 1996 A
5514631 Cottringer et al. May 1996 A
5516347 Garg May 1996 A
5516348 Conwell et al. May 1996 A
5523074 Takahashi et al. Jun 1996 A
5525100 Kelly et al. Jun 1996 A
5527369 Garg Jun 1996 A
5543368 Talbert et al. Aug 1996 A
5549962 Holmes et al. Aug 1996 A
5551963 Larmie Sep 1996 A
5560745 Roberts Oct 1996 A
5567150 Conwell et al. Oct 1996 A
5567214 Ashley Oct 1996 A
5567251 Peker et al. Oct 1996 A
5571297 Swei et al. Nov 1996 A
5576409 Mackey Nov 1996 A
5578095 Bland et al. Nov 1996 A
5578222 Trischuk et al. Nov 1996 A
5582625 Wright et al. Dec 1996 A
5584896 Broberg et al. Dec 1996 A
5584897 Christianson et al. Dec 1996 A
5591685 Mitomo et al. Jan 1997 A
5593468 Khaund et al. Jan 1997 A
5599493 Ito et al. Feb 1997 A
5603738 Zeiringer et al. Feb 1997 A
5609706 Benedict et al. Mar 1997 A
5611829 Monroe et al. Mar 1997 A
5618221 Furukawa et al. Apr 1997 A
5628952 Holmes et al. May 1997 A
5641469 Garg et al. Jun 1997 A
RE35570 Rowenhorst et al. Jul 1997 E
5645619 Erickson et al. Jul 1997 A
5651925 Ashley et al. Jul 1997 A
5656217 Rogers et al. Aug 1997 A
5667542 Law et al. Sep 1997 A
5669941 Peterson Sep 1997 A
5669943 Horton et al. Sep 1997 A
5672097 Hoopman Sep 1997 A
5672554 Mohri et al. Sep 1997 A
5683844 Mammino Nov 1997 A
5690707 Wood et al. Nov 1997 A
5702811 Ho et al. Dec 1997 A
5725162 Garg et al. Mar 1998 A
5736619 Kane et al. Apr 1998 A
5738696 Wu Apr 1998 A
5738697 Wu et al. Apr 1998 A
5751313 Miyashita et al. May 1998 A
5759481 Pujari et al. Jun 1998 A
5776214 Wood Jul 1998 A
5779743 Wood Jul 1998 A
5785722 Garg et al. Jul 1998 A
5810587 Bruns et al. Sep 1998 A
5820450 Calhoun Oct 1998 A
5830248 Christianson et al. Nov 1998 A
5840089 Chesley et al. Nov 1998 A
5849646 Stout et al. Dec 1998 A
5855997 Amateau Jan 1999 A
5863306 Wei et al. Jan 1999 A
5866254 Peker et al. Feb 1999 A
5871555 Wood Feb 1999 A
5876793 Sherman et al. Mar 1999 A
5885311 McCutcheon et al. Mar 1999 A
5893935 Wood Apr 1999 A
5902647 Venkataramani May 1999 A
5908477 Harmer et al. Jun 1999 A
5908478 Wood Jun 1999 A
5919549 Van et al. Jul 1999 A
5924917 Benedict et al. Jul 1999 A
5946991 Hoopman Sep 1999 A
5975987 Hoopman et al. Nov 1999 A
5980678 Tselesin Nov 1999 A
5984988 Berg Nov 1999 A
5989301 Laconto, Sr. et al. Nov 1999 A
5997597 Hagan Dec 1999 A
6016660 Abramshe Jan 2000 A
6019805 Herron Feb 2000 A
6024824 Krech Feb 2000 A
6027326 Cesarano, III et al. Feb 2000 A
6048577 Garg Apr 2000 A
6053956 Wood Apr 2000 A
6054093 Torre, Jr. et al. Apr 2000 A
6080215 Stubbs et al. Jun 2000 A
6080216 Erickson Jun 2000 A
6083622 Garg et al. Jul 2000 A
6096107 Caracostas et al. Aug 2000 A
6110241 Sung Aug 2000 A
6129540 Hoopman et al. Oct 2000 A
6136288 Bauer et al. Oct 2000 A
6146247 Nokubi et al. Nov 2000 A
6179887 Barber, Jr. et al. Jan 2001 B1
6206942 Wood Mar 2001 B1
6228134 Erickson May 2001 B1
6238450 Garg et al. May 2001 B1
6258137 Garg et al. Jul 2001 B1
6258141 Sung et al. Jul 2001 B1
6261682 Law Jul 2001 B1
6264710 Erickson Jul 2001 B1
6277160 Stubbs et al. Aug 2001 B1
6277161 Castro et al. Aug 2001 B1
6283997 Garg et al. Sep 2001 B1
6284690 Nakahata et al. Sep 2001 B1
6287353 Celikkaya Sep 2001 B1
6306007 Mori et al. Oct 2001 B1
6312324 Mitsui et al. Nov 2001 B1
6319108 Adefris et al. Nov 2001 B1
6331343 Perez et al. Dec 2001 B1
6371842 Romero Apr 2002 B1
6391812 Araki et al. May 2002 B1
6401795 Cesarano, III et al. Jun 2002 B1
6403001 Hayashi Jun 2002 B1
6413286 Swei et al. Jul 2002 B1
6451076 Nevoret et al. Sep 2002 B1
6475253 Culler et al. Nov 2002 B2
6524681 Seitz et al. Feb 2003 B1
6531423 Schwetz et al. Mar 2003 B1
6537140 Miller et al. Mar 2003 B1
6579819 Hirosaki et al. Jun 2003 B2
6582623 Grumbine et al. Jun 2003 B1
6583080 Rosenflanz Jun 2003 B1
6599177 Nevoret et al. Jul 2003 B2
6646019 Perez et al. Nov 2003 B2
6652361 Gash et al. Nov 2003 B1
6669745 Prichard et al. Dec 2003 B2
6685755 Ramanath et al. Feb 2004 B2
6696258 Wei Feb 2004 B1
6702650 Adefris Mar 2004 B2
6737378 Hirosaki et al. May 2004 B2
6749496 Mota et al. Jun 2004 B2
6755729 Ramanath et al. Jun 2004 B2
6821196 Oliver Nov 2004 B2
6833014 Welygan et al. Dec 2004 B2
6843815 Thurber et al. Jan 2005 B1
6846795 Lant et al. Jan 2005 B2
6878456 Castro et al. Apr 2005 B2
6881483 McArdle et al. Apr 2005 B2
6888360 Connell et al. May 2005 B1
6913824 Culler et al. Jul 2005 B2
6942561 Mota et al. Sep 2005 B2
6949128 Annen Sep 2005 B2
6974930 Jense Dec 2005 B2
7022179 Dry Apr 2006 B1
7044989 Welygan et al. May 2006 B2
7141522 Rosenflanz et al. Nov 2006 B2
7168267 Rosenflanz et al. Jan 2007 B2
7169198 Moeltgen et al. Jan 2007 B2
7267700 Collins et al. Sep 2007 B2
7294158 Welygan et al. Nov 2007 B2
7297170 Welygan et al. Nov 2007 B2
7297402 Evans et al. Nov 2007 B2
7364788 Kishbaugh et al. Apr 2008 B2
7373887 Jackson May 2008 B2
7384437 Welygan et al. Jun 2008 B2
7488544 Schofalvi et al. Feb 2009 B2
7507268 Rosenflanz Mar 2009 B2
7553346 Welygan et al. Jun 2009 B2
7556558 Palmgren Jul 2009 B2
7560062 Gould et al. Jul 2009 B2
7560139 Thebault et al. Jul 2009 B2
7563293 Rosenflanz Jul 2009 B2
7611795 Aoyama et al. Nov 2009 B2
7618684 Nesbitt Nov 2009 B2
7662735 Rosenflanz et al. Feb 2010 B2
7666344 Schofalvi et al. Feb 2010 B2
7666475 Morrison Feb 2010 B2
7669658 Barron et al. Mar 2010 B2
7670679 Krishna et al. Mar 2010 B2
7695542 Drivdahl et al. Apr 2010 B2
7858189 Wagener et al. Dec 2010 B2
7906057 Zhang et al. Mar 2011 B2
7968147 Fang et al. Jun 2011 B2
7972430 Millard et al. Jul 2011 B2
8021449 Seth et al. Sep 2011 B2
8034137 Erickson et al. Oct 2011 B2
8049136 Mase et al. Nov 2011 B2
8070556 Kumar et al. Dec 2011 B2
8123828 Culler et al. Feb 2012 B2
8141484 Ojima et al. Mar 2012 B2
8142531 Adefris et al. Mar 2012 B2
8142532 Erickson et al. Mar 2012 B2
8142891 Culler et al. Mar 2012 B2
8251774 Joseph et al. Aug 2012 B2
8256091 Duescher Sep 2012 B2
8440602 Gonzales et al. May 2013 B2
8440603 Gonzales et al. May 2013 B2
8445422 Gonzales et al. May 2013 B2
8470759 Gonzales et al. Jun 2013 B2
8480772 Welygan et al. Jul 2013 B2
8628597 Palmgren et al. Jan 2014 B2
8783589 Hart et al. Jul 2014 B2
8852643 Gonzales et al. Oct 2014 B2
8920527 Seider et al. Dec 2014 B2
9017439 Yener et al. Apr 2015 B2
D862538 Hanschen et al. Oct 2019 S
20010027623 Rosenflanz Oct 2001 A1
20020026752 Culler et al. Mar 2002 A1
20020068518 Cesena et al. Jun 2002 A1
20020151265 Adefris Oct 2002 A1
20020170236 Larson et al. Nov 2002 A1
20020174935 Burdon et al. Nov 2002 A1
20020177391 Fritz et al. Nov 2002 A1
20030008933 Perez et al. Jan 2003 A1
20030022961 Kusaka et al. Jan 2003 A1
20030029094 Moeltgen et al. Feb 2003 A1
20030085204 Lagos May 2003 A1
20030109371 Pujari et al. Jun 2003 A1
20030110707 Rosenflanz et al. Jun 2003 A1
20030126800 Seth et al. Jul 2003 A1
20040003895 Amano et al. Jan 2004 A1
20040148868 Anderson et al. Aug 2004 A1
20040148967 Celikkaya et al. Aug 2004 A1
20040202844 Wong Oct 2004 A1
20040224125 Yamada et al. Nov 2004 A1
20040235406 Duescher Nov 2004 A1
20040244675 Kishimoto et al. Dec 2004 A1
20050020190 Schutz et al. Jan 2005 A1
20050060941 Provow et al. Mar 2005 A1
20050060947 McArdle et al. Mar 2005 A1
20050064805 Culler et al. Mar 2005 A1
20050081455 Welygan et al. Apr 2005 A1
20050118939 Duescher Jun 2005 A1
20050132655 Anderson et al. Jun 2005 A1
20050218565 DiChiara, Jr. Oct 2005 A1
20050223649 O'Gary et al. Oct 2005 A1
20050232853 Evans et al. Oct 2005 A1
20050245179 Luedeke Nov 2005 A1
20050255801 Pollasky Nov 2005 A1
20050266221 Karam et al. Dec 2005 A1
20050271795 Moini et al. Dec 2005 A1
20050284029 Bourlier et al. Dec 2005 A1
20060049540 Hui et al. Mar 2006 A1
20060126265 Crespi et al. Jun 2006 A1
20060135050 Petersen et al. Jun 2006 A1
20060177488 Caruso et al. Aug 2006 A1
20060185256 Nevoret et al. Aug 2006 A1
20070020457 Adefris Jan 2007 A1
20070051355 Sung Mar 2007 A1
20070072527 Palmgren Mar 2007 A1
20070074456 Orlhac et al. Apr 2007 A1
20070087928 Rosenflanz et al. Apr 2007 A1
20070234646 Can et al. Oct 2007 A1
20080017053 Araumi et al. Jan 2008 A1
20080121124 Sato May 2008 A1
20080172951 Starling Jul 2008 A1
20080176075 Bauer et al. Jul 2008 A1
20080179783 Liu Jul 2008 A1
20080230951 Dannoux et al. Sep 2008 A1
20080262577 Altshuler et al. Oct 2008 A1
20080286590 Besida et al. Nov 2008 A1
20080299875 Duescher Dec 2008 A1
20090016916 Rosenzweig et al. Jan 2009 A1
20090017736 Block et al. Jan 2009 A1
20090165394 Culler et al. Jul 2009 A1
20090165661 Koenig et al. Jul 2009 A1
20090208734 Macfie et al. Aug 2009 A1
20090246464 Watanabe et al. Oct 2009 A1
20100000159 Walia et al. Jan 2010 A1
20100003900 Sakaguchi et al. Jan 2010 A1
20100003904 Duescher Jan 2010 A1
20100040767 Uibel et al. Feb 2010 A1
20100056816 Wallin et al. Mar 2010 A1
20100068974 Dumm Mar 2010 A1
20100146867 Boden et al. Jun 2010 A1
20100151195 Culler et al. Jun 2010 A1
20100151196 Adefris et al. Jun 2010 A1
20100151201 Erickson et al. Jun 2010 A1
20100190424 Francois et al. Jul 2010 A1
20100201018 Yoshioka et al. Aug 2010 A1
20100251625 Gaeta Oct 2010 A1
20100292428 Meador et al. Nov 2010 A1
20100307067 Sigalas et al. Dec 2010 A1
20100319269 Erickson Dec 2010 A1
20110008604 Boylan Jan 2011 A1
20110111563 Yanagi et al. May 2011 A1
20110124483 Shah et al. May 2011 A1
20110136659 Allen et al. Jun 2011 A1
20110146509 Welygan et al. Jun 2011 A1
20110160104 Wu et al. Jun 2011 A1
20110244769 David et al. Oct 2011 A1
20110289854 Moren et al. Dec 2011 A1
20110314746 Erickson et al. Dec 2011 A1
20120000135 Eilers et al. Jan 2012 A1
20120034847 Besse et al. Feb 2012 A1
20120055098 Ramanath et al. Mar 2012 A1
20120137597 Adefris et al. Jun 2012 A1
20120144754 Culler et al. Jun 2012 A1
20120144755 Erickson et al. Jun 2012 A1
20120153547 Bauer et al. Jun 2012 A1
20120167481 Yener et al. Jul 2012 A1
20120168979 Bauer et al. Jul 2012 A1
20120227333 Adefris et al. Sep 2012 A1
20120231711 Keipert et al. Sep 2012 A1
20120308837 Schlechtriemen et al. Dec 2012 A1
20130000212 Wang et al. Jan 2013 A1
20130000216 Wang et al. Jan 2013 A1
20130009484 Yu Jan 2013 A1
20130036402 Mutisya et al. Feb 2013 A1
20130045251 Cen et al. Feb 2013 A1
20130067669 Gonzales et al. Mar 2013 A1
20130072417 Perez-Prat et al. Mar 2013 A1
20130074418 Panzarella et al. Mar 2013 A1
20130125477 Adefris May 2013 A1
20130180180 Yener et al. Jul 2013 A1
20130186005 Kavanaugh Jul 2013 A1
20130186006 Kavanaugh et al. Jul 2013 A1
20130199105 Braun et al. Aug 2013 A1
20130203328 Givot et al. Aug 2013 A1
20130236725 Yener et al. Sep 2013 A1
20130255162 Welygan et al. Oct 2013 A1
20130267150 Seider et al. Oct 2013 A1
20130283705 Fischer et al. Oct 2013 A1
20130305614 Gaeta et al. Nov 2013 A1
20130337262 Bauer et al. Dec 2013 A1
20130337725 Monroe Dec 2013 A1
20130344786 Keipert Dec 2013 A1
20140000176 Moren et al. Jan 2014 A1
20140007518 Yener et al. Jan 2014 A1
20140080393 Ludwig Mar 2014 A1
20140106126 Gaeta et al. Apr 2014 A1
20140182216 Panzarella et al. Jul 2014 A1
20140182217 Yener et al. Jul 2014 A1
20140186585 Field, III et al. Jul 2014 A1
20140250797 Yener et al. Sep 2014 A1
20140290147 Seth et al. Oct 2014 A1
20140352721 Gonzales et al. Dec 2014 A1
20140352722 Gonzales et al. Dec 2014 A1
20140357544 Gonzales et al. Dec 2014 A1
20140378036 Cichowlas et al. Dec 2014 A1
20150000209 Louapre Jan 2015 A1
20150000210 Breder et al. Jan 2015 A1
20150007399 Gonzales et al. Jan 2015 A1
20150007400 Gonzales et al. Jan 2015 A1
20150089881 Stevenson et al. Apr 2015 A1
20150126098 Eilers et al. May 2015 A1
20150128505 Wang et al. May 2015 A1
20150183089 Iyengar et al. Jul 2015 A1
20150218430 Yener et al. Aug 2015 A1
20150232727 Erickson Aug 2015 A1
20150291865 Breder et al. Oct 2015 A1
20150291866 Arcona et al. Oct 2015 A1
20150291867 Breder et al. Oct 2015 A1
20150343603 Breder et al. Dec 2015 A1
20160177152 Braun Jun 2016 A1
20160177153 Josseaux Jun 2016 A1
20160177154 Josseaux et al. Jun 2016 A1
20160186028 Louapare et al. Jun 2016 A1
20160214903 Humpal et al. Jul 2016 A1
20160298013 Bock et al. Oct 2016 A1
20160303704 Chou et al. Oct 2016 A1
20160303705 Chou et al. Oct 2016 A1
20160304760 Bock et al. Oct 2016 A1
20160311081 Culler et al. Oct 2016 A1
20160311084 Culler et al. Oct 2016 A1
20160326416 Bauer et al. Nov 2016 A1
20160340564 Louapre et al. Nov 2016 A1
20160354898 Nienaber et al. Dec 2016 A1
20160362589 Bauer et al. Dec 2016 A1
20170066099 Nakamura Mar 2017 A1
20170114260 Bock et al. Apr 2017 A1
20170129075 Thurber et al. May 2017 A1
20180086957 Sahlin et al. Mar 2018 A1
20180215976 Cotter et al. Aug 2018 A1
20190270182 Eckel et al. Sep 2019 A1
20190322915 Jiwpanich et al. Oct 2019 A1
Foreign Referenced Citations (252)
Number Date Country
743715 Oct 1966 CA
2423788 Jul 2002 CA
685051 Mar 1995 CH
102123837 Jul 2014 CN
102012023688 Apr 2014 DE
202014101739 Jun 2014 DE
202014101741 Jun 2014 DE
102013202204 Aug 2014 DE
102013210158 Dec 2014 DE
102013210716 Dec 2014 DE
102013212598 Dec 2014 DE
102013212622 Dec 2014 DE
102013212634 Dec 2014 DE
102013212639 Dec 2014 DE
102013212644 Dec 2014 DE
102013212653 Dec 2014 DE
102013212654 Dec 2014 DE
102013212661 Dec 2014 DE
102013212666 Dec 2014 DE
102013212677 Dec 2014 DE
102013212680 Dec 2014 DE
102013212687 Dec 2014 DE
102013212690 Dec 2014 DE
102013212700 Dec 2014 DE
102014210836 Dec 2014 DE
0078896 May 1983 EP
0152768 Sep 1987 EP
0293163 Nov 1988 EP
0480133 Apr 1992 EP
0652919 May 1995 EP
0662110 Jul 1995 EP
0500369 Jan 1996 EP
0609864 Nov 1996 EP
0771769 May 1997 EP
0812456 Dec 1997 EP
0651778 May 1998 EP
0614861 May 2001 EP
0931032 Jul 2001 EP
0833803 Aug 2001 EP
1356152 Oct 2003 EP
1371451 Dec 2003 EP
1383631 Jan 2004 EP
1015181 Mar 2004 EP
1492845 Jan 2005 EP
1851007 Nov 2007 EP
1960157 Aug 2008 EP
2176031 Apr 2010 EP
2184134 May 2010 EP
2390056 Nov 2011 EP
1800801 Mar 2012 EP
2537917 Dec 2012 EP
2567784 Mar 2013 EP
2631286 Aug 2013 EP
2692813 Feb 2014 EP
2692814 Feb 2014 EP
2692815 Feb 2014 EP
2692816 Feb 2014 EP
2692817 Feb 2014 EP
2692818 Feb 2014 EP
2692819 Feb 2014 EP
2692820 Feb 2014 EP
2692821 Feb 2014 EP
2719752 Apr 2014 EP
2720676 Apr 2014 EP
2012972 Jun 2014 EP
2354373 Jan 1978 FR
986847 Mar 1965 GB
1466054 Mar 1977 GB
53064890 Jun 1978 JP
60-006356 Jan 1985 JP
62002946 Jan 1987 JP
63036905 Jul 1988 JP
3079277 Apr 1991 JP
03-287687 Dec 1991 JP
5285833 Nov 1993 JP
6114739 Apr 1994 JP
7008474 Feb 1995 JP
10113875 May 1998 JP
2779252 Jul 1998 JP
10330734 Dec 1998 JP
H10315142 Dec 1998 JP
2957492 Oct 1999 JP
2000091280 Mar 2000 JP
2000-336344 Dec 2000 JP
2000354967 Dec 2000 JP
3160084 Apr 2001 JP
2001162541 Jun 2001 JP
03194269 Jul 2001 JP
2001207160 Jul 2001 JP
2002-038131 Feb 2002 JP
2002210659 Jul 2002 JP
2003-049158 Feb 2003 JP
2004-510873 Apr 2004 JP
2004209624 Jul 2004 JP
2006159402 Jun 2006 JP
2006-192540 Jul 2006 JP
2008194761 Aug 2008 JP
5238725 Jul 2013 JP
5238726 Jul 2013 JP
171464 Nov 1982 NL
1994002559 Feb 1994 WO
9503370 Feb 1995 WO
9518192 Jul 1995 WO
1995020469 Aug 1995 WO
9627189 Sep 1996 WO
1997014536 Apr 1997 WO
9720011 Jun 1997 WO
1999006500 Feb 1999 WO
9938817 Aug 1999 WO
1999038817 Aug 1999 WO
9954424 Oct 1999 WO
0114494 Mar 2001 WO
2002097150 Dec 2002 WO
03087236 Oct 2003 WO
2005080624 Sep 2005 WO
2006027593 Mar 2006 WO
2007041538 Apr 2007 WO
2009085578 Jul 2009 WO
2010077509 Jul 2010 WO
2010085587 Jul 2010 WO
2010151201 Dec 2010 WO
2011068724 Jun 2011 WO
2011068714 Jun 2011 WO
2011087649 Jul 2011 WO
2011109188 Sep 2011 WO
2011139562 Nov 2011 WO
2011149625 Dec 2011 WO
2012018903 Feb 2012 WO
2012061016 May 2012 WO
2012061033 May 2012 WO
2012092590 Jul 2012 WO
2012092605 Jul 2012 WO
2012112305 Aug 2012 WO
2012112322 Aug 2012 WO
2012141905 Oct 2012 WO
2013003830 Jan 2013 WO
2013003831 Jan 2013 WO
2013009484 Jan 2013 WO
2013036402 Mar 2013 WO
2013045251 Apr 2013 WO
2013049239 Apr 2013 WO
2013070576 May 2013 WO
2013101575 Jul 2013 WO
2013102170 Jul 2013 WO
2013102176 Jul 2013 WO
2013102177 Jul 2013 WO
2013106597 Jul 2013 WO
2013106602 Jul 2013 WO
2013151745 Oct 2013 WO
2013177446 Nov 2013 WO
2013186146 Dec 2013 WO
2013188038 Dec 2013 WO
2014005120 Jan 2014 WO
2014161001 Feb 2014 WO
2014020068 Feb 2014 WO
2014020075 Feb 2014 WO
2014022453 Feb 2014 WO
2014022462 Feb 2014 WO
2014022465 Feb 2014 WO
2014057273 Apr 2014 WO
2014062701 Apr 2014 WO
2014070468 May 2014 WO
2014106173 Jul 2014 WO
2014106211 Jul 2014 WO
2014124554 Aug 2014 WO
2014137972 Sep 2014 WO
2014140689 Sep 2014 WO
2014165390 Oct 2014 WO
2014176108 Oct 2014 WO
2014206739 Dec 2014 WO
2014206890 Dec 2014 WO
2014206967 Dec 2014 WO
2014209567 Dec 2014 WO
2014210160 Dec 2014 WO
2014210442 Dec 2014 WO
2014210532 Dec 2014 WO
2014210568 Dec 2014 WO
2015050781 Apr 2015 WO
2015073346 May 2015 WO
2015048768 Jun 2015 WO
2015088953 Jun 2015 WO
2015089527 Jun 2015 WO
2015089528 Jun 2015 WO
2015089529 Jun 2015 WO
2015100018 Jul 2015 WO
2015100020 Jul 2015 WO
2015100220 Jul 2015 WO
2015102992 Jul 2015 WO
2015112379 Jul 2015 WO
2015130487 Sep 2015 WO
2015158009 Oct 2015 WO
2015160854 Oct 2015 WO
2015160855 Oct 2015 WO
2015160857 Oct 2015 WO
2015164211 Oct 2015 WO
2015165122 Nov 2015 WO
2015167910 Nov 2015 WO
2015179335 Nov 2015 WO
2015180005 Dec 2015 WO
2015184355 Dec 2015 WO
2016028683 Feb 2016 WO
2016044158 Mar 2016 WO
2016064726 Apr 2016 WO
2016089675 Jun 2016 WO
2016105469 Jun 2016 WO
2016105474 Jun 2016 WO
2016160357 Oct 2016 WO
2016161157 Oct 2016 WO
2016161170 Oct 2016 WO
2016167967 Oct 2016 WO
2016187570 Nov 2016 WO
2016196795 Dec 2016 WO
2016201104 Dec 2016 WO
2016205133 Dec 2016 WO
2016205267 Dec 2016 WO
2016210057 Dec 2016 WO
2017007703 Jan 2017 WO
2017007714 Jan 2017 WO
2017062482 Apr 2017 WO
2017083249 May 2017 WO
2017083255 May 2017 WO
2016105543 Sep 2017 WO
2017151498 Sep 2017 WO
2018010730 Jan 2018 WO
2018026669 Feb 2018 WO
2018057465 Mar 2018 WO
2018057558 Mar 2018 WO
2018063902 Apr 2018 WO
2018063958 Apr 2018 WO
2018063960 Apr 2018 WO
2018063962 Apr 2018 WO
2018064642 Apr 2018 WO
2018080703 May 2018 WO
2018080704 May 2018 WO
2018080705 May 2018 WO
2018080755 May 2018 WO
2018080756 May 2018 WO
2018080765 May 2018 WO
2018080778 May 2018 WO
2018080784 May 2018 WO
2018081246 May 2018 WO
2018118688 Jun 2018 WO
2018118690 Jun 2018 WO
2018118695 Jun 2018 WO
2018118699 Jun 2018 WO
2018134732 Jul 2018 WO
2018136268 Jul 2018 WO
2018136269 Jul 2018 WO
2018136271 Jul 2018 WO
2018207145 Nov 2018 WO
2019167022 Sep 2019 WO
2019197948 Oct 2019 WO
Non-Patent Literature Citations (18)
Entry
“Investigation of Shaped Abrasive Particles vol. 1: Review of U.S. Pat. No. 6,054,093 Apr. 25, 2000” © Apr. 2011, 5 pages.
Austin, Benson M., “Thick-Film Screen Printing,” Solid State Technology, Jun. 1969, pp. 53-58.
Avril, Nicholas Joseph, “Manufacturing Glass-fiber Reinforcement for Grinding Wheels,” Massachusetts Institute of Technology, 1996, 105 pgs.
Bacher, Rudolph J., “High Resolution Thick Film Printing,” E.I. du Pont de Nemours & Company, Inc., pp. 576-581, date unknown.
Besse, John R., “Understanding and controlling wheel truing and dressing forces when rotary plunge dressing,” Cutting Tool Engineering, Jun. 2012, vol. 64, Issue 6, 5 pages.
Brewer, L. et al., Journal of Materials Research, 1999, vol. 14, No. 10, pp. 3907-3912.
Ciccotti, M. et al., “Complex dynamics in the peeling of an adhesive tape,” International Journal of Adhesion & Adhesives 24 (2004) pp. 143-151.
DuPont, “Kevlar Aramid Pulp”, Copyright 2011, DuPont, 1 page.
J. European Ceramic Society 31, Abstract only (2011) 2073-2081.
Riemer, Dietrich E., “Analytical Engineering Model of the Screen Printing Process: Part II,” Solid State Technology, Sep. 1988, pp. 85-90.
Miller, L.F., “Paste Transfer in the Screening Process,” Solid State Technology, Jun. 1969, pp. 46-52.
Morgan, P. et al., “Ceramic Composites of Monazite and Alumina,” J. Am. Ceram. Soc., 78, 1995, 1553-63.
Riemer, Dietrich E., “Analytical Engineering Model of the Screen Printing Process: Part I,” Solid State Technology, Aug. 1988, pp. 107-111.
Badger, Jeffrey, “Evaluation of Triangular, Engineered-Shape Ceramic Abrasive in Cutting Discs,” Supplement to the Welding Journal, Apr. 2014, vol. 93, pp. 107-s to 115-s.
3M Cubitron II Abrasive Belts Brochure, Shaping the Future, Jan. 2011, 6 pages.
Vanstrum et al., Precisely Shaped Grain (PSG): 3M's Innovation in Abrasive Grain Technology, date unknown, 1 page.
Graf, “Cubitron II: Precision-Shaped Grain (PSG) Turns the Concept of Gear Grinding Upside Down,” gearsolutions.com, May 2014, pp. 36-44.
DOW Machine Tool Accessories, Grinding & Surface Finishing, www.1mta.com, Nov. 2014, 72 pages.
Related Publications (1)
Number Date Country
20180215975 A1 Aug 2018 US