Abrasive article with integrally molded front surface protrusions containing a grinding aid and methods of making and using

Information

  • Patent Grant
  • 6299508
  • Patent Number
    6,299,508
  • Date Filed
    Wednesday, August 5, 1998
    26 years ago
  • Date Issued
    Tuesday, October 9, 2001
    23 years ago
Abstract
An abrasive article including (i) a backing, (ii) a plurality of grinding aid-containing protrusions integrally molded on the first surface of the backing, wherein the first surface of the backing is contoured by the protrusions so as to define a plurality of peaks and valleys, and (iii) a coating of abrasive particles adhered to the contoured first surface of the first backing so as to cover at least a portion of both the peaks and the valleys.
Description




FIELD OF THE INVENTION




This invention relates to abrasive articles and methods of making and using abrasive articles. More specifically, this invention relates to abrasive articles incorporating a grinding aid and methods of making and using such abrasive articles.




BACKGROUND OF THE INVENTION




Abrasive articles are used to abrade and finish a variety of workpieces ranging from high pressure metal grinding to the fine polishing of silicon wafers. In general, abrasive articles comprise a plurality of abrasive particles bonded to each other (e.g., a bonded abrasive or grinding wheel) or bonded to a backing (e.g., a coated abrasive sheet). Coated abrasives commonly include the sequential layers of backing, make coat, abrasive particles and size coat. The coated abrasive can further include an optional supersize coat over the size coat. Typically, the coated abrasives include a single layer of abrasive particles and a grinding aid incorporated into one of the layers (e.g., KBF


4


incorporated into the supersize coat) for purposes of increasing abrasion efficiency. Once the layer of abrasive particles are worn, the coated abrasive is spent and must be replaced. The industry is continuously seeking ways to extend the useful life of an abrasive article and/or increase the cutting rate of the abrasive article.




One attempt to extend the useful life of coated abrasives is described in U.S. Pat. Nos. 4,652,275, 4,799,939 and 5,039,311. The coated abrasives disclosed in these patents comprise a plurality of abrasive agglomerates bonded onto the upper surface of a backing, wherein the abrasive agglomerates are shaped masses of abrasive grains held together by a binder and optionally including a grinding aid and/or other additives.




Another attempt to extend the useful life of coated abrasives is described in U.S. Pat. Nos. 4,644,703, 4,773,920, 5,015,266 and 5,378,251, wherein an abrasive slurry comprising abrasive particles and a binder are bonded to a backing so as to form a lapping film.




These lapping films enjoy wide commercial success in polishing applications where a fine surface finish is desired. However, due to the limited rate of cut attainable with such lapping films, such films have enjoyed only limited success in many other applications.




Culler et al (U.S. Pat. No. 5,378,251) discloses an abrasive article comprising an abrasive slurry bonded to the front surface of a backing wherein the abrasive coating is a homogeneous mixture of abrasive particles, grinding aid and binder. Culler et al. discloses that the abrasive coating may be shaped to provide separate abrasive composites extending from the front surface of the abrasive article.




Tselesin (U.S. Pat. No. 5,190,568) discloses an abrasive article having a contoured front surface produced by coating a contoured backing with an abrasive slurry. Tselesin requires the backing to be constructed from a material which will wear quickly and be promptly removed from contact with a workpiece in order to avoid potentially deleterious contact between the backing and the workpiece.




Several different techniques have been developed for incorporating a grinding aid into a coated abrasive. It is a common practice to incorporate a grinding aid into the size coat and/or the super size coat used in the manufacture of coated abrasives.




Broberg et al (U.S. Pat. No. 5,078,753) discloses an abrasive article containing erodible agglomerates of a resinous binder and an inorganic filler, such as cryolite, interspersed with abrasive particles. One of the embodiments disclosed by Broberg et al. includes erodible agglomerates positioned between elongated abrasive particles, wherein the erodible agglomerates and the abrasive particles are of substantially the same size.




Cosmano et al. (U.S. Pat. No. 5,454,750) discloses an abrasive article containing erodible agglomerates of a grinding aid or a combination of grinding aid and binder interspersed with the abrasive particles.




Gagliardi et al. (U.S. Pat. No. 5,578,098) discloses an abrasive article containing erodible agglomerates of a grinding aid or a combination of grinding aid and binder interspersed with the abrasive particles. One of the embodiments disclosed by Gagliardi et al. includes rod shaped agglomerates positioned between abrasive particles wherein the erodible agglomerates and the abrasive particles are of substantially the same size (i.e., ratio of maximum dimension of erodible agglomerates to maximum dimension of abrasive particles is between about 2.5:1 to about 0.5:1).




While such techniques are generally effective for incorporating effective amounts of a grinding aid into a coated abrasive, the search continues for improved techniques of incorporating a grinding aid into a coated abrasive.




SUMMARY OF THE INVENTION




We have discovered an abrasive article having an extended useful life span effective for providing abrasion enhancing amounts of a grinding aid to the surface of the workpiece being abraded.




The abrasive article includes (i) a backing , (ii) a plurality of grinding aid-containing protrusions integrally molded with the base layer, wherein the first surface of the base layer is contoured by the protrusions so as to define a plurality of peaks and valleys, and (iii) a coating of abrasive particles adhered to the contoured first surface of the first backing so as to cover at least a portion of both the peaks and the valleys.




The coating of abrasive particles covering the peaks have a limited thickness such that initial use of the abrasive article wears away the coating of abrasive particles covering the peaks of the protrusions, and thereby allows the protrusions to contact a workpiece.




In an alternative description of the invention, the abrasive article includes (i) a backing, (ii) a plurality of grinding aid-containing protrusions integrally molded with the backing, wherein the first surface of the backing is contoured by the protrusions so as to define (A) a plurality of peaks defining apexes, and (B) a plurality of valleys between the peaks defining base layer nadirs, and (iii) a coating of abrasive particles adhered to the contoured first surface of the backing and defining (A) abrasive coated protrusions with each protrusion having an abrasive coated apex, and (B) abrasive coated valleys having an abrasive coated nadir, wherein the apex of a majority of the protrusions extend above at least one adjoining abrasive coated nadir.




The invention further includes a method of making the abrasive article involving the steps of (1) forming the protrusions on the first surface of the base layer, and (2) coating abrasive particles onto the contoured first surface, whereby the protrusions are coated with abrasive particles.




The invention also includes a process for abrading a workpiece with the abrasive article involving the steps of obtaining a workpiece in need of abrasion, and abrading the workpiece with the abrasive article.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross-sectional side view of a first embodiment of the invention.





FIG. 2

is an enlarged view of a portion of the invention as shown in FIG.


1


.





FIG. 3

is a cross-sectional side view of a second embodiment of the invention.





FIG. 4

is an enlarged view of a portion of the invention as shown in FIG.


3


.





FIG. 5

is a schematic diagram of a method for manufacturing the first embodiment of the invention as shown in FIG.


1


.





FIG. 6

is a schematic diagram of a method for manufacturing the second embodiment of the invention as shown in FIG.


3


.











DETAILED DESCRIPTION OF THE INVENTION INCLUDING A BEST MODE




Definitions




As utilized herein, including the claims, the term “abrade” and “abrading” mean to remove material from a workpiece, typically a surface layer of the workpiece, for purposes of grinding a surface of a workpiece so as to effect a change in a dimension of the workpiece, deburring the workpiece, smoothing and polishing a surface of the workpiece, roughing or texturing the surface of a workpiece, and/or cleaning a surface of the workpiece, by forcefully contacting the workpiece with an abrasive article and moving the abrasive article and the workpiece relative to one another.




As utilized herein, including the claims, the term “abrasive particle” refers to particles capable of abrading the surface of a workpiece and includes both (i) individual abrasive particles, and (ii) multiple abrasive particles bonded together with a binder to form abrasive agglomerates such as described in U.S. Pat. Nos. 4,311,489; 4,652,275 and 4,799,939. Abrasive particles useful in the abrasive articles of this invention typically have a Moh's hardness of at least 7.




As utilized herein, including the claims, the term “binder precursor” refers to compositions which can be mixed with solid particulate (e.g., abrasive particles or particles of a grinding aid) and then solidified. Binder precursors include precursors capable of forming thermoplastic or thermosetting resins, with a preferrence for crosslinked thermosetting resins. Typical binder precursors are liquids under ambient conditions, with a mixture of binder precursor and solid particulates capable of being coated onto a backing. Typical binder precursors are cured by exposing the binder precursor to thermal energy or radiation energy, such as electron beam, ultraviolet light or visible light.




As utilized herein, including the claims, the term “grinding aid” refers to nonabrasive materials capable of improving the abrasion performance of an abrasive article upon a metal workpiece when incorporated into the abrasive coating. Specifically, grinding aids tend to increase the grinding efficiency or cut rate (i.e., the weight of a metal workpiece removed per weight of abrasive article lost) of an abrasive article upon a metal workpiece.




As utilized herein, including the claims, the phrase “consisting essentially of a grinding aid” refers to a nonabrasive composition effective as a grinding aid (i.e., effective for increasing the grinding efficiency or cut rate of an abrasive article upon a metal workpiece) and includes compositions comprised of at least one grinding aid material and optionally one or more additives such as a binder, a diluent, a naturally occurring impurity, etc.




As utilized herein, including the claims, the phrase “initial use,” when used to describe the extent to which an abrasive article is used, means the first 10% of the useful life of the abrasive article (e.g., first 100 grams of material removed from workpieces by an abrasive article when a total of 1,000 grams of material can be removed from such workpieces under the same operating conditions before the abrasive article must be replaced).




As utilized herein, including the claims, the term “stem web, ” defines a surface having a plurality of stems projecting from the surface as described in U.S. Pat. No. 5,077,870 issued to Melbye et al., wherein the stems may be configured and arranged with or without a mushroom head. Additional stem configurations are described in U.S. Pat. No. 5,505,747 issued to Chesley et al.




Nomenclature






10


Abrasive Article (Coated Abrasive)






11


Contoured First Surface of Abrasive Article






12


Peaks






13


Valleys






20


Base layer






21


First Surface of Base layer






22


Second Surface of Base layer






30


Protrusions






30




a


Apex of Protrusions






40


Abrasive Coating






50


Make Coat






60


Abrasive Particles






61




a


Apex of Abrasive Coated Protrusions






61




b


Nadir of Abrasive Coated Base layer






70


Size Coat






80


Supersize Coat






90


Backing






91


First Surface of Backing






92


Second Surface of Backing






120


Stem Web






121


First Surface of Stem Web






122


Second Surface of Stem Web






123


Base Layer of Stem Web






130


Stems






130




a


Apex of Stem






161




a


Apex of Abrasive Coated Stem






161




b


Nadir of Abrasive Coated Stem Web




Abrasive Article




The abrasive articles


10


of this invention include a base layer


20


with integrally molded protrusions


30


projecting from the first surface


21


of the base layer


20


, and an abrasive coating


40


over the first surface


21


of the base layer


20


and the protrusions


30


. The abrasive coating


40


includes abrasive particles


60


bonded to the base layer


20


and the protrusions


30


by a make coat


50


, and a size coat


70


. The abrasive coating


40


optionally includes a supersize coat


80


over the size coat


70


. The abrasive coating


40


covers the first surface


21


of the base layer


20


and the protrusions


30


with a coating of abrasive particles


60


so as to result in an abrasive article


10


having a contoured first surface


11


with a plurality of peaks


12


and valleys


13


.




Base Layer




The base layer


20


has a first surface


21


and a second surface


22


and is constructed of a grinding aid-containing composition capable of being integrally molded with protrusions


30


projecting from the first surface


21


of the base layer


20


. Examples of the general types of compositions useful as the base layer


20


include moldable compositions containing halogenated waxes, organic halide compounds, halide salts, metals and metal alloys (e.g., polyvinyl chloride is a suitable moldable base layer material whereas KBF


4


must be compounded within a moldable binder such as polyethylene to form a suitable base layer material).




The base layer


20


may be constructed with an attachment means (not shown) on its second surface


22


for purposes of securing the abrasive article


10


to a support pad (not shown) or back-up pad (not shown). Conventional attachment means include pressure sensitive adhesives, hook and loop attachment systems, and threaded projections such as disclosed in U.S. Pat. No. 5,316,812. Alternatively, the intermeshing attachment system described in U.S. Pat. No. 5,201,101 can be employed.




The second surface


22


of the backing


20


may also be treated with a slip resistant or frictional coating (not shown). Conventional slip resistant coatings used for such purposes include inorganic particulates, such as calcium carbonate or quartz, dispersed in an adhesive.




Grinding Aid




Protrusions


30


, containing a grinding aid and preferably consisting essentially of a grinding aid, are integrally formed from the base layer


20


. The protrusions


30


present grinding aid to the working surface of the abrasive article


10


throughout the normal useful life of the abrasive article


10


once the abrasive coating


40


over the peaks


12


formed by the protrusions


30


is removed (typically occurring within the first several second of use due to the limited surface area of the abrasive article


10


actually contacting the workpiece (not shown)).




Grinding aids are generally believed to improve the abrasion performance of an abrasive article by (i) decreasing friction between the abrasive particles and the workpiece being abraded, (ii) preventing capping of the abrasive particles (i.e., preventing particles removed from the workpiece from being welded to the tops of the abrasive particles), (iii) decreasing the interface temperature between the abrasive particles and the workpiece, (iv) decreasing the grinding force required to abrade the workpiece, and/or (v) oxidizing metal workpieces. In addition to improving the abrasion performance of an abrasive article, the incorporation of a grinding aid often increases the useful life of the abrasive article.




The protrusions


30


contain a grinding aid, with the protrusions


30


preferably formed from grinding aid alone or as a combination of a grinding aid and a binder. In either form, the protrusions


30


may incorporate other additives that do not adversely affect the erodibility and/or grinding aid functionality of the composition, such as coupling agents, wetting agents, fillers, surfactants, dyes and pigments. Representative examples of organic fillers include wood pulp and wood flour. Representative examples of inorganic fillers include calcium carbonate, calcium metasilicate, silica, fiberglass fibers and glass bubbles. The protrusions


30


specifically exclude any abrasive particles,




Grinding aids useful in the invention encompass a wide variety of different materials including both organic and inorganic compounds. A sampling of chemical compounds effective as grinding aids include waxes, organic halide compounds, halide salts, metals and metal alloys.




Specific waxes effective as a grinding aid include specifically, but not exclusively, the halogenated waxes tetrachloronaphtalene and pentachloronaphthalene.




Other organic materials effective as a grinding aid include specifically, but not exclusively, polyvinylchloride and polyvinylidene chloride.




Examples of halide salts generally effective as a grinding aid include sodium chloride, potassium cryolite, sodium cryolite, ammonium cryolite, potassium tetrafluoroborate, sodium tetrafluoroborate, silicon fluorides, potassium chloride, and magnesium chloride. Halide salts employed as a grinding aid typically have an average particle size of less than 100 μm, with particles of less than 25 μm preferred.




Examples of metals generally effective as a grinding aid include, antimony, bismuth, cadmium, cobalt, iron, lead, tin and titanium.




Other commonly used grinding aids include sulfur, organic sulfur compounds, graphite and metallic sulfides.




Combinations of any of the above grinding aids can also be employed.




Binders suitable for use in the grinding aid protrusions


30


include a wide range of both organic and inorganic materials. Examples of inorganic binders include cement, calcium oxide, clay, silica, and magnesium oxide. Examples of organic binders include waxes, phenolic resins, urea-formaldehyde resins, urethane resins, acrylate resins, aminoplast resins, glue, polyvinyl alcohol, epoxy resins, and combinations thereof.




When the protrusions


30


are formulated with a binder, the percentage of grinding aid in the grinding aid protrusions


30


should be between about 5 to 90 wt %, preferably between about 60 to 90 wt %, with the balance of the protrusions


30


composed of binder and optional additives. When the protrusions


30


are formulated with binder, the protrusions


30


should include at least about 1 wt % binder, preferably about 5 to 10 wt % binder.




Protrusions


30


including a binder can be conveniently made by (i) mixing the grinding aid and any optional components into the binder precursor until a homogeneous blend is obtained, (ii) coating the blend onto a substrate, (iii) embossing the blend to form a base layer


20


with a contoured first surface


21


having a plurality of protrusions


30


, and then (iv) solidifying the embossed blend by drying and/or curing the blend with heat and/or radiation energy. Solidification can generally be effected by either removing solvent from the blend and/or curing the binder precursor in the blend.




Protrusions


30


including a thermoplastic binder may optionally include any of a number of additives such as a plasticizer, a stabilizer, a flow agent, a processing aid, and the like.




Protrusions


30


formulated without a binder can be conveniently made by (i) dispersing the grinding aid in an appropriate medium, (e.g., water, acetone, n-heptane, etc.), (ii) coating the dispersion onto a substrate (e.g., a backing


90


), (iii) embossing the dispersion to form a base layer


20


with a contoured first surface


21


having a plurality of projections


30


, and then (iv) solidifying the embossed dispersion by drying the dispersion with heat and/or radiation energy.




Alternatively, as shown in

FIGS. 3 and 4

, the base layer


20


and protrusions


30


can be formed as a stem web


120


when the base layer is a directly formable material such as polyvinyl chloride or a blend of KBF


4


in polyethylene.




Abrasive Coating




The abrasive coating


40


includes abrasive particles


60


, a make coat


50


, and a size coat


70


. The abrasive coating


40


optionally includes a supersize coat


80


over the size coat


70


. The abrasive coating


40


covers the contoured first surface


21


of the base layer


20


and the protrusions


30


with a coating of abrasive particles


60


.




MAKE COAT




A make coat binder composition is coated onto the contoured first surface


21


defined by the base layer


20


and protrusions


30


to form a make coat


50


. The make coat


50


is preferably coated onto the contoured first surface as a liquid binder precursor, after which the abrasive particles


60


are deposited onto the binder precursor and the binder precursor precured in order to secure the binder precursor and adhesive particles


60


in position.




The binder precursor is precured by exposing the binder precursor to an appropriate precuring amount of energy of the type capable of initiating crosslinking and/or polymerization of the binder precursors. Examples of suitable types of energy effective for curing the types of resins suitable for use as a make coat


50


include thermal energy and radiation energy sources, such as electron beam, ultraviolet light and visible light.




The make coat


50


is typically formed from either a condensation curable thermoset resins or an addition polymerizable thermoset resins. The make coat


50


is preferably comprised of an addition polymerizable thermoset resin as such resins are readily cured by exposure to radiation energy through either a cationic mechanism or a free radical mechanism. Depending upon the specific type of energy used and the specific type of binder precursor employed, a curing agent, initiator, or catalyst may be incorporated onto the binder precursor to facilitate initiation of the crosslinking and/or polymerization process.




Types of polymerizable organic resins typically used as the binder precursor of make coats include phenolic resins, urea-fornaldehyde resins, melamine-formaldehyde resins, (meth)acrylated urethanes, (meth)acrylated epoxies, ethylenically unsaturated compounds, aminoplast derivatives having pendant α,β unsaturated carbonyl groups, isocyanurate derivatives having at least one pendant (meth)acrylate group, isocyanate derivatives having at least one pendant (meth)acrylate group, vinyl ethers, epoxy resins, and mixtures and combinations thereof.




Phenolic resins are widely used as the make coat in abrasive articles because of their superior thermal properties, ready availability and relatively low cost. Phenolic resins are generally classified as a resole phenolic resins or a novolac phenolic resins based upon the ratio of formaldehyde to phenol in the resin. Resole phenolic resins have a molar ratio of formaldehyde to phenol of greater than or equal to 1:1, often between 1½:1 to 3:1. Novolac phenolic resins have a molar ratio of formaldehyde to phenol of less than 1:1. Examples of commercially available phenolic resins include DuREz™ and VARCUM™ available from Occidental Chemicals Corp.; RESINoX™ available from Monsanto; and AEROFENE™ and AEROTAP™ available from Ashland Chemical Co.




Acrylated urethanes useful as the make coat in abrasive articles are the diacrylate esters of hydroxy terminated and isocyanate extended polyesters and polyethers. Examples of commercially available acrylated urethanes include UVITHANE 792™, available from Morton Thiokol Chemical, and CMD 6600™, CMD 8400™, and CMD 8805™, available from Radcure Specialties.




Acrylated epoxies useful as the make coat in abrasive articles include the didacrylate esters of epoxy resins, such as the diacrylate esters of bisphenol A epoxy resin. Examples of commercially available acrylated epoxies include CMD 3500™, CMD 3600™, and CMD 3700™, available from Radcure Specialties.




Preferred ethylenically unsaturated compounds are esters resulting from the reaction of an organic moiety containing an aliphatic monohydroxy or aliphatic polyhydroxy group and an unsaturated carboxylic acid. Suitable unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid and maleic acid. The ester reaction product preferably has a molecular weight of less than about 4,000. Representative examples of acrylate-based ethylenically unsaturated compounds include methyl methacrylate, ethyl methacrylate, ethylene glycol diacrylate, ethylene glycol methacrylate, hexanediol diacrylate, triethylene glycol diacrylate, trimethylolpropane triacrylate, glycerol triacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, pentaerythritol tetraacrylate and pentaerythritol tetramethacrylate.




Aminoplast resins useful as the make coat in abrasive articles include those having at least one pendant α,β unsaturated carbonyl group on each molecule or oligomer. Suitable α,β unsaturated carbonyl groups include acrylate, methacrylate and acrylarnide type groups. Suitable aminoplast resins include specifically, but not exclusively, N-(hydroxymethyl)acrylamide, N,N′-oxydimethylenebisacrylamide, ortho and para acrylamidomethylated phenol, acrylamidomethylated phenolic ovolac, and combinations thereof. Such materials are described in detail in U. S. Pat. Nos. 4,903,440 and 5,236,472.




Isocyanurate and isocyanate derivatives useful as the make coat in abrasive articles include those having at least one pendant acrylate group. Such compounds are described in detail in U.S. Pat. No. 4,652,274. A preferred isocyanurate derivative is a triacrylate of tris(hydroxyethyl) isocyanurate.




Epoxy resins are polymerized by opening the oxirane ring structure C—O—C. Epoxy resins useful as the make coat in abrasive articles include both monomeric and oligomeric epoxy resins. Examples of suitable epoxy resins include 2,2-bis[4-(2,3-epoxypropoxy)-phenyl propane] (diglycidyl ether of bisphenol A) and the commercially available epoxy resins EPON 828™, EPON 1004™, and EPON 1001F™ available from Shell Chemical Co., and DER-331™, DER-332™, and DER-334™ available from Dow Chemical Co. Other suitable epoxy resins include glycidyl ethers of phenol formaldehyde novolac such as DEN-431™ and DEN-428™ available from Dow Chemical Co.




When employing a free radically curable resin, it is often desirable to incorporate a free radical curing agent for purposes of initiating crosslinking and/or polymerization of the resin. However, it is noted that when an electron beam source is employed as the energy source, a curing agent is generally not required since electron beams are known to generate free radicals directly from the resin.




Examples of suitable free radical thermal initiators include peroxides, (e.g., benzoyl peroxide), azo compounds, benzophenones and quinones. Examples of suitable photoinitiators (i.e., free radical curing agents activated by ultraviolet or visible light), include specifically, but not exclusively, organic peroxides, azo compounds, quinones, benzophenones, nitroso compounds, acryl halides, hydrozones, mercapto compounds, pyrylium compounds, triacrylimidazoles, bisimidazoles, chloroalkytriazines, benzoin ethers, benzil ketals, thioxanthones, acetophenone derivatives, and mixtures thereof. A variety of photoinitiators activated by visible light are described in detail in U.S. Pat. No. 4,735,632. A widely used photoinitiator is IRGACURE 369™ available from Ciba Geigy Corporation.




The make coat


50


can optionally include other conventional components in combination with the binder, such as coupling agents, wetting agents, fillers, surfactants, dyes and pigments.




Abrasive Particles




Abrasive particles


60


used in the manufacture of abrasive articles typically have a particle size ranging from about 0.1-2,500 μm, usually between about 10 to 700 μm, although larger or smaller particles may also be used. The abrasive particles


60


should have a Mohs' hardness of at least 7, preferably at least 8. Examples of suitable abrasive particles


60


include particles of alumina zirconia, fused aluminum oxide(including brown aluminum oxide, heat treated aluminum oxide and white aluminum oxide), ceramic aluminum oxide, boron carbide, ceria, chromia, cubic boron nitride, diamond, garnet, iron oxide, silicon carbide (including green silicon carbide), silicon nitride coated silicon carbide, tungsten carbide, and mixtures thereof. A detailed discussion of suitable ceramic aluminum oxide particles can be found in U.S. Pat. Nos. 4,314,827, 4,623,364, 4,744,802, and 4,881,951.




The abrasive particles


60


may optionally be coated with a surface coating (not shown) prior to being incorporated into the abrasive article


10


. Such surface coatings are used to modifying some property or characteristic of the abrasive particle


60


. For example, the abrasive particles


60


may be coated with a surface coating effective for increasing adhesion of the abrasive particles


60


to the make coat


50


, or a surface coating effective for altering the abrading characteristics of the abrasive particle


60


. Exemplary surface coatings include coupling agents, halide salts, metal oxides such as silica, refractory metal nitrides, refractory metal carbides, and the like.




The abrasive article


10


may optionally include diluent particles (not shown) interspersed within the abrasive particles


60


to achieve a desired loading of abrasive particles on the abrasive article


10


. Such diluent particles typically have a particle size on the same order of magnitude as the abrasive particles


60


. Examples of such diluent particles include aluminum silicate, flint, glass beads, glass bubbles, gypsum, limestone, marble, silica, and the like.




Optional Size Coat




The abrasive article


10


can optionally include a size coat


70


coated over the abrasive particles


60


embedded within the make coat


50


on the contoured first surface


21


of the base layer


20


. As with the make coat


50


, the size coat


70


is preferably coated over the abrasive particles


60


as a liquid binder precursor. The size coat


70


is then either precured in preparation for the addition of a supersize coat


80


over the size coat


70


, or fully cured, along with the make coat


50


, when a supersize coat


80


will not be added to the abrasive article


10


.




The size coat precursor can be precured or fully cured by exposing the size coat precursor to the appropriate amount of energy selected from those types of energy capable of crosslinking and/or polymerizing the binder precursors. Examples of suitable types of energy include thermal energy and radiation energy sources, such as electron beam, ultraviolet light and visible light.




The size coat


70


is typically formed from the same condensation curable thermoset resins and addition polymerizable thermoset resins suitable for use as the make coat


50


. As with the make coat


50


, the size coat


70


can optionally include other conventional components in combination with the binder, such as coupling agents, wetting agents, fillers, surfactants, dyes and pigments. The size coat


70


can also optionally include a grinding aid.




Optional Supersize Coat




The abrasive article


10


can further optionally include a supersize coat


80


coated over the size coat


70


. As with the size coat


70


, the supersize coat


80


is preferably coated onto the size coat


70


as a liquid binder precursor. The size coat


70


is then fully cured, along with the precured size coat


70


and precured make coat


50


, to complete the abrasive article


10


.




The supersize coat precursor can be fully cured by exposing the supersize coat precursor to an appropriate amount of energy selected from those types of energy capable of crosslinking and/or polymerizing the binder precursors. Examples of suitable types of energy include thermal energy and radiation energy, such as electron beam, ultraviolet light and visible light.




The supersize coat


80


is typically formed from the same condensation curable thermoset resins and addition polymerizable thermoset resins suitable for use as the make coat


50


and size coat


70


. As with the make coat


50


and size coat


70


, the supersize coat


80


can optionally include other conventional components in combination with the binder, such as coupling agents, wetting agents, fillers, surfactants, dyes and pigments. The supersize coat


80


can also optionally include a grinding aid.




Optional Backing




The abrasive article


10


can optionally include a backing


90


attached to the second surface


22


of the base layer


20


. The backing


90


can be attached to the base layer


20


by an aggresive adhesive (not shown) or lamination of the backing


90


directly upon the base layer


20


as the backing


90


is being formed. The backing


90


can be selected from any conventional abrasive backing material having sufficient structural integrity to withstand the abrading process. Examples of useful backings


90


include polymeric films, primed polymeric films, cloth, paper, vulcanized fiber, fibrous sheets, nonwovens, and combinations thereof. A preferred backing


90


is a treated cloth backing, such as a phenolic/latex treated cloth or cloth treated with other thermosetting resins. Other useful backings include fiber reinforced thermoplastic backings as disclosed in U.S. Pat. No. 5,316,812 and the endless and seamless backings disclosed in U.S. Pat. No. 5,609,706. The backing


90


may optionally be treated for purposes of sealing the backing and/or modifying a physical property or characteristic of the backing. Such treatments are well known in the art.




The backing


90


may be constructed with an attachment means (not shown) on its second surface


92


for purposes of securing the abrasive article


10


to a support pad (not shown) or back-up pad (not shown). Conventional attachment means include pressure sensitive adhesives, hook and loop attachment systems, and threaded projections such as disclosed in U.S. Pat. No. 5,316,812. Alternatively, the interrneshing attachment system described in U.S. Pat. No. 5,201,101 can be employed.




The second surface


92


of the backing


90


may also be treated with a slip resistant or frictional coating (not shown). Conventional slip resistant coatings used for such purposes include inorganic particulates, such as calcium carbonate or quartz, dispersed in an adhesive.




Method of Manufacture




First Embodiment




The embodiment of the coated abrasive article


10


, shown in

FIGS. 1 and 2

, can be conveniently made by (i) coating a production tool (not shown) having a plurality of recesses (not shown) with a flowable composition containing a grinding aid


30


so as to fill the recesses with grinding aid and provide a continuous layer of the composition above the recesses, (ii) laminating a backing


90


to the exposed surface of the grinding aid-containing composition coated onto the production tool, (iii) soldifying the grinding aid-containing composition coated onto the production tool by cooling or curing the composition so as to form a base layer


20


with integrally molded projections


30


formed by the recesses in the production tool, (iv) removing the backing


90


, base layer


20


and projections


30


from the production tool, (v) applying an appropriate binder precursor to the first surface


21


of the base layer


20


, including the integrally molded protrusions


30


, to form make coat


50


, (vi) electrostatically coating or drop coating a multiplicity of abrasive particles


60


onto the make coat


50


, (vii) precuring the make coat


50


by subjecting the make coat


50


to thermal and/or radiation energy, (viii) applying an appropriate binder precursor over the abrasive particle


60


containing make coat


50


to form size coat


70


, and then (xi) fully curing both the make coat


50


and the size coat


70


by subjecting the make coat


50


and size coat


70


to sufficient thermal and/or radiation energy. Optionally, an appropriate binder precursor is coated over the size coated abrasive particle


60


and cured by the application of sufficient thermal and/or radiation energy to form a fully cured supersize coat


80


.




A suitable production tool is essentially a mold having a plurality of recesses (not shown) responsible for generating and defining the shape of the protrusions


30


. The recesses can be configured and arranged as a random or arranged pattern of individually spaced or abutting recesses. The recesses can be substantially any desired size and shape so long as the protrusions


30


created within the cavities can be quickly and easily removed from the production tool. It is generally preferred to use recesses with a diminishing cross-sectional area (e.g., truncated cone or truncated pyramid) to facilitate removal of the shaped and cured protrusions


30


.




The production tool can be constructed as a belt, a sheet, a continuous sheet or web, a coating roll such as a rotogravure roll, a sleeve mounted on a coating roll, a die, etc. The production tool can be composed of metal, metal alloy or thermoplastic. A metal production tool can be fabricated by any of the conventional techniques used in the construction of such tools, including engraving, bobbing, electroforming, diamond turning, and the like.




A thermoplastic tool can be replicated from a metal master tool (not shown). The master tool is fabricated with recesses identical to the desired configuration of the protrusions


30


. The contoured surface of the master tool is pressed against a thermoplastic blank (not shown) so as to provide an inverse impression of the contoured surface in the thermoplastic blank with the individual protrusions


30


separated from one another and any excess thermoplastic between the individual protrusions


30


stripped from the protrusions


30


. Alternatively, the thermoplastic can be extruded or cast onto the master tool and then pressed. The metal master tool can be made in the same manner as a metal production tool. Examples of preferred thermoplastic production tool materials include polyester, polycarbonates, polyvinyl chloride, polyethylene, polypropylene and combinations thereof. When using a thermoplastic production tool, care must be exercised to prevent the use and/or generation of excessive heat in order to avoid distortion of the thermoplastic production tool.




The production tool may optionally be fabricated with a release coating (not shown) to facilitate removal of the cured protrusions


30


from the production tool. Examples of such release coatings for metals include hard carbide, nitride or boride coatings. Examples of release coatings for thermoplastics include silicones and fluorochemicals.




An exemplary method of making the protrusions


30


involves the steps of (i) simultaneously conveying a backing


90


material and the production tool in a machine direction, (ii) coating the production tool with a composition containing a grinding aid by means of a coating station (not shown) wherein sufficient composition is provided to fill the recesses and provide a continuous layer of composition over the recesses, (iii) contacting the backing


90


and the exposed surface of the coated composition, such as by passing the backing


90


and coated production tool through a nip roller, (iv) at least partially curing or cooling the grinding aid-containing composition as necessary to permit removal of the composition from the production tool, (v) removing the formed base layer


20


and integrally molded protrusions


30


from the production tool by pulling the backing


90


away from the production tool, and (vi) fully cooling or curing the base layer


20


and protrusions


30


as necessary.




The coating station can be selected form any of the conventional coating means such as drop die coater, knife coater, curtain coater, die coater, vacuum die coater, spray coater, roll coater, etc. During coating of the grinding aid-containing composition, the formation of air bubbles should be minimized to the extent possible. When the grinding aid-containing composition contains a curable binder, the composition can be cured by the use of any suitable thermal or radiation energy source. When radiation energy is used to effect partial curing of the grinding aid-containing composition with the production tool, the production tool is preferably constructed from a radiation energy transparent material. As utilized herein, the term “radiation energy transparent” means that the material does not appreciably interact with a specified type of radiation energy such that the specified type of radiation passes through the material without generating appreciable heat or volatilizing the materials.




Alternatively, a highly viscous grinding aid-containing composition can first be coated onto a backing


90


, with the coated backing


90


brought into contact with the production tool under conditions effective for causing the viscous grinding aid-containing composition to flow into the recesses in the production tool.




Second Embodiment




A second embodiment of the coated abrasive article


10


, shown in

FIGS. 3 and 4

, can be conveniently made by (i) forming a stem web


120


, as described in greater detail below, from a material effective as a grinding aid, (ii) optionally laminating a backing


90


to the second surface


122


of the stem web


120


, (iii) applying an appropriate binder precursor to the stem-containing first surface


121


of the stem web


120


to form a make coat


50


covering both the base layer


123


and the stems


131


projecting from the base layer


123


, (iv) electrostatically coating or drop coating a multiplicity of abrasive particles


60


onto the make coat


50


, (v) precuring the make coat


50


by subjecting the make coat


50


to thermal and/or radiation energy, (vi) applying an appropriate binder precursor over the abrasive particle


60


containing make coat


50


to form size coat


70


, and then (vii) fully curing both the make coat


50


and the size coat


70


by subjecting the make coat


50


and size coat


70


to sufficient thermal and/or radiation energy. Optionally, an appropriate binder precursor can be coated over the size coated abrasive particle


60


and cured by the application of sufficient thermal and/or radiation energy to form a fully cured supersize coat


80


.




In both embodiments, the protrusions


30


can have substantially any desired shape, including such geometric shapes as cubes, circular cylinders, rods, cones, frustums of a cone, pyramids, frustums of a pyramid, rectangular parallelepipeds, spherical sectors, tetrahedrons, etc.




For most practical applications, the protrusions


30


are preferably sized and shaped with (i) a height of between about 0.1 mm to about 20 mm, preferably between about 1 mm to about 10 mm, and (ii) a horizontal cross-sectional area of between about 0.03 mm


2


to about 50 mm


2


, preferably about 0.4 mm


2


to about 1 MM


2


.




A preferred embodiment is an abrasive article


10


with protrusions


30


having a circular shaped horizontal cross-section (e.g., cylinders, cones, and frustums of cones) with a maximum diameter of about 0.1 mm to about 4 mm, preferably about 0.4 mm to about 0.5 mm.




The protrusions


30


should be sized relative to the size of the abrasive particles


60


such that the ratio of the height of the protrusions


30


relative to the longest linear dimension of the abrasive particles


60


is between about 1:10 to about 10:1, preferably between about 0.5:1 to about 10:1.




Protrusions


30


are preferably formed at a density sufficient to provide an abrasive article


10


having a protrusion density of about 30 to about 2,000 protrusions


30


per cm


2


of surface area, preferably about 100 to about 300 protrusions


30


per cm


2


of surface area.




In a preferred embodiment, the height of the protrusions


30


and the thickness of the abrasive coating


40


are such that the apex


30




a


of a majority of the protrusions


30


, (i.e., the height of the protrusion


30


alone, ignoring the thickness of any abrasive coating


40


over the apex


30




a


of the protrusion


30


), extends a distance of about 0.001 mm to about 0.1 mm above at least one adjoining abrasive coated nadir


61




b


(i.e., the height of the nadir


61




b


including the thickness of the abrasive coating


40


filling the nadir


61




b


).




Energy Source




The types of energy suitable for use in curing the binder in the grinding aid, abrasive coating


40


, make coat


50


, size coat


70


and/or supersize coat


80


include thermal and radiation energy.




The amount of energy required to effect the desired degree of crosslinking and/or polymerization depends upon several factors such as the specific composition to be cured, the thickness of the material, the amount and type of abrasive particles present, and the amount and type of optional additives present. When curing is effected with thermal energy, temperatures between about 30° to 150° C., typically between 40° to 120° C., with an exposure time of from 5 minutes to over 24 hours, are generally effective for curing the coating.




Suitable radiation energy types include electron beam, ultraviolet light, and visible light. Electron beam radiation, which is also known as ionizing radiation, can be used at an energy level of about 0.1 to about 10 Mrad, preferably at an energy level of about 1 to about 10 Mrad. Ultraviolet radiation refers to non-particulate radiation having a wavelength within the range of about 200 to about 400 nanometers, preferably within the range of about 250 to 400 nanometers. Visible radiation refers to non-particulate radiation having a wavelength within the range of about 400 to about 800 nanometers, preferably in the range of about 400 to about 550 nanometers. It is preferred to use 300 to 600 watt/inch visible light.




Certain abrasive articles


10


may need to be humidified and flexed prior to use in accordance with standard conditioning procedures.




The abrasive article


10


can be converted into any desired form such as a cone, ndless belt, sheet, disc, etc.




Process of Using




The abrasive article


10


is used by bringing the abrasive article


10


into frictional contact with a workpiece (not shown), typically a metal workpiece. The metal workpiece can be any type of metal such as mild steel, stainless steel, titanium, metal alloys, exotic metal alloys and the like. The workpiece may be flat or may have a shape or contour associated with it.




Depending upon the specific application, the force at the abrading interface between the abrasive article


10


and the workpiece can range from about 1 N to over 10,000 N. Generally, the force at the abrading interface ranges from about 10 N to 5,000 N.




Also depending upon the specific application, it may be desirable to provide a lubricating and/or heat transferring liquid between the abrasive article


10


and the workpiece. Common liquids used for this purpose include water, lubricating oils, emulsified organic compounds, cutting fluids, soaps, etc. These liquids may also contain various additives such as defoamers, degreasers, corrosion inhibitors, or the like.




The abrasive article


10


can be used by hand but is preferably mounted upon a machine. At least one, and optionally both, of the abrasive article


10


and the workpiece must be moved relative to the other to effect grinding.




The abrasive article


10


can be converted into a belt, tape roll, disc, sheet, etc., depending upon the desired application. When formed as a belt, the two free ends of the abrasive article


10


, formed as a sheet, are joined together and spliced. Endless abrasive belts are typically mounted upon a machine in which the belt traverses an idler roll and a platen or contact wheel. The hardness of the platen or contact wheel is selected to produce the desired application force and rate of cut on the workpiece. In addition, the speed of the abrasive belt relative to the workpiece is selected to effect the desired cut rate and surface finish. Typical abrasive belts range in size from about 5 mm to 1,000 mm wide and from about 5 mm to 10,000 mm long.




Abrasive tapes are simply provided as substantially continuous lengths of abrasive article. Abrasive tapes commonly range in width from about 1 mm to 1,000 mm, generally between 5 mm to 250 mm. Abrasive tapes are usually provided in roll form and used by (i) unwinding the tape from the tape roll, (ii) conveying the unwound tape over a support pad that forces the tape against a workpiece, and then (iii) rewinding the tape. The abrasive tapes can be continuously fed through the abrading interface and can be indexed.




Abrasive discs typically range in size from about 50 mm to 1,000 mm in diameter and are secured to a back-up pad by an attachment means. Abrasive discs are commonly used at rotation speeds of about 100 to 20,000 revolutions per minute, typically about 1,000 to 15,000 revolutions per minute.




EXPERIMENTAL




Testing Procedures




Procedure for Testing Coated Abrasive (Disc)




The coated abrasive article to be tested is cut into a 7 inch (17.8 cm) diameter disc with a ⅞ inch (2.2 cm) diameter center hole and installed on a conventional slide action testing machine. The disc is conventionally flexed to controllably break the hard bonding resins, mounted on a beveled aluminum back-up pad, and used to grind the upper face of a 1 inch (2.5 cm) by 7 inch (18 cm) stainless steel workpiece resulting in a wear path of about 140 cm


2


on the disc. The disc is driven at approximately 5,500 rpm with that portion of the disc overlaying the beveled edge of the back-up pad contacting the workpiece at a weight of 5.91 kg.




The workpiece is weighed before and after an abrading cycle of one minute duration to determine the amount of cut (i.e., weight of stainless steel removed from the workpiece). The test is terminated after twelve abrading cycles unless terminated earlier due to excessive wear of the disc as determined by an inability of the disc to remove at least 5 grams of material from the workpiece in a single abrading cycle.




Glossary




The following acronyms, abbreviations, and trade names are used throughout the Examples.


















DESCRIPTION













ACRONYM




Full Name




Trademark and Supplier









RESINS








BPAS




A composition containing a diglycidyl ether of




EPON 828 ™







bisphenol A epoxy resin coatable from an organic




Shell Chemical Company







solvent. The epoxy equivalent weight ranges from




Houston, Texas.







about 185 to about 195.






BPAW




A composition containing a diglycidyl ether of




CMD 35201 ™







bisphenol A epoxy resin coatable from water




Rhone-Poulene, Inc.







containing approximately 60% solids, 40% water




Louisville, Kentucky







and a nonionic emulsifier. The epoxy equivalent







weight ranged from about 600 to about 700.






RPI




A resole phenolic resin with 75% solids (non-







volatile).






CURING






AGENT






PA




A polyamide curing agent.




VERSAMID 125 ™








Henkel Corporation








Cincinnati, Ohio






EMI




A 100% solids composition of 2-ethyl-4-methyl




EMI-24 ™







imidazole.




Air Products








Allentown, Pennsylvania






GRINDING AID






KBF


4






Micropulverized potassium tetrafluoroborate (98%







pure). 95 wt % passes through a 325 mesh screen







and 100 wt % passes through a 200 mesh screen






CRY




Synthetic Cryolite (trisodium hexafluoroaluminate).






ADDITIVE






IO




Red iron oxide.






HP




A liquid mixture of 85 wt % 2-methoxy propanol







and 15 wt % water.






WC100




An aromatic hydrocarbon solvent.




WC-100 ™








Worum Chemical Co.








St. Paul, Minnesota.






DISPIRSING






AGENT






AOT




Sodium dioctyl sulfosuccinate.




AEROSOL OT ™








Rohm and Haas Company








Philadelphia, Pennsylvania






BACKING






N Film




Nylon film.






PVC




Polyvinylchloride film.






STEM WEB






HP-PVC





APEX 589 ™








Teknor APEX Co.








Pawtucket, Rhode Island.






SP-PVC




Polyvinylchloride resin (65A durometer) with




83-F155-A ™







approximately 18% di-(2-ethylhexyl)phthalate as a




Teknor APEX Co.







plasticizer.




Pawtucket, Rhode Island.














EXAMPLES




General Procedure for Making Coated Abrasives




A backing is coated with a make coat composition. Abrasive grains are drop coated onto the make coat and the resulting abrasive article precured. A size coat is applied over the abrasive grains and the partially cured make coat, with the make coat and the size coat then fully cured. Optionally, a supersize coat is applied over the fully cured size coat, and then cured to produce a finally cured abrasive article. The finally cured abrasive article is then optionally flexed and conditioned prior to testing.




Comparative Example A and Exemplary Examples 1-3




Comparative abrasive article A and exemplary abrasive articles 1-3 were manufactured in accordance with the General Procedure for Making Coated Abrasives described above, and tested in accordance with Testing Procedure (Disc) as set forth in Tables 1-3 below.












TABLE 1











(Composition of Abrasive Articles)

















ABRASIVE









MAKE COAT




GRAINS




SIZE COAT




SUPER SIZE COAT





















GRINDING AID





Coat





Coat





Coat





Coat






















DESIG-




BACKING




Type\




Loca-





Wt





Wt





Wt





Wt























NATION




Type




Thick




Comp.




tion




Comp




(g/m


2


)




Type




(g/m


2


)




Comp




(g/m


2


)




Comp




(g/m


2


)









Comparative A




N Film




0.76




None




N/A




44% BPAW




518




Grade 50




1,860




32% RPI




816




29.2% BPAW




403











19% PA





Ceramic





50.2% CRY





0.35% EMI











06% WC100





Al


2


O


3







16.3% HP





53.3% KBF


4













31% CaCO


3









1.5% IO





14.1% H


2


O

















0.75% AOT

















2.3% IO






Example 1




N Film




0.76




Stem Web


3


/




N/A




44% BPAW




518




Grade 50




1,860




32% RPI




816




29.2% BPAW




403









HP-PVC





19% PA





Ceramic





50.2% CRY





0.35% EMI











06% WC100





Al


2


O


3







16.3% HP





53.3% KBF


4













31% CaCO


3









1.5% IO





14.1% H


2


O

















0.75% AOT

















2.3% IO






Example 2




N Film




0.76




Stem Web


3


/




N/A




44% BPAW




518




Grade 50




1,860




32% RPI




816




29.2% BPAW




403









SP-PVC





19% PA





Ceramic





50.2% CRY





0.35% EMI











06% WC100





Al


2


O


3







16.3% HP





53.3% KBF


4













31% CaCO


3









1.5% IO





14.l% H


2


O

















0.75% AOT

















2.3% IO






Example 3




N Film




0.76




Stem Web


3


/




N/A




44% BPAW




518




Grade 50




1,860




32% RPI




816




29.2% BPAW




403









SP-PVC





19% PA





Ceramic





50.2% CRY





0.35% EMI











06% WC100





Al


2


O


3







16.3% HP





53.3% KBF


4













31% CaCO


3









1.5% IO





14.1% H


2


O

















0.75% AOT

















2.3% IO













1


Stem Web produced in accordance with the General Procedure for Making Stem Webs described herein at a stem density of 200 stems/in


2


(1,290 stems/cm


2


) with the cylindrical stems having a diameter of 35 mils (889 μm) and a length of 125 mils (3.18 mm).





















TABLE 2











(Curing and Conditioning of Abrasive Articles)
















MAKE COAT




SIZE COAT CURE




SUPERSIZE COAT




FINAL







CURE CONDITIONS




CONDITIONS




CURE CONDITIONS




CONDITIONING



















DESIG-




Time




Temp




Time




Temp




Time




Temp




Time




RH






NATION




(min)




(° C.)




(hrs)




(° C.)




(min)




(° C.)




(wks)




(%)









Comparative A




60




80




11½




93




90




100




1




45






Example 1




60




80




11½




93




90




100




1




45






Example 2




60




80




11½




93




90




100




1




45






Example 3




60




80




11½




93




90




100




1




45






















TABLE 3











(Testing (Disc) of Abrasive Articles)













CUT


















ABRASIVE




TYPE OF




1


st


Cycle




Last Cycle




Total




Total Cut




Cut/Cycle




% of






ARTICLE




STEEL




(g)




(g)




# Cycles




(g)




(g/cycle)




Control









Comparative A




304 Stainless




23.5





12




121.5




10.1




100






Example 1




304 Stainless




33.6





7


2






131.5




18.8




108






Example 2




304 Stainless




25.7





7


2






157.4




22.5




130






Example 3




304 Stainless




35.9





6


2






138.6




23.1




114













1


Stem web delaminated from nylon backing after recorded number of abrading cycles. Stem web was bonded to the nylon backing with an adhesive (35% BPAS, 15% PA, 50% CaCO


3


) cured at 80° C. for 1 hour.












Claims
  • 1. An abrasive article, comprising:(a) a base layer having a first surface and a second surface, (b) a plurality of grinding aid-containing protrusions integrally molded with the base layer, wherein the first surface of the base layer is contoured by the protrusions so as to define a plurality of peaks and valleys, and (c) a coating of abrasive particles adhered to the contoured first surface so as to cover at least a portion of both the peaks and the valleys.
  • 2. The abrasive article of claim 1, wherein the coating of abrasive particles has a limited thickness covering the peaks of the protrusions such that initial use of the abrasive article wears away the coating of abrasive particles covering the protrusions so as to allow the protrusions to contact a workpiece.
  • 3. The abrasive article of claim 1, further comprising a backing adhered to the second surface of the base layer.
  • 4. The abrasive article of claim 1, wherein the protrusions consist essentially of a grinding aid.
  • 5. The abrasive article of claim 1, wherein the protrusions are free of abrasive particles.
  • 6. The abrasive article of claim 1, wherein the grinding aid is selected from the group consisting of halogenated thermoplastics, sulfonated thermoplastics, waxes, halogenated waxes, sulfonated waxes, and mixtures thereof.
  • 7. The abrasive article of claim 1, wherein each protrusion has a horizontal cross-sectional area of between about 0.03 to about 50 mm2.
  • 8. The abrasive article of claim 1, wherein the abrasive coating comprises (i) a make coat adhered to the contoured first surface, (ii) abrasive particles adhered to the make coat, and (iii) a size coat covering the abrasive particles.
  • 9. The abrasive article of claim 1, wherein each protrusion has a height of between about 0.1 mm to about 20 mm.
  • 10. The abrasive article of claim 1, wherein each protrusion has a height of between about 1 mm to about 5 mm.
  • 11. The abrasive article of claim 1, wherein the abrasive article has a protrusion density of about 30 to about 2,000 protrusions per cm2 of surface area.
  • 12. The abrasive article of claim 11, wherein the base layer and protrusions are a stem web.
  • 13. The abrasive article of claim 1, wherein the abrasive article has a protrusion density of about 100 to about 300 protrusions per cm2 of surface area.
  • 14. The abrasive article of claim 1, wherein the protrusions are generally shaped as a cube, a circular cylinder, a cone, a frustum of a cone, a pyramid, a frustum of a pyramid, a rectangular parallelepiped, a spherical sector, or a tetrahedron.
  • 15. An abrasive article, comprising:(a) a base layer having a first surface and a second surface, (b) a plurality of grinding aid-containing protrusions integrally molded with the base layer, wherein the first surface of the base layer is contoured by the protrusions so as to define a plurality of peaks and valleys with each peak defining an apex and each valley defining a base layer nadir, and (c) a coating of abrasive particles adhered to the contoured first surface of the base layer and defining (i) abrasive coated protrusions with each protrusion defining an abrasive coated apex, and (ii) abrasive coated valleys with each abrasive coated valley defining an abrasive coated nadir, (d) wherein the apex of a majority of the protrusions extend above at least one adjoining abrasive coated nadir.
  • 16. The abrasive article of claim 15, wherein the apex of a majority of the protrusions extend a distance of between about 0.001 mm to about 0.5 mm above at least one adjoining abrasive coated nadir.
  • 17. The abrasive article of claim 15, further comprising a backing adhered to the second surface of the base layer.
  • 18. The abrasive article of claim 15, wherein the protrusions consist essentially of a grinding aid.
  • 19. The abrasive article of claim 15, wherein the protrusions are free of abrasive particles.
  • 20. The abrasive article of claim 15, wherein the grinding aid is selected from the group consisting of halogenated thermoplastics, sulfonated thermoplastics, waxes, halogenated waxes, sulfonated waxes, and mixtures thereof.
  • 21. The abrasive article of claim 15, wherein each protrusion has a horizontal cross-sectional area of between about 0.03 to about 50 mm2.
  • 22. The abrasive article of claim 15, wherein the protrusions have a generally circular horizontal cross-sectional area with a diameter of about 0.1 mm to about 4 mm.
  • 23. The abrasive article of claim 15, wherein the protrusions have a generally circular horizontal cross-sectional area with a diameter of about 0.4 mm to about 0.5 mm.
  • 24. The abrasive article of claim 23, wherein the base layer and protrusions are a stem web.
  • 25. The abrasive article of claim 15, wherein the abrasive coating comprises (i) a make coat adhered to the contoured first surface, (ii) abrasive particles adhered to the make coat, and (iii) a size coat covering the abrasive particles.
  • 26. The abrasive article of claim 15, wherein each protrusion has a height of between about 1 mm to about 5 mm.
  • 27. The abrasive article of claim 15, wherein the protrusions are generally shaped as a cube, a circular cylinder, a cone, a frustum of a cone, a pyramid, a frustum of a pyramid, a rectangular parallelepiped, a spherical sector, or a tetrahedron.
US Referenced Citations (48)
Number Name Date Kind
2347244 Colt et al. Apr 1944
2542058 Riedesel Feb 1951
3090061 Charvat May 1963
3134122 Charvat May 1964
3246430 Hurst Apr 1966
3301741 Hendrickson et al. Jan 1967
3562968 Johnson et al. Feb 1971
3918217 Oliver Nov 1975
3985521 Borchard et al. Oct 1976
3997302 Supkis Dec 1976
4078340 Klecker et al. Mar 1978
4093440 Denninger et al. Jun 1978
4111666 Kalbow Sep 1978
4142334 Kirsch et al. Mar 1979
4155721 Fletcher May 1979
4255164 Butzke et al. Mar 1981
4311489 Kressner Jan 1982
4317660 Kramis et al. Mar 1982
4381188 Waizer et al. Apr 1983
4652275 Bloecher et al. Mar 1987
4799939 Bloecher et al. Jan 1989
4903440 Larson et al. Feb 1990
5011513 Zador et al. Apr 1991
5015266 Yamamoto May 1991
5077870 Melbye et al. Jan 1992
5078753 Broberg et al. Jan 1992
5174795 Wiand Dec 1992
5190568 Tselesin Mar 1993
5219462 Bruxvoort et al. Jun 1993
5232470 Wiand Aug 1993
5233794 Kikutani et al. Aug 1993
5316812 Stout et al. May 1994
5355636 Harmon Oct 1994
5378251 Culler et al. Jan 1995
5435816 Spurgeon et al. Jul 1995
5437754 Calhoun Aug 1995
5454750 Cosmano et al. Oct 1995
5490878 Peterson et al. Feb 1996
5500273 Holmes et al. Mar 1996
5505747 Chesley et al. Apr 1996
5551959 Martin et al. Sep 1996
5560753 Schnabel et al. Oct 1996
5578098 Gagliardi et al. Nov 1996
5609706 Benedict et al. Mar 1997
5658184 Hoopman et al. Aug 1997
5681217 Hoopman et al. Oct 1997
5834109 Follett et al. Nov 1998
B1 5190568 Tselesin Mar 1996
Foreign Referenced Citations (17)
Number Date Country
26 50 942 May 1978 DE
2 068 275 Aug 1981 DE
195 80 280 Jun 1996 DE
0 552 698 Jul 1993 EP
0 554 668 Aug 1993 EP
0 623 424 Nov 1994 EP
2 624 773 Dec 1987 FR
2 043 501 Oct 1980 GB
2 280 142 Jan 1995 GB
7-156070 Jun 1995 JP
WO 9205915 Apr 1992 WO
WO 9402562 Feb 1994 WO
WO 9520469 Aug 1995 WO
WO 9524991 Sep 1995 WO
WO 98 10896 Mar 1998 WO
WO 9830361 Jul 1998 WO
WO 98 30358 Jul 1998 WO