The field of this invention relates to a cleaning device for polished concrete surfaces and a reinforced brush for sanding concrete floors and surfaces.
While concrete or cement is a very popular material for use in floors and construction materials because of its strength, durability and low costs, if the concrete or cement is left unfinished, the concrete floor will inherently produce dust by the constant scuffing it undergoes whether by foot traffic or wheeled traffic and be susceptible to staining due to porosity.
One is thus faced with a dilemma of cleaning a concrete floor with its no gloss utilitarian appearance and with the disadvantage of the inevitable dust that emanates from an unfinished concrete floor or spending considerable money for a protective and decorative covering surface. Part of the expense to obtain a decorative and protective covering is due to the preparation of the concrete floor to accept a covering surface. The preparation often includes aggressive sanding to rough up the concrete surface and to remove any top surface or oil and grease stains to assure proper adhesion of the covering. Aggressive sanding of the concrete surface is a time consuming effort requiring frequent replacement of the sand paper as the sand particles become worn.
Attempts for more aggressive sanding and grinding pads have incorporated hardened particles such as diamonds or silicon carbide. While these pads performed well when new, the particle edges become rounded out through wear and the sanding performance substantially diminishes. Other problems are known that also prevent or limit the application of hardened particles. The present application of a bristle made from today's known higher temperature plastic materials when combined with the aforementioned hard abrasive materials generate much heat when used on a high speed power sander. The generated heat is sufficient to melt the plastic material and fuses the bristles together rendering the bristle pad useless. Previous metal bristles, if fully brazed with particles become too brittle and break off during high speed application.
Pads or wide sanding surfaces encounter problems with wavy or uneven concrete surfaces. They have a tendency to miss the low spots. As a result, to reach the low spots, they must remove the high spots which results in extra sanding and effort.
Normal cleaning of concrete whether by a power wash, power sweep or scrub progressively deteriorates concrete by breaking apart smaller particles from the concrete surface, thereby making the concrete surface more porous and more suspect to further deterioration.
Known cleaning brushes also progressively deteriorate concrete surfaces. The small bristles tend to undesirably add porosity to the concrete surface by poking into the holes that naturally occur in the concrete and breaking away the smaller particles of the concrete. One is then faced with a dilemma of cleaning a concrete floor with the disadvantage of the deterioration of its relatively smooth surface.
One way to achieve a better concrete surface look is to add a densifier such as sodium silicate to the concrete floor which closes the porosity of the floor. One then polishes the concrete with successive finer grit sand paper or polishing pads. This known process provides for a relatively attractive concrete polished surface. However this surface also needs maintenance when it gets dirty.
What is needed is a bristle brush for concrete sanding that has an improved performance profile by incorporating hardened particles along a substantial portion of its length which expose new particle edges as the bristle wears down. What is also needed is a more flexible metal bristle with hardened particles secured thereon with the brazed coating applied only where the diamonds are secured onto the bristle to maintain sufficient flexibility of the metal bristles. What is also needed is a flexible bristle that can prepare high and low spots of a concrete surface by better following the contour of the concrete surface.
What is also needed is a durable cleaning brush for mounting to a cleaning or buffing machine that is suitable for cleaning a polished cement floor. What is also needed is an expedient method to clean a polished concrete floor. What is also needed is a bristle that is durable and with a cross-sectional diameter larger than the cement floor pores in order to hone and smooth a concrete floor rather than degrade it during the cleaning process, the same brush can also be used as a durable abrader. What is also needed is a bristle that has a durable abrasive particle securely affixed to the bristle that is capable of honing a concrete surface.
In accordance with another aspect of the invention, a brush for a power sander for sanding concrete surfaces has a base for mounting onto a power sander and a plurality of bristles depending from the base. It is preferred that the bristles are mounted at varying angles with respect to the base. The bristles have a plurality of hard particles secured along a substantial length of a lower distal half of each bristle such that as the bristle wears down in use, new particle surfaces are exposed at a distal end of the bristles to maintain sanding performance of the brush.
Desirably, the bristles are made from a metal substrate. Preferably, the metal is a steel. The steel can preferably be stainless or carbon steel.
In one embodiment, the particles are diamond particles that are brazed onto the steel with a brazing alloy. The brazing alloy is positioned on the steel only where the diamond particles are brazed with areas of the steel free of brazing alloy interspersed between brazed areas to retain flexibility of the steel bristle.
In accordance with another aspect of the invention, a brush bristle for a power sander brush for sanding concrete has a wearable bristle substrate and a plurality of hard particles secured along a substantial length of the wearable bristle substrate such that as the bristle wears down during use, new particle surfaces are exposed at a distal end of the bristle to maintain sanding performance of the bristle.
In accordance with another aspect of the invention, a sanding brush for a power sander includes a base with a quick connect fitting for mounting to a power sander and a plurality of metal bristles mounted a different angles having respective distal ends all generally near the same horizontal plane. The plurality of bristles have diamond particles brazed thereon along a distal half. The bristles having a circular cross-sectional shape with a diameter being no greater than approximately ⅛ inch.
In accordance with another aspect of the invention, a bristle for power sanding has a metal substrate with hard abrasive particles brazed onto the metal substrate with a brazing material. The brazing material is positioned only where the particles are brazed onto the metal substrate with areas of the metal substrate free of brazing material being interspersed between the brazed areas to retain flexibility of the metal substrate.
In accordance with another aspect of the invention, an abrasive cleaning device has a housing and a plurality of cleaning strips having a front abrasive face with a width and length. The cleaning strips are mounted to the housing such that the front abrasive face is aligned substantially transverse to the normal direction of motion of the housing. The cleaning strips include an abrasive material at the surface of the cleaning strips and secured to a substrate of the strips. The length of the face is substantially greater than the thickness of the strip to provide flexibility of the cleaning strips.
In accordance with another aspect of the invention, an abrasive cleaning device has a plurality of cleaning strips with one end mounted to the housing. The strip has a distal end with an abrasive material at the surface of a substrate and secured to the substrate. The length of the cleaning strips is substantially greater than its thickness to provide resilient flexibility. Preferably the substrate is made from a steel or plastic that provides the resilient flexibility to the bristle. Preferably, abrasive particles are secured to the strip such that when the strip wears it is exposing fresh abrasive particles at its working scrub surface. The distal working surface provides a flat edge to scrape away dirt and residue while the sharp abrasive particle cut and hone the cement surface. As the abrasive particles wear out, i.e. round down and loose its effectiveness, they eventually abrade away as the bristle shortens to expose new abrasive particles to the work surface.
In one embodiment, the abrasive material is formed by hard abrasive particles being embedded in the substrate that is a high temperature plastic matrix. In one embodiment, the housing is in the form of a rotatable pad made for rotation about a central point. The cleaning strips have their respective front faces substantially radially aligned with the center of the pad. In another embodiment, the housing is tubular and made for rotation about its major axis. The cleaning strips extend radially from the housing with the faces co-aligned with the major axis.
In accordance with another aspect of the invention, an abrasive bristle includes a plastic matrix, and an abrasive material embedded in a distal end section of the bristle. A proximate mounting section of the bristle is devoid of the abrasive material.
In one embodiment, the distal end with the abrasive material extends toward the proximate mounting section with the abrasive ending at a point where the flexibility degrades a sufficient amount and the point being used as a wear indicator. In one embodiment, the abrasive material includes diamond particles. In one embodiment, the bristle includes abrasive material at opposing distal ends of the bristle element with a middle section being a mounting section to a support base. The middle section is devoid of the abrasive material. It is preferred that the abrasive material is embedded in the plastic matrix. It is also preferred that the plastic matrix is a high temperature plastic material.
In another embodiment, the abrasive is coated on opposing ends. Preferably, the abrasive is brazed on the opposing ends.
In accordance with another aspect of the invention, a method of claiming a polished concrete surface includes moving a plurality of cleaning strips having a front abrasive face aligned substantially transverse to the direction of movement. The cleaning strips resiliently flex to accommodate high and low spots of the concrete surface. Preferably, the cleaning strip is in the form of a flexible plastic matrix with the abrasive face having a plurality of abrasive particle secured onto the cleaning strip across the face.
Preferably, the cleaning strips in cross-section have a major axis and a minor axis with the major axis positioned to be transverse to the normal motion of the housing. It is also preferred that the housing is a rotatable pad made for rotation about a central point. The cleaning strips have their respective major axis substantially radially aligned with the center of the pad. In one embodiment, the abrasive material is diamond particles being brazed onto the substrate which can be steel.
According to another aspect of the inventor, the flexible bristles with abrasive particles have a cross-sectional diameter substantially greater than the cement pores and preferably greater than ⅛″ diameter to provide the bristles to glide over the pores and clean and hone the surface of the polished cement.
Reference now is made to the accompanying drawings in which:
Instead of washing and waxing as is often done with conventional floors, the maintenance of a polished concrete floor is accomplished by using an abrasive pad 32 used as shown in
The pad 32 is made from a plurality of cleaning elements called strips or bristles 36 which can be in the form of a round, square or rectangular bristle as shown in
In one embodiment as shown in
The bristle has its mounted end 42 embedded in the pad as shown in
When diamond particles 38 are embedded as abrasive in the bristle, it is desirable that only the working distal end 40 is provided with the diamond particles 38 to contain costs of the relatively expensive diamond particles. As shown in
For either embodiment, as the pad 32 is used, the distal end 40 abrades to provide a straight knife-like edge 41 on the concrete surface 12. As the diamond particles 39 wear down and their effectiveness becomes diminished, they eventually abrade off the bristle as the substrate material whether plastic or steel also wears down to provide a fresh diamond particles just above to replenish the effectiveness of the bristle.
In this fashion an abrasive bristle maintains its abrasive aggressiveness for a long term. The resilient flexibility of the bristle provides relief when the pad hits a high spot of the concrete floor and will not gouge at the high spot or opens the pores at the high spot.
Furthermore, the bristles 36 have a length that is sufficiently long compared to its thickness to provide resilient flexibility of the bristle as illustrated in
In this manner, the brush by having a bristle with a relatively wide, flat, and resilient flexible abrasive face 39 does not cause excessive deterioration of the concrete floor. In fact, it hones the concrete floor to maintain its smoothness. Secondly, by only having diamond particulate at the distal section 40, there is less waste of diamond particulate. In addition, a sensory wear indicator is provided when the diamond particulate is totally abraded.
A further embodiment is shown in
In this bristle, both distal ends 48 are positioned to be operable against the floor surface 10. The mid-section 50 is mounted to the brush substrate by extending through holes 52 and being stapled in place by staple 54. Other molding techniques may also embed the mid-section 50 in the brush with the two distal ends 48 extending outward. It should be noted that the bristle provides for two cleaning sections with opposing abrasive faces 39. When the bristle is mounted into the pad, both faces 39 face the same direction. The operation of the brush bristles 46 is identical with the previous described embodiments.
While square cross-sectioned bristles 36 have been shown and described, wide blade bristles 36 as shown in
While a plastic matrix has been shown and described, the substrate may be made from steel such as steel wire or wire strips 36 as shown in
Another embodiment is shown in
Referring now to
Reference now is made to
The diamond grit may vary but it is foreseen that a grit of 70 is useful for many sanding applications for concrete floors. Other particulates may be substituted for the diamond particles, for example alumina silicate or silicon carbide. The bristle 116 preferably has a round cross section as shown in
In one embodiment, the bristles may be made from stainless or carbon steel having a diameter of less than one millimeter up to one-eighth inch. The diamonds of 70 grit may be in a brazing alloy nickel slurry and sprayed onto the bristle with the brazing then being set with the diamonds secured in place. In this way, the bristle surface has the diamond particles 122 secured thereon with bristles areas 123 interspersed without diamonds or brazing materials. The presence of interspersed areas 123 retain flexibility of the steel bristle. If the entire bristle was saturated with brazing alloy, the bristles would become too brittle for the concrete sanding application.
Other ways are also foreseen, to provide areas 123 of different shapes. The particles can be spot brazed such as in stripes spots, or spirals to maintain interspersed areas 123 of steel bristle with no alloy thereon. As shown in
During use, the bristle 116 when new has its distal end 120 sand the concrete surface. It is found that the sharp edges of the diamond particles is sufficiently aggressive to sand the concrete surface and remove paint or other previously applied materials. The concrete floor quickly achieves a scratched surface in accordance with the grit sized used. The bristles do not clog with paint or smear any previously applied material such as paint or oil.
In contrast to plugs or other wide diamond impregnated prepping tools, the metal brush as it scours over the concrete with a power machine to force a pad pressure of 60-300 P.S.I. will gradually have its substrate wear away. When sufficient wear occurs to the bristle, the worn diamond particles 122 at the distal end will shed off the bristle to expose new sharp edges of other diamond particles 122 further up on the bristle. This wearing will continuously occur until sufficient amount of the bristle will wear away as shown in
While a round bristle is foreseen for most applications, a bristle with a generally rectangular i.e. flat contour can be used as shown in
In this fashion the use of diamond abrasive bristles becomes cost effective and provides for easy maintenance of a polished concrete or cement floor surface and provide honing of the floor during cleaning maintenance.
In this fashion, an aggressive abrader that can prepare concrete surfaces for application of a surface coating is provided that can abrade at multiple times faster than previous known plugs and sanding pads. The flexible bristles can follow the contour of a wavy or uneven floor surface to adequately prepare low sections or valleys of the concrete surface. The low section can be reached and sanded without extra removal from the high sections of the concrete surface. Hence, an uneven floor surface can be prepared for a coating more expeditiously and evenly.
Other variations and modifications are possible without departing from the scope and spirit of the present invention as defined by the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/017849 | 5/20/2005 | WO | 00 | 2/16/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/113198 | 12/1/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3522342 | Nungesser et al. | Jul 1970 | A |
3605347 | Barry | Sep 1971 | A |
3696563 | Rands | Oct 1972 | A |
3871139 | Rands | Mar 1975 | A |
4037369 | Campbell | Jul 1977 | A |
4490872 | Drumm | Jan 1985 | A |
4493126 | Uy | Jan 1985 | A |
4507361 | Twilley et al. | Mar 1985 | A |
4561214 | Inoue | Dec 1985 | A |
4662044 | Kayabara | May 1987 | A |
5050262 | Malish | Sep 1991 | A |
5224231 | Nacar | Jul 1993 | A |
5323505 | Montabaur et al. | Jun 1994 | A |
5438728 | Kubes et al. | Aug 1995 | A |
5445438 | Drumm | Aug 1995 | A |
5491025 | Pihl et al. | Feb 1996 | A |
5679067 | Johnson et al. | Oct 1997 | A |
5903951 | Ionta et al. | May 1999 | A |
5951389 | Hettes et al. | Sep 1999 | A |
5983434 | Eichinger et al. | Nov 1999 | A |
6126533 | Johnson et al. | Oct 2000 | A |
6249928 | Wang | Jun 2001 | B1 |
6251002 | Close | Jun 2001 | B1 |
6312485 | Kaiser et al. | Nov 2001 | B1 |
6352471 | Bange et al. | Mar 2002 | B1 |
6422932 | Lageson et al. | Jul 2002 | B1 |
6665902 | Vegter | Dec 2003 | B1 |
6669746 | Nizaki et al. | Dec 2003 | B2 |
7081047 | Palushaj | Jul 2006 | B2 |
20020094437 | Nizaki et al. | Jul 2002 | A1 |
20020148059 | Lin | Oct 2002 | A1 |
20020182983 | Yamamoto et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
1 262020 | Feb 1972 | GB |
WO-9903643 | Jan 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20080160886 A1 | Jul 2008 | US |