The instant invention relates to an abrasive cutting machine comprising a housing and comprising a cutting arm, on which a cutting tool is accommodated on the end side, wherein the cutting tool is driven via a belt by means of an engine of the abrasive cutting machine, and wherein the housing encompasses a fan chamber for accommodating a fan wheel, by means of which an air flow is provided, and wherein a belt chamber for accommodating the belt is embodied in the cutting arm.
Prior Art
Working with an abrasive cutting machine often leads to a high dust exposure, for example when stone materials are cut by means of the abrasive cutting machine. The dust and dirt-sensitive components of the abrasive cutting machine are thus kept as dust-tight as possible, but there is the disadvantage that the dust-sensitive components are subjected to a certain dust exposure through cracks and gaps after prolonged use of an abrasive cutting machine in spite of encasing the dust-sensitive components. The abrasive cutting machines can be embodied with an engine according to the type of an internal combustion engine, and the internal combustion engine must be supplied with clean combustion air, for the purpose of which cyclone filters and/or filters, such as paper filters or textile filters, are used on principle. For this purpose, an air flow is created, which serves mainly to cool the cylinder of the internal combustion, by means of a fan wheel, which is preferably also driven by the engine of the abrasive cutting machine.
The housing of the abrasive cutting machine can form a part of the crankcase of the abrasive cutting machine, for example, or the housing forms a base body or a frame of the abrasive cutting machine. A fan chamber, in which a fan wheel is accommodated, is embodied in the housing, and the fan chamber and the fan wheel can be arranged on a first side of the housing, for example, and the cutting arm for accommodating the cutting tool on the end side can be arranged on an opposite, second side of the housing. It is thereby furthermore known that a respective end of the crankshaft of the internal combustion engine can extend out of both housing sides, and the fan wheel can be accommodated on a first side and a pulley for driving the cutting tool via a belt can be accommodated on a second side. Dispersed dust of the abrasive cutting machine can reach into the belt chamber due to the air vortex, which is created by the rotating cutting tool, and it is known that the durability of a belt as well as the transferability of larger powers by the belt is impacted negatively in response to an increasing dust exposure of the belt.
It is thus the object of the instant invention to create an abrasive cutting machine comprising an improved durability of a belt. In particular, it is the object of the invention to further improve the dust exposure of the belt for the power transfer from the engine to the cutting tool.
This object is solved based on an abrasive cutting machine according to the preamble of claim 1 in combination with the characterizing features. Advantageous further developments of the invention are specified in the dependent claims.
The invention includes the technical teaching that provision is made between the fan chamber and the belt chamber for an air duct, through which at least a part of the air flow, which is created by the fan wheel, reaches from the fan chamber into the belt chamber, so as to apply a sealing air flow to the belt chamber.
The belt chamber can be embodied so as to be substantially closed, and, according to the invention, an overpressure is formed in the belt chamber by means of the sealing air flow.
The invention is based on the idea of preventing a permeation of dust and impurities of any type, e.g. through cracks and gaps, into the belt chamber by means of a sealing air flow. As long as an overpressure prevails in the belt chamber, the sealing air prevents the permeation of dust and other impurities into the belt chamber, because the sealing air escapes through the openings, cracks and gaps from the inside to the outside, and thus blocks the path for impurities from the outside into the belt chamber.
According to an advantageous, further improved embodiment of the instant invention, provision can be made for a cyclone filter, which serves to clean the sealing air, which reaches from the fan chamber into the belt chamber. The air of the air flow, which is created by the fan wheel, can also be air, which is exposed to impurities and dust, and to prevent the introduction of the dust and of the impurities into the belt chamber through the air duct, provision can be made for a cyclone filter, which cleans the air flow, which enters into the belt chamber. The sealing air flow, which enters into the belt chamber, can consequently be formed through the clean side of the cyclone filter.
The cyclone filter can be arranged so as to adjoin the air duct, for example on the side of the housing. According to a preferred embodiment, the cyclone filter itself, however, can already form a part of the air duct between the fan chamber and the belt chamber. The air duct can thus be formed, for example, by means of an opening in the housing and a further opening in the cutting arm, which is provided at a distance from this opening, and the two openings can encompass center axes, which are aligned with one another. The cyclone filter, which thus forms a partial duct of the air duct between the fan chamber and the belt chamber, can be integrated into the area, via which the two openings are spaced apart from one another. The air, which is exposed to dust and impurities, which enters into the cyclone filter from the fan chamber, can reach the outside, for example, through an outlet opening of the cyclone filter. To even further improve the air purity of the sealing air flow, provision can be made downstream from the cyclone filter and in particular on the end side of the air duct for a further filter element, for example a paper filter or a textile filter. Exceptionally cleaned air can thus be applied to the belt chamber. For example, the cyclone filter can also be formed by means of the crankcase, can be cast thereto or can already be cast into it in a casting process.
The air flow provided by the fan wheel can partially and preferably mainly form a cooling air for the engine of the abrasive cutting machine. According to a further embodiment, the fan wheel, however, can also serve only to provide the sealing air flow. For example, the fan wheel can encompass a rear blading, by means of which a separate air flow can be provided, which is guided into the belt chamber through the air duct and in particular through the cyclone filter.
According to a further exemplary embodiment, the abrasive cutting machine can encompass at least one cover element, which forms a limiting part of the belt chamber. For example, the cover element can be arranged laterally on the cutting arm and the cutting arm forms a first limiting part of the belt chamber and the cover elements form a further limiting part, which closes the belt chamber. Provision can thereby be made in the cover element, but also in the cutting arm for a venting device, via which the sealing air can escape from the belt chamber. For example, a first cover element can be arranged on the engine-side end of the cutting arm, and a further cover element can be arranged on the tool-side end of the cutting arm. Both cover elements can thereby form parts, which limit the belt chamber. The venting device, through which the sealing air can escape from the belt chamber in a controlled manner, can be provided in at least one of the two cover elements. For this purpose, the venting device can encompass a non-return valve, for example, through which sealing air escapes from the belt chamber, but which prevents the permeation of contaminated air. The non-return valve can be formed by means of a simple resilient lug, a tongue or a flap, for example.
A particular advantage is created when the air duct leads into the belt chamber on the engine-side end and/or the housing-side end of the cutting arm and wherein the venting device is arranged on the tool-side end of the cutting arm. The sealing air flow consequently flows through the belt chamber from the engine side to the tool side, and the venting device comprising the non-return valve can be arranged on the end side on the cutting arm or on the rear, tool-side cover element, for example.
It is also advantageous when the cutting arm is arranged directly on the housing, in particular by means of fastening means. The fastening means can be screw connections, for example, by means of which the cutting arm is arranged laterally on the housing. The air duct can consequently be formed by means of two openings, which are fluidically connected to one another, wherein a first opening is introduced in the housing and a further openings is introduced in the cutting arm.
According to yet a further embodiment, the air flow through the air duct for forming the sealing air can also be provided by means of air, which is available from the suction area of the combustion engine. This air can then already be cleaned and, provided that the air provided from the suction area encompasses an overpressure, this air can serve as sealing air in the belt chamber. To direct the air, provision can be made for flow aids, which can also be arranged on the crankcase or on an attached cover, similar to air guiding ribs, which are known for directing air for a cylinder cooling. In a further advantageous manner, the sealing air, which is guided into the belt chamber through the air duct, can be cold air, so that the work area of the belt is not only kept clean, but is also cooled.
The term of the housing of the abrasive cutting machine refers to every component of the abrasive cutting machine, from which an air flow can be guided into the air duct. The housing can consequently also be the accommodating housing for the carburetor of the combustion engine of the abrasive cutting machine, for example.
Further measures, which improve the invention, will be illustrated in more detail below by means of the figures together with the description of a preferred exemplary embodiment of the invention:
In a perspective illustration,
A fan chamber 14, in which a fan wheel 15 is accommodated so as to be capable of being driven by the engine of the abrasive cutting machine 100, is embodied in the housing 10. An air flow 16, which serves to tool the internal combustion engine of the abrasive cutting machine 100, for example, is formed by means of the rotary motion of the fan wheel 15.
According to the invention, an air duct 18, through which a part of the air flow 16, which is formed by means of the fan wheel 15, can pass and which leads into the belt chamber 17, so as to apply a sealing air to the belt chamber 17, is introduced into the housing 10, as is illustrated in more detail in
A cyclone filter 20 is arranged between the side of the air duct 18 in the housing 10 shown in
In a perspective illustration,
In a further perspective view,
The embodiment of the invention is not limited to the above-specified preferred embodiment. Instead, a number of alternatives is possible, which utilizes the illustrated solution even in the case of embodiments, which are of a generally different type. All of the features and/or advantages, which follow from the claims, the description or the drawings, including structural details or spatial arrangements, can be significant for the invention, both alone and in a variety of combinations.
Number | Date | Country | Kind |
---|---|---|---|
202012102642.2 | Jul 2012 | DE | national |