Workpieces such as cutting tools can be provided with one or more laterally extending cutting edges. Such cutting edges are useful, for example, in planing a surface such as a wooden board, cutting a brick or other member through the application of a sharp impulse to the tool opposite the cutting edge, removing material from a substrate such as in the case of a knife, carving tool, etc.
While such tools have found great popularity and utility in a variety of applications, one problem that often arises is that, after repeated use, the cutting edge can become dull and/or damaged. It is therefore often desirable to periodically sharpen the tool in an attempt to provide a uniform, sharp and well defined cutting edge for the tool.
Various embodiments of the present invention are generally directed to an apparatus and method for sharpening a workpiece, such as a cutting tool.
In accordance with some embodiments, an abrasive disc is provided for rotation about a disc rotational axis. The disc includes a plurality of spaced apart, radially disposed apertures extending therethrough from a first surface to an opposing second surface of the disc.
The first surface is configured to facilitate sharpening of a workpiece by contacting engagement of the workpiece against an abrasive layer adjacent the first surface between adjacent first and second apertures of said plurality of apertures. The first surface further induces controlled axial displacement of the workpiece away from the disc as the second aperture approaches the workpiece during disc rotation.
The first surface is preferably concave so as to extend into the disc between each adjacent pair of the apertures. Alternatively, the first surface is provided with different compressibilities to induce the controlled axial displacement of the workpiece.
The assembly 100 is configured to facilitate the sharpening of various types of workpieces (“tools”) through the use of a slotted, abrasive disc 102 (also referred to herein as an “abrasive wheel”). The disc 102 is rotated by the assembly 100 at a selected rotational rate during operation. This allows a user to present a cutting tool, such as tool 104, against an abrasive surface of the rotating disc 102 to sharpen a cutting edge of the tool. Various features, alternatives and advantages of the disc 102 will be set forth in detail below.
The assembly 100 is shown in
A first sharpening port of the assembly 100 is generally denoted at 112. The sharpening port 112, also referred to herein as a “wedge shaped port,” is preferably adapted to facilitate the sharpening of various types of chisel style tools, such as a chisel 114 illustrated in
The chisel 114 is preferably sharpened by presenting the chisel 114 into the first port 112 and repetitive advancing the beveled leading surface 118 into contacting abutment with the underside of the abrasive disc 102.
Referring again to
The slotted disc 102 advantageously permits the user to view the tool through the rotating disc 102 for sharpening operations carried out in either of the first and second ports 112, 130. It will be noted that various workpieces can further be presented for sharpening against the top surface as well, such as for example, to carry out a honing operation upon the back surface 116 of the chisel 114 (
The disc is rotatable about a central axis 155. An array of radially disposed apertures 156 extend through the disc substrate around the central axis 155, as shown. While the disc 102 in
Curvilinearly extending cooling apertures, shown in broken line fashion at 158, can be optionally incorporated into the disc 102 to induce air currents that enhance airflow to provide cooling and dust remediation during sharpening. It will be appreciated that such apertures can take any number of suitable forms and configurations as desired depending on the requirements of a given application, so further details are omitted for clarity.
As mentioned above, the apertures 156 facilitate the ability of the user to observe a tool sharpening operation through the rotating disc 102. To this end, a selected tool can be sharpened by presenting the tool against one side of the disc 102 (e.g., below the disc), while the user observes the sharpening operation from a vantage point on the other side of the disc 102 (e.g., above the disc). A suitable light source (not shown) can be utilized to enhance the strobe effect induced by the high speed rotation of the disc 102, thereby further increasing visibility of the sharpening process. The disc 102, including the interior sidewalls of the apertures 156, are preferably dark in color for the same reason.
To better set forth various advantages of the abrasive disc 102,
During an exemplary sharpening operation upon a tool 172, disc rotation is commenced in direction 174, and the user presents the tool 172 in contacting engagement against the abrasive bottom surface 168. It is contemplated that the disc 160 is configured such that the user can observe the tool 172 during the sharpening operation through the apertures 162 from a vantage point above the rotating disc 160.
The tool 172 will generally pass along a trajectory path during the sharpening operation as indicated by 176. More specifically, the tool 172 will contactingly pass laterally along the abrasive surface 168 as the surface is rotated relative to the tool 172, until such time that the aperture 162 reaches the tool 172. At this point, the disc-ward directed pressure supplied to the tool 172 will generally cause the tool to initiate “falling” movement into and across the aperture 162, culminating in contacting engagement of the tool 172 against the landing surface 170 at contact point 178.
As a result of such contact, the tool 172 will generally deflect (“bounce”) in an axial direction away from the disc 160 as indicated by segment 180 of path 176, after which the tool 172 will once again move toward the disc and come into contacting engagement against the next segment of the surface 168 at point 182. The above cycle will generally be repeated as the disc 160 continues to rotate and each of the apertures 162 is encountered in turn.
While operable, these and other disc configurations of the related art suffer a number of limitations. While landing surfaces such as 170 tend to reduce the workpiece from catching the trailing edges of the slotted apertures, the bouncing effect can reduce the effectiveness of the sharpening operation since the tool is abruptly deflected away from the disc 160 each time contact is made with the landing surfaces 170. This repetitive contact can induce undesired vibrations and noise during the sharpening process.
Generally, discs that use a single trailing edge landing surface such as 170 can only be rotated in a single direction, since the landing surface is intended to be positioned adjacent the trailing edges of the associated apertures. While discs have been provided with opposing landing surfaces to facilitate dual direction rotation, such arrangements can decrease the available surface area of the abrasive surface, as well as induce further falling of the tool toward the apertures. There are also limits to operational speeds and disc thicknesses that can be achieved with such related art discs 160.
Accordingly,
The disc apertures 156 shown in
As shown in
More specifically, during a sharpening operation the disc 102 is rotated in rotational direction 192 at a suitable velocity. The user presents the tool 172 so as to be in contacting engagement against the abrasive material 190, which curvilinearly extends adjacent the surface 188. As the tool 172 moves relative to the rotating disc 102, the tool 172 will generally take a continuously curvilinear, cyclical trajectory as generally indicated by path 194. The tool 172 will generally cycle inwardly and outwardly in relation to the corresponding contours of the surface 188, and will “jump” over each aperture 156 along the way as shown.
In this way, the disc 102 is configured to facilitate sharpening of a workpiece by contacting engagement of the workpiece against an abrasive layer (such as layer 190) adjacent a selected surface of the disc (such as surface 188) between adjacent apertures 156. The disc induces controlled axial displacement of the workpiece in a direction away from the disc as the next aperture approaches the workpiece during disc rotation, as indicated by the first half of path 194 in
The respective sizes and shapes of the apertures 156, the radial distances therebetween, the relative amounts of curvature of the respective concave portions of the surface 188, and the rotational speed of the disc 102 are mutually selected to obtain the desired trajectory characteristics for the tool. Generally, it is contemplated that the disc 102 will be configured such that a leading portion 196 of the surface 188 will induce an acceleration of the tool away from the wheel as the tool begins to cross the aperture 156.
As the tool continues to cross the aperture, the disc-ward directed applied force to the tool 172 will cause the tool to reverse course and initiate acceleration back toward the disc 102, eventually landing adjacent a trailing portion 198 of the surface 188 beyond the aperture 156. In this way, the tool 172 undergoes a controlled, repetitive motion without snagging a sidewall of the aperture 156 or an edge of the abrasive material 190, and without incurring large impact forces upon landing.
Although the leading and trailing portions 196, 198 of the surface 188 are shown to be nominally symmetric in
The respective abrasives utilized on the surfaces 186, 188 can be selected to have different grit characteristics; for example, coarse material removal can be effected on one side and a finer, honing operation can be effected on the other. As will be appreciated, the apertures 156 are not necessarily used for observational purposes when the tool is sharpened on the same side as the user's vantage point, but nothing otherwise prevents the user from sharpening a workpiece on both the upper and lower sides of the disc 102. The apertures may, however, enhance particulate remediation and cooling during top side sharpening.
The use of an injection molded process to form the disc 102 advantageously facilitates the precise formation of the various surfaces and apertures without necessarily requiring secondary processing operations. The disc 102 can alternatively be formed using a suitable metal casting, molding, and/or machining operation. Greater flexibility of the disc 102 may be desired, however, such as for lower speed operations, and different materials and/or thicknesses can be utilized accordingly.
The chamfered surfaces 202 can provide a number of benefits, including enhanced manufacturability of the disc 102 and alignment of the respective adhesive layers 190, 200. It is contemplated that the chamfered surfaces 202 form a portion of the apertures 156 and will not serve as landing zones for the tool; rather, as before the tool will take a curvilinear path (denoted at 204 in
Alternatively, a solid layer of abrasive material 208 can be advantageously adhered to the disc 102, as shown in
As will be recognized, for a constant disc rotation rate, such linear velocities are generally lower near the innermost diameter (ID) of the disc, and are generally higher near the outermost diameter (OD) of the disc. Thus, a higher initial launch angle is desired for locations nearer the ID as compared to the OD to accommodate the lower linear velocities near the ID. Alternatively, a substantially constant launch trajectory angle can be utilized across the radius of the disc 102, and the effective angular widths of the apertures 156 with respect to the disc 102 can be adjusted so as to be narrower nearer the ID and wider nearer the OD. These and other considerations can be readily accounted for by the skilled artisan in view of the present disclosure.
While embodiments presented thus far have generally incorporated the use of concave shaped upper and lower surfaces of the disc 102 and/or concaved shaped media thereon, such are not necessarily required.
More specifically, as shown in
It is contemplated that the assembly 100 of
Nevertheless, the abrasive disc 102 is not so limited, but can rather be incorporated into any number of environments, including but not limited to hard fixtured or automated (e.g., robotics) systems that may not supply compliance to the tool in the same way that a user may when manually presenting the tool. Accordingly,
It will now be appreciated that the abrasive disc as embodied herein presents several advantages over the prior art. The curvilinear path taken by the tool improves the efficiencies associated with the sharpening operation by providing controlled cyclical movement of the tool without the sharp impacts, vibration, noise and other deleterious effects often encountered in prior art systems. Wider apertures can be used, which advantageously permit the use of lower operational rotational speeds, enhance through-disc visibility, and allow the use of greater thickness discs.
Various embodiments presented herein advantageously allow operation of the disc 102 in either rotational direction, which allows the disc 102 to be used on both sides by the same motor without the need to reverse the motor rotational direction or to manually flip the disc in order to utilize both abrasive layers of the disc. While discs as embodied herein can be tailored for a wide range of rotational speeds, the various embodiments presented herein further allow sharpening operations to occur at significantly lower speeds as compared to discs of the related art. Such lower speed grinding can provide a number of benefits, such as reduced heating of the tool (and resulting over temperature damage), as well as providing finer rates of material removal.
The significantly reduced incidence angle at which the workpiece comes into contact with the landing portions of the embodied abrasive disc significantly reduces the surface pressure upon the adhesive layer during landing as compared to discs of the prior art. This enables the various discs as embodied herein to use adhesive media with substantially lighter weight backing layers, and lighter weight abrasives, as compared to the prior art.
It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and function of various embodiments of the invention, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
This application makes a claim of domestic priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 60/916,216 filed May 4, 2007.
Number | Name | Date | Kind |
---|---|---|---|
6290582 | Eklund | Sep 2001 | B1 |
D463965 | Lee et al. | Oct 2002 | S |
6814657 | Spangenberg et al. | Nov 2004 | B2 |
7198558 | Levsen | Apr 2007 | B2 |
D559649 | Ahn | Jan 2008 | S |
7364502 | Ficai | Apr 2008 | B2 |
7722443 | Levsen | May 2010 | B2 |
20080214095 | Dovel et al. | Sep 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080274677 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60916216 | May 2007 | US |