This disclosure is related to abrasive slurry delivery systems, devices and methods, and, in particular, to abrasive slurry delivery systems, devices and methods for supplying a high pressure abrasive slurry to a nozzle of a cutting head to generate an abrasive slurry jet for cutting or otherwise processing workpieces.
Waterjet and abrasive waterjet cutting systems are used for cutting or processing a wide variety of materials, including stone, glass, ceramics and metals. In a typical waterjet cutting system, high-pressure water flows through a cutting head having a cutting nozzle that directs a cutting jet onto a workpiece. The system may draw or feed abrasive particles into the high-pressure waterjet to form an abrasive waterjet. More particularly, as is typical of conventional waterjet cutting systems, the cutting nozzle may include an orifice, such as a jewel orifice, through which water passes during operation to generate a high pressure waterjet. Abrasives may be introduced into a mixing chamber downstream of the orifice to entrain abrasives in the waterjet to form an abrasive waterjet. The cutting nozzle may then be controllably moved across the workpiece to cut the workpiece as desired. Systems for generating high-pressure waterjets and abrasive waterjets are currently available, such as, for example, the Mach 4™ five-axis waterjet system manufactured by Flow International Corporation, the assignee of the present application. Other examples of waterjet cutting systems are shown and described in Flow's U.S. Pat. No. 5,643,058, which is incorporated herein by reference in its entirety.
In contrast to the waterjet systems described above, other jet cutting systems are known which supply a concentrated mixture of abrasives and water, referred to herein as a “slurry,” directly to the nozzle of a cutting head prior to formation of a high velocity jet for cutting or processing workpieces. As used herein, the term “abrasive slurry jet” and “abrasive slurry delivery system” are used in relation to systems and methods wherein an abrasive slurry is supplied to a nozzle of a cutting head to form a high velocity jet in contrast to many conventional abrasive waterjet systems wherein abrasives are entrained in a mixing chamber downstream of the formation a high velocity jet.
Some advantages of abrasive slurry jet cutting systems and methods include the ability to generate a relatively more slender abrasive jet to cut thinner kerfs or drill smaller holes as compared to abrasive waterjet systems. In addition, abrasive slurry jet cutting systems and methods are generally more efficient than abrasive waterjet counterparts due to the occurrence of mixing abrasives upstream of a jet generating orifice. Still further, the abrasive slurry jet cutting systems and methods can generally cut at higher speeds compared to abrasive waterjet counterparts due to a greater power density of the discharged abrasive slurry jet.
Although abrasive slurry jet cutting systems and methods are known, many conventional systems suffer from a variety of drawbacks. For example, some abrasive slurry jet systems utilize a fluidized bed approach for delivering abrasives wherein abrasives are fluidized in a pressure vessel using a rising column of high pressure water. These systems are typically quite bulky, requiring a relatively large pressure vessel. In addition, the pressure vessel must be opened periodically to refill the pressure vessel with abrasives and is unable to supply abrasive slurry during such periods, thereby leading to productivity losses.
Embodiments described herein provide abrasive slurry delivery systems and abrasive slurry jet cutting systems and related methods which are particularly well adapted to supply abrasive slurry for cutting operations in an efficient, compact and convenient form factor. Embodiments include abrasive slurry delivery systems adapted to discharge a high pressure mixture of water and abrasives for further admixture with a flow of high pressure water (e.g., 40,000 psi or higher) to generate an abrasive slurry and ultimately an abrasive slurry jet. The delivery systems include a storage chamber, a discharge chamber and a shuttle chamber positioned therebetween, the shuttle chamber being configured to intermittently receive abrasives from the storage chamber and intermittently supply the abrasives mixed with high pressure water to the discharge chamber in a sequential dosing manner.
According to some embodiments, an abrasive slurry jet cutting system may be summarized as including a cutting head having a nozzle configured to receive a flow of abrasive slurry and to generate an abrasive slurry jet during a processing operation; and a vessel assembly configured to discharge a high pressure mixture of water and abrasives for further admixture with a flow of high pressure water to form the flow of abrasive slurry. The vessel assembly may include a storage chamber to house abrasives, a discharge chamber having an outlet to selectively discharge the high pressure mixture of water and abrasives into the flow of high pressure water and toward the nozzle of the cutting head during the processing operation, and a shuttle chamber positioned therebetween. More particularly, the shuttle chamber may be positioned downstream of the storage chamber and upstream of the discharge chamber to intermittently receive the abrasives from the storage chamber and to intermittently supply the abrasives to the discharge chamber. The shuttle chamber may be coupled to a source of high pressure water to intermittently supply high pressure water to the shuttle chamber to intermittently pressurize the shuttle chamber to create the high pressure mixture of water and abrasives to be transferred to the discharge chamber.
The storage chamber, the shuttle chamber and the discharge chamber of the vessel assembly may be fixedly coupled together to form a multi-stage vessel. The multi-stage vessel may be an elongated, generally cylindrical vessel having three distinct stages arranged in a generally collinear manner. In some instances, a plurality of tie rods or other biasing devices may be arranged to compressively sandwich the shuttle chamber between the storage chamber and the discharge chamber. Each of the storage chamber, the shuttle chamber and the discharge chamber may include a tapered surface at a respective lower end thereof to funnel the abrasives or the high pressure mixture of water and abrasives downstream.
The abrasive slurry jet cutting system may further include a positioning system coupled to the cutting head to manipulate the cutting head in space and the multi-stage vessel may be attached to the positioning system. The multi-stage vessel may be attached to the positioning system such that the multi-stage vessel moves in unison with the cutting head with respect to at least one rotational or translational axis of the positioning system. The positioning system may include a robotic arm and the multi-stage vessel may be attached to the robotic arm. In other instances, the positioning system may include a carriage movably coupled to a bridge and the cutting head and the multi-stage vessel may be coupled to the carriage to move therewith.
The vessel assembly may further include a first valve between the storage chamber and the shuttle chamber and a second valve between the shuttle chamber and the discharge chamber to selectively isolate or close-off each chamber from an adjacent chamber. The abrasive slurry jet system may further include a control system that is communicatively coupled to each of the first valve and the second valve to sequentially open and close the first valve and the second valve to dose abrasives from the storage chamber to the discharge chamber via the shuttle chamber.
The shuttle chamber of the vessel assembly may include an outlet port coupled to a pressure relief or dump valve and the control system may be communicatively coupled to the pressure relief or dump valve to control the pressure relief or dump valve to selectively release pressure from the shuttle chamber to prepare the shuttle chamber to receive the abrasives from the storage chamber. The shuttle chamber of the vessel assembly may also include an inlet port coupled to a pressure supply valve and the control system may be communicatively coupled to the pressure supply valve to control the pressure supply valve to intermittently supply high pressure water to the shuttle chamber to intermittently pressurize the shuttle chamber to create the high pressure mixture of water and abrasives to be transferred to the discharge chamber. The discharge chamber of the vessel assembly may be coupled to a metering device and the control system may be communicatively coupled to the metering device to control the metering device to selectively discharge the high pressure mixture of water and abrasives into the flow of high pressure water to form an abrasive slurry.
According to some embodiments, a method of forming an abrasive slurry to be passed through a nozzle to generate an abrasive slurry jet may be summarized as including introducing abrasives into a storage chamber; depressurizing a shuttle chamber downstream of the storage chamber to prepare the shuttle chamber to receive the abrasives from the storage chamber; transferring the abrasives from the storage chamber to the shuttle chamber; isolating the shuttle chamber from the storage chamber; introducing high pressure water into the shuttle chamber to pressurize the shuttle chamber while isolated from the storage chamber to create a high pressure mixture of water and abrasives; transferring the high pressure mixture of water and abrasives from the shuttle chamber to a discharge chamber downstream of the shuttle chamber; and discharging the high pressure mixture of water and abrasives from the discharge chamber into a flow of high pressure water to mix therewith and form the abrasive slurry. Transferring the abrasives from the storage chamber to the shuttle chamber and transferring the high pressure mixture of water and abrasives from the shuttle chamber to the discharge chamber may include dosing abrasives in a sequential manner from the storage chamber to the discharge chamber via the shuttle chamber. Transferring the abrasives from the storage chamber to the shuttle chamber may occur with substantially no differential pressure between the storage chamber and the shuttle chamber and transferring the high pressure mixture of water and abrasives from the shuttle chamber to the discharge chamber may occur with substantially no differential pressure between the shuttle chamber and the discharge chamber. The method may further include maintaining the storage chamber at atmospheric pressure during operation and maintaining the discharge chamber at high pressure during operation.
According to some embodiments, a method of processing a workpiece using a high pressure abrasive slurry jet may be summarized as including dosing abrasives through a vessel assembly having a shuttle chamber provided between a storage chamber and a discharge chamber, the shuttle chamber coupled to a source of high pressure water to enable intermittent pressurization of the shuttle chamber to create a high pressure mixture of water and abrasives while dosing the abrasives; mixing the high pressure mixture of water and abrasives from the vessel assembly into a flow of high pressure water to form an abrasive slurry; passing the abrasive slurry through a nozzle to generate a high pressure abrasive slurry jet; and impinging the workpiece with the high pressure abrasive slurry jet.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments.
However, one of ordinary skill in the relevant art will recognize that embodiments may be practiced without one or more of these specific details. In other instances, well-known structures associated with abrasive waterjet and abrasive slurry jet cutting systems and methods of operating the same may not be shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments. For instance, well know control systems and drive components may be provided or integrated into the abrasive slurry jet cutting systems to facilitate movement of a cutting head thereof relative to the workpiece to be processed. These systems may include drive components to manipulate the cutting head about multiple rotational and translational axes, as is common, for example, in five-axis abrasive waterjet or abrasive slurry jet cutting systems. Example abrasive slurry jet systems may include cutting heads coupled to a gantry-type motion or positioning system or a robotic arm motion or positioning system.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
Embodiments described herein provide abrasive slurry delivery systems and abrasive slurry jet cutting systems and related methods which are particularly well adapted to supply abrasive slurry for cutting operations in an efficient, compact and convenient form factor. Embodiments include abrasive slurry delivery systems adapted to discharge a high pressure mixture of water and abrasives for further admixture with a flow of high pressure water to generate an abrasive slurry and ultimately an abrasive slurry jet. The delivery systems include a storage chamber, a discharge chamber and a shuttle chamber positioned therebetween which is configured to intermittently receive abrasives from the storage chamber and intermittently supply the abrasives mixed with high pressure water to the discharge chamber in a sequential dosing manner.
As described herein, the term cutting head may refer generally to an assembly of components at a working end of the abrasive slurry jet cutting machine or system, and may include, for example, a nozzle of the abrasive slurry jet cutting system and surrounding structures and devices coupled directly or indirectly thereto to move in unison therewith. The cutting head may also be referred to as an end effector.
In addition, the support structure 12 may be provided in the form of a catcher tank having a relatively large volume of water to dissipate the energy of the abrasive slurry jet after it passes through the workpiece 14 during processing. Examples of catcher tank systems for supporting workpieces 14 and dissipating the energy of a discharged jet are shown and described in Flow's U.S. patent application Ser. No. 13/193,435, filed Jul. 28, 2011, which is incorporated herein by reference in its entirety.
The abrasive slurry jet cutting system 10 further includes a bridge assembly 18 which is movable along a pair of base rails 20. In operation, the bridge assembly 18 moves back and forth along the base rails 20 with respect to a translational axis X to position a cutting head 22 of the system 10 for processing the workpiece 14. A tool carriage 24 is movably coupled to the bridge assembly 18 to translate back and forth along another translational axis Y, which is aligned perpendicularly to the translational axis X. The tool carriage 24 is further configured to raise and lower the cutting head 22 along yet another translational axis Z to move the cutting head 22 toward and away from the workpiece 14. One or more manipulable links or members may also be provided intermediate the cutting head 22 and the tool carriage 24 to provide additional functionality.
For example, the system 10 may include a forearm 26 rotatably coupled to the tool carriage 24 for rotating the cutting head 22 about a first axis of rotation and a wrist 27 rotatably coupled to the forearm 26 to rotate the cutting head 22 about another axis of rotation that is non-parallel to the aforementioned rotational axis. In combination, the rotational axes of the forearm 26 and the wrist 27 can enable the cutting head 22 to be manipulated in a wide range of orientations relative to the workpiece 14 to facilitate, for example, cutting of complex profiles. The rotational axes may converge at a focal point which, in some embodiments, may be offset from the end or tip of a nozzle 23 of the cutting head 22. The end or tip of the nozzle 23 of the cutting head 22 is preferably positioned at a desired standoff distance from the workpiece 14 to be processed. The standoff distance may be selected or maintained at a desired distance to optimize the cutting performance of the abrasive slurry jet.
During operation, movement of the cutting head 22 with respect to each of the translational axes X, Y, Z and one or more rotational axes may be accomplished by various conventional drive components and an appropriate control system 28. The control system 28 may generally include, without limitation, one or more computing devices, such as processors, microprocessors, digital signal processors (DSP), application-specific integrated circuits (ASIC), and the like. To store information, the control system 28 may also include one or more storage devices, such as volatile memory, non-volatile memory, read-only memory (ROM), random access memory (RAM), and the like. The storage devices can be coupled to the computing devices by one or more buses. The control system 28 may further include one or more input devices (e.g., displays, keyboards, touchpads, controller modules, or any other peripheral devices for user input) and output devices (e.g., displays screens, light indicators, and the like). The control system 28 can store one or more programs for processing any number of different workpieces according to various cutting head movement instructions. The control system 28 may also control operation of other components, such as, for example, valves of the abrasive slurry delivery systems 50, 52 described herein. The control system 28, according to one embodiment, may be provided in the form of a general purpose computer system. The computer system may include components such as a CPU, various I/O components, storage, and memory. The I/O components may include a display, a network connection, a computer-readable media drive, and other I/O devices (a keyboard, a mouse, speakers, etc.). A control system manager program may be executing in memory, such as under control of the CPU, and may include functionality related to dosing abrasives through the abrasive slurry delivery systems 50, 52 as described in more detail elsewhere.
Further example control methods and systems for abrasive waterjet cutting machines, which include, for example, CNC functionality, and which are applicable to the abrasive slurry jet cutting systems described herein, are described in Flow's U.S. Pat. No. 6,766,216, which is incorporated herein by reference in its entirety. In general, computer-aided manufacturing (CAM) processes may be used to efficiently drive or control a cutting head 22 along a designated path, such as by enabling two-dimensional or three-dimensional models of workpieces generated using computer-aided design (i.e., CAD models) to be used to generate code to drive the machines. For example, in some instances, a CAD model may be used to generate instructions to drive the appropriate controls and motors of a cutting system 10 to manipulate the cutting head 22 about various translational and/or rotary axes to cut or process a workpiece 14 as reflected in the CAD model. Details of the control system 28, conventional drive components and other well known systems associated with abrasive waterjet and slurry jet cutting systems, however, are not shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Although the example abrasive slurry jet cutting system 10 of
As can be appreciated from
In other embodiments, an abrasive slurry delivery system 50 may be located remote from the motion or positioning system and remain static relative to the coordinate system of the abrasive slurry jet cutting system 10. Irrespective of the particular arrangement, the abrasive slurry delivery system 50 is configured to supply high pressure abrasive slurry downstream toward the cutting head 22 for cutting or otherwise processing workpieces 14. It will be appreciated by those of ordinary skill in the relevant art that the terms upstream and downstream are relative positional terms which depend on a path of flowing matter (e.g., a flow of water or abrasives or a mixture thereof), with upstream being nearer the source and downstream being farther from the source in the direction of motion of the flowing water or abrasives or mixture thereof.
The storage chamber 56 is coupled to the shuttle chamber 60 via a transfer valve A and the shuttle chamber 60 is coupled to the discharge chamber 58 via a transfer valve B such that each chamber 56, 58, 60 can be selectively isolated or closed-off from an adjacent one of the chambers 56, 58, 60 during operation. The discharge chamber 58 is further coupled to a cutting head supply line 62 by an adjustable metering valve C positioned at an outlet 64 of the discharge chamber 58. This enables abrasive slurry generated by the abrasive slurry delivery system 52 to be selectively discharged into a stream of high pressure water for further admixture with the high pressure water to be supplied to the cutting head 22. A high pressure water source 30 is provided for supplying high pressure water to the cutting head supply line 62, as well as to the shuttle and discharge chambers 58, 60, as discussed in further detail below. The high pressure water source 30, may be, for example, a direct drive or intensifier pump having a pressure rating of 40,000 psi to 100,000 psi or higher for supplying high pressure or ultrahigh pressure water to the abrasive slurry delivery system 52 and the cutting head 22. Example direct drive or intensifier pumps are commercially available from Flow International Corporation, the assignee of the present application. As used herein, the term high pressure water source 30 refers to devices and systems capable of generating a source of pressurized water of at least 40,000 psi. The supply line 62 emanating from the high pressure water source 30 may include a main system valve D for selectively supplying high pressure water to the abrasive slurry delivery system 52. The main system valve D is maintained in an open condition, however, throughout normal abrasive slurry cutting operations.
During at least a portion of a cutting operation, the abrasive slurry delivery system 52 may be in a storage chamber filling configuration 70, as illustrated in
While in the storage chamber filling configuration 70 illustrated in
During at least a portion of a cutting operation, the abrasive slurry delivery system 52 may be in a shuttle chamber filling configuration 84, as illustrated in
During at least a portion of a cutting operation, the abrasive slurry delivery system 52 may be in a discharge chamber filling configuration 100, as illustrated in
Additionally, a return line 106 may be provided between the discharge chamber 58 and the shuttle chamber 60 at return port 107 to enable water or a mixture of water and abrasives to return to the shuttle chamber 60 during the discharge chamber 58 filling process, as represented by the arrows labeled 108. A return valve G is provided within the return line 106 for this purpose, namely to selectively enable water or a mixture of water and abrasives to return to the shuttle chamber 60. With the pressure differential across the transfer valve B minimized or substantially eliminated, the high pressure mixture of water and abrasives 54′ in the shuttle chamber 60 may be readily transferred to the discharge chamber 58, as illustrated by the arrow labeled 110 in
It will be appreciated that the abrasive slurry delivery system 52 is well suited for dosing abrasives 54, 54′ from the storage chamber 56 to the discharge chamber 58 via the intermediate shuttle chamber 60 without interrupting the ability of the discharge chamber 58 to supply a high pressure mixture of water and abrasives via the metering valve C during cutting operations. In one stage of the dosing process, for example, the shuttle chamber 60 is isolated from the discharge chamber 58 and vented to atmospheric pressure to prepare the shuttle chamber 60 to receive abrasives 54 from the storage chamber 56 via the transfer valve A, while a high pressure mixture of water and abrasives 54′ nevertheless remains available in the discharge chamber 58 for selective discharge via the metering valve C. In another stage of the dosing process, the shuttle chamber 60 is isolated from the storage chamber 56 and high pressure water is introduced to prepare the shuttle chamber 60 to supply a mixture of water and abrasives 54′ to the discharge chamber 58 via the transfer valve B. Likewise, in this stage, a high pressure mixture of water and abrasives 54′ nevertheless remains available in the discharge chamber 58 for selective discharge via the metering valve C. These two stages can be repeated continuously or intermittingly to prepare a steady supply of the high pressure mixture of water and abrasives 54′ for subsequent discharge through the metering valve C. Advantageously, dry or wet abrasives 54 can be deposited as needed into the storage chamber 56 under atmospheric pressure conditions, again without disrupting the ability to continuously supply a high pressure mixture of water and abrasives 54′ through the metering valve C to generate a high pressure abrasive slurry and ultimately a high pressure abrasive slurry jet for cutting or otherwise processing workpieces 14.
In view of the above, a method of forming an abrasive slurry to be passed through a nozzle 23 of a cutting head 22 to generate an abrasive slurry jet may include introducing abrasives 54 into a storage chamber 56 and depressurizing a shuttle chamber 60 downstream of the storage chamber 56 to prepare the shuttle chamber 60 to receive the abrasives 54 from the storage chamber 56. The method may further include transferring the abrasives 54 from the storage chamber 56 to the shuttle chamber 56 via an intermediate transfer valve A and then isolating the shuttle chamber 60 from the storage chamber 56. After isolating the shuttle chamber 60 from the storage chamber 56, the method may continue by introducing high pressure water into the shuttle chamber 60 to pressurize the shuttle chamber 60 to create a high pressure mixture of water and abrasives 54′ therein. Next, the high pressure mixture of water and abrasives 54′ may be transferred from the shuttle chamber 60 to a discharge chamber 58 downstream of the shuttle chamber 60 via an intermediate transfer valve B. The method may conclude with discharging the high pressure mixture of water and abrasives 54′ from the discharge chamber 58 into a flow of high pressure water, represented by the arrow labeled 112, to mix therewith and form the abrasive slurry, or the method may repeat to successively dose abrasives 54, 54′ through the chambers 56, 58, 60.
According to one embodiment, a method of processing a workpiece using a high pressure abrasive slurry jet is also provided. The method includes dosing abrasives through an abrasive slurry delivery system 52 having a shuttle chamber 60 provided between a storage chamber 56 and a discharge chamber 58, the shuttle chamber 60 being coupled to a source of high pressure water to enable intermittent pressurization of the shuttle chamber 60 to create a high pressure mixture of water and abrasives 54′. The method further includes mixing the high pressure mixture of water and abrasives 54′ from the abrasive slurry delivery system 52 into a flow of high pressure water, as represented by the arrows labeled 112, to form an abrasive slurry and then passing the abrasive slurry through a nozzle 23 of a cutting head 22 to generate a high pressure abrasive slurry jet. The method may continue with impinging a workpiece 14 with the high pressure abrasive slurry jet to cut or otherwise process the workpiece 14.
As shown in
In some embodiments, for example, abrasives may be manually deposited in the storage chamber 56 via an inlet 72 that may be opened to the external environment. For example, in the illustrated embodiment of
The shuttle chamber 60 is positioned downstream of the storage chamber 56 within a central portion 124 of the vessel assembly 120 to intermittently receive abrasives 54 from the storage chamber 56 and to intermittently supply the abrasives 54′ to the discharge chamber 58 under high pressure conditions. For this purpose, the shuttle chamber 60 is coupled to a source of high pressure water 30 to enable selective and intermittent supply of high pressure water to the shuttle chamber 60 to intermittently pressurize the shuttle chamber 60 and create or generate a high pressure mixture of water and abrasives 54′ for subsequent transfer to the discharge chamber 58. The high pressure water source 30, may be, for example, a direct drive or intensifier pump having a pressure rating within a range of 40,000 psi to 100,000 psi or higher.
The discharge chamber 58 is provided downstream of the shuttle chamber 60 at a lower end 126 of the vessel assembly 120. The discharge chamber includes an outlet 64 coupled to a metering valve C for selectively discharging the high pressure mixture of water and abrasives 54′ received from the shuttle chamber 60 into a flow of high pressure water (represented by the arrows labeled 112 in
As shown best in
The shuttle chamber 60 may further include inlet or pressure port 102 for attachment to a high pressure supply line 76c in fluid communication with the high pressure water source 30 to selectively receive high pressure water during operation. A pressure supply valve E may be provided within the high pressure supply line 76c to selectively control the supply of high pressure water, the pressure supply valve E being in an open position when the abrasive slurry delivery system 50 is configured to dose abrasives 54 from the shuttle chamber 60 to the discharge chamber 58. One or more orifices J, restrictors or other flow control devices may also be provided within the high pressure supply line 76c to control, manipulate or regulate the flow of high pressure water to the shuttle chamber 60.
Additionally, a return line 106 may be provided between the discharge chamber 58 and the shuttle chamber 60 to enable water or a mixture of water and abrasives to return to the shuttle chamber 60 during a discharge chamber 58 filling process. A return valve G is provided within the return line 106 for this purpose, namely to selectively enable water or a mixture of water and abrasives to return to the shuttle chamber 60. When high pressure water is supplied to the shuttle chamber (i.e., when pressure supply valve E is open), the pressure differential across the transfer valve B is minimized or substantially eliminated, and as such, the high pressure mixture of water and abrasives 54′ in the shuttle chamber 60 may be readily transferred to the discharge chamber 58.
The discharge chamber 58 may include an inlet or supply port 78 to introduce high pressure water into the discharge chamber 58 during at least a portion of operation. The inlet or supply port 78 may be located within an upper end of the discharge chamber 58 and may be coupled to the high pressure source 30 via a supply line branch 76a. A supply valve F may be provided in the supply line branch 76a to control the supply of high pressure water to the discharge chamber 58. During normal cutting operation, the supply valve F is maintained in an open position to continuously supply high pressure water to the discharge chamber 58 irrespective of the stage of the abrasive dosing operation. Accordingly, the abrasive slurry delivery system 50 may continuously supply abrasive slurry as needed to cut or otherwise process a workpiece 14 while abrasives 54, 54′ are sequentially dosed through the system 50.
As can be appreciated from
A manifold 146 may be provided at the lower end 126 of the vessel assembly 120 downstream of or integral with the discharge chamber 58. The manifold 146 may house or include the outlet 64 of the discharge chamber 58 and the metering valve C. In addition, the manifold 146 may include an inlet port 147 coupled to the high pressure water source 30 via the high pressure water supply line 76 and an outlet port 148 for discharging the flow of high pressure water along with the mixture of high pressure water and abrasives 54′ selectively discharged through the metering valve C for further admixture and delivery to a nozzle 23 of the cutting head 22. In addition, a high pressure water supply branch 76b may be formed or otherwise provided within the manifold 146 for routing high pressure water through a riser conduit 80 that terminates within an upper region of the discharge chamber 58 to introduce high pressure water into the upper region of the discharge chamber 58 during operation.
In some embodiments, one or more of the chambers 56, 58, 60 may be flexibly coupled to the other chambers 56, 58 and 60 and/or located remotely with respect to each other. The chambers 56, 58, 60 may have the same or different internal capacities and may vary in shape and size from each other. Although each of the chambers 56, 58, 60 is shown as having a generally cylindrical profile, each of the chambers 56, 58, 60 may have profiles of other regular or irregular shapes. In addition, one or more of the storage chamber 56, the shuttle chamber 60 and the discharge chamber 58 may include a tapered surface 150, 152, 154 at a respective lower end thereof to funnel the abrasives or the high pressure mixture of water and abrasives downstream. At least the shuttle chamber 60 and the discharge chamber 58 may be configured to receive high pressure water of without appreciable permanent deformation. For example, the shuttle chamber 60 and the discharge chamber 58 may be of sufficient strength to contain water at least 40,000 psi without appreciable permanent deformation thereof.
As shown best in
Each of the transfer valves A, B may be controlled or actuated via a respective valve rod 130, 132 extending through the vessel assembly 120 to a respective pneumatic or hydraulic actuator 140, 142 positioned external to the internal chambers 56, 58, 60. In addition, a pneumatic or hydraulic actuator 144 may be provided to adjustably control the metering valve C at the outlet 64 of the discharge chamber 58. The pneumatic or hydraulic actuators 140, 142, 144 may be coupled directly to the vessel assembly 120 to be manipulated in space therewith. The pneumatic or hydraulic actuators 140, 142, 144 may be sized according to the different operational loading conditions expected within the chambers 56, 58, 60 during use. Although not shown entirely in
As can be appreciated from the above descriptions and corresponding figures, the abrasive slurry delivery systems 50, 52 described herein are specifically adapted to supply an abrasive slurry to generate a high pressure or ultrahigh pressure abrasive slurry jet in a relatively compact and efficient form factor or package. In some embodiments, for example, a vessel assembly 120 of the abrasive slurry delivery system 50 may be substantially contained within a cylindrical working envelope having a longitudinal height of about thirty-six inches and a diameter of about ten inches, while nevertheless being able to continuously supply a mixture of high pressure water and abrasives 54′ at a sufficient volumetric flow rate to be further mixed with high pressure water and passed through an orifice of a nozzle 23 of a cutting head 22 to generate an abrasive slurry jet. This can be particularly advantageous by enabling the abrasive slurry delivery system 50 to be mounted to a motion or positional system to move in unison with the cutting head 22 with respect to one or more translational or rotational axes thereof.
U.S. provisional patent application Ser. No. 61/919,554 filed Dec. 20, 2013, is incorporated herein by reference, in its entirety.
Moreover, the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/063503 | 10/31/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/094492 | 6/25/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3521407 | Nalley | Jul 1970 | A |
4420957 | Weber | Dec 1983 | A |
4780027 | Van Kuiken, Jr. | Oct 1988 | A |
5201150 | Kuboyama | Apr 1993 | A |
5319894 | Shank, Jr. | Jun 1994 | A |
5327755 | Thompson | Jul 1994 | A |
5643058 | Erichsen et al. | Jul 1997 | A |
6059641 | Okamoto | May 2000 | A |
6119964 | Lombari | Sep 2000 | A |
6200203 | Xu et al. | Mar 2001 | B1 |
6371839 | Izawa et al. | Apr 2002 | B2 |
6390898 | Pieper | May 2002 | B1 |
6766216 | Erichsen et al. | Jul 2004 | B2 |
6997780 | Pieper | Feb 2006 | B2 |
7108585 | Dorfman et al. | Sep 2006 | B1 |
7549911 | Nguyen | Jun 2009 | B2 |
7815490 | Liu | Oct 2010 | B2 |
7934977 | Hashish | May 2011 | B2 |
7967664 | Elbing et al. | Jun 2011 | B2 |
7980919 | Zhou | Jul 2011 | B2 |
8308525 | Hashish et al. | Nov 2012 | B2 |
8322700 | Saberton et al. | Dec 2012 | B2 |
20050230152 | Joslin | Oct 2005 | A1 |
20090318064 | Hashish | Dec 2009 | A1 |
20110081834 | Roth | Apr 2011 | A1 |
20120156969 | Liu | Jun 2012 | A1 |
20130025425 | Knaupp et al. | Jan 2013 | A1 |
20140015202 | Chacko | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1151131 | Jun 1997 | CN |
2 814 637 | Nov 2015 | EP |
9529792 | Nov 1995 | WO |
2015149867 | Oct 2015 | WO |
Entry |
---|
Fairhurst et al., “DIAJET—A New Abrasive Water Jet Cutting Technique,” 8th International Symposium on Jet Cutting Technology, Durham, England, Sep. 9-11, 1986, pp. 395-402. |
Hollinger et al., “Precision Cutting with a Low Pressure, Coherent Abrasive Suspension Jet,” 5th American Water Jet Conference, Aug. 29-31, 1989; Toronto Canada, pp. 245-252. |
Hashish, “Entrainment Versus Direct Pumping Abrasive-Fluid Machining Systems, Chapter 6, Abrasive-Fluidjet Machinery Systems; Entrainment Versus Direct Pumping,” Proceedings of the 10th Annual International Conference on Jet Cutting Technology, Nov. 1990, pp. 99-113. |
Bloomfield et al., “Diajet—A Review of Progress,” First Asian Conference on Recent Advances in Jetting Technology, May 7-8, 1991; Singapore, pp. 21-30. |
Hashish, “Cutting with High-Pressure Abrasive Suspension Jets,” 6th American Water Jet Conference, Aug. 24-27, 1991; Houston, Texas, pp. 439-455. |
Hashish et al., “The Next Generation of Waterjet and Abrasive-Waterjet Processing Technologies,” National Center for Manufacturing Sciences, Inc., Nov. 1992, 113 pgs. |
Flow Europe GmbH, “11.12 Operation Manual Abrasive Delivery System Type ADS-24-II,” Abrasive Delivery System ADS-24-II, Jul. 2000; 28 pages. |
CDK Corporation, “High speed response and miniature size, Small flow sensor FSM series,” modified Mar. 29, 2006. |
Number | Date | Country | |
---|---|---|---|
20160339560 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
61919554 | Dec 2013 | US |