The present disclosure relates to floor grinders and abrasive tools for processing concrete surfaces. There are disclosed abrasive tools for use in grinding and polishing concrete surfaces, systems for abrasive processing of concrete surfaces, and manufacturing methods for producing abrasive tools.
Concrete surfaces are commonly used for flooring in both domestic and industrial facilities. The size of concrete surface floors ranges from a few square meters for a domestic garage floor to thousands of square meters in larger industrial facilities. Concrete surfaces offer a cost efficient and durable flooring alternative and have therefore gained popularity over recent years.
A floor grinder can be used to efficiently process a concrete surface in order to, e.g., obtain a level surface having a uniform topology and/or a surface having a desired surface texture. Floor grinders can also be used to polish concrete surface in order to obtain a glossy surface finish.
It is important that the abrasive tool is robust such that it does not break during use. At the same time, it is desired to reduce the cost of the tools in order to provide a cost efficient concrete surface processing operation.
There is a need for cost effective and efficient tools for concrete polishing.
It is an object of the present disclosure to provide cost effective and robust abrasive tools for floor grinding and polishing operations.
This object is obtained by an abrasive tool for a floor grinder. The abrasive tool comprises an attachment plate arranged to releasably attach to a tool holder of the floor grinder. The abrasive tool also comprises an abrasive tool section at least partly formed in an abrasive material. The attachment plate comprises a supporting surface at least partly formed in a plastic material, where the supporting surface is configured to align with a corresponding surface on the abrasive tool section. The attachment plate and the abrasive tool section are held together by one or more welds. This way a cost efficient yet durable and high performing abrasive tool is provided. The abrasive tool can be manufactured in several different grits simply by changing the properties of the abrasive tool section.
According to aspects, the one or more welds comprises an ultrasonic weld. Ultrasonic welds are particularly suitable for manufacturing this type of abrasive tool.
According to aspects, a plurality of protrusions extends from the supporting surface of the attachment plate along a normal vector of the supporting surface. These protrusions facilitate ultrasonic welding of the attachment plate to the abrasive tool section.
According to aspects, the attachment plate comprises a rim portion extending along a perimeter of the supporting surface. The rim portion is arranged to hold the abrasive tool section laterally with respect to the normal vector of the supporting surface. The rim portion further increases the mechanical strength of the abrasive tool, and in particular improves the resilience against impact from the side.
According to aspects, the abrasive tool section comprises a planar support element and a plurality of abrasive elements arranged protruding from the planar support element in a direction normal to the supporting surface. Since the plurality of abrasive elements are integrally formed with the planar support element, mechanical strength is improved. Also, the abrasive tool section can be formed in one piece, which simplifies manufacturing.
According to aspects, the abrasive tool section comprises an abrasive material embedded in an at least partly plastic material. This plastic material embedding allows the abrasive tool section to be ultrasonically welded to another plastic component, such as the attachment plate. The plastic material is phenolic novolac, which comprises suitable properties for the present application.
According to aspects, the abrasive tool section is associated with a grit between 30-200 and where the abrasive tool section comprises a relative volume percentage of silicon carbide between 10-20%, and preferably about 15%. Also, the relative volume percentage of talc is optionally between 5-15%, and preferably about 10%. This increases the grinding efficiency of the abrasive tool, and at the same time provides a good wear resistance.
According to aspects, the abrasive tool further comprises a cage part comprising apertures arranged to receive the abrasive elements extending from the planar support element of the abrasive tool section. This cage part adds to the structural integrity of the abrasive tool and further increases the mechanical strength of the assembly, which is an advantage.
According to aspects, the cage part is at least partly formed in a plastic material and the cage part is welded to the attachment plate and/or to the abrasive tool section, thereby holding the attachment plate and the abrasive tool section together by the one or more welds. It is noted that the cage part may be used to hold the abrasive tool section in place without any weld of other form of joining between the abrasive tool section and the attachment plate or cage part parts.
According to aspects, the cage part comprises one or more ridges arranged facing in the direction of the attachment plate, where the ridges are configured to facilitate ultrasonic welding of the cage part to the attachment plate and/or to the abrasive tool section. The ridges facilitate ultrasonic welding of the cage part to the attachment plate.
Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to “a/an/the element, apparatus, component, means, step, etc.” are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated. Further features of, and advantages with, the present invention will become apparent when studying the appended claims and the following description. The skilled person realizes that different features of the present invention may be combined to create embodiments other than those described in the following, without departing from the scope of the present invention.
The present disclosure will now be described in more detail with reference to the appended drawings, where
The invention will now be described more fully hereinafter with reference to the accompanying drawings, in which certain aspects of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments and aspects set forth herein; rather, these embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout the description.
It is to be understood that the present invention is not limited to the embodiments described herein and illustrated in the drawings; rather, the skilled person will recognize that many changes and modifications may be made within the scope of the appended claims.
Electrically powered floor grinders like that illustrated in
The machine 100 can be used to grind and to polish concrete surfaces. Depending on the desired concrete processing operation to be performed, tools of varying grit size are attached to the tool holders 120. The grit size of an abrasive element is usually stated as a number that is inversely related to the abrasive particle size. A small number such as 20 or 40 indicates a coarse grit, while a large number such as 1500 indicates a fine grit. The techniques disclosed herein may be used with advantage for a wide variety of different grit seize, ranging from, e.g., 30 to about 3000.
The cost of abrasive tools is often a substantial part of the overall cost of concrete surface processing. It is therefore desired to produce abrasive tools in a cost efficient manner. However, the abrasive tools still need to meet requirements on robustness and durability. A tool which breaks during use leads to unwanted delay and may also damage both the concrete surface and the floor grinder.
The abrasive tools disclosed herein are preferably but not necessarily formed in a plastic material. Plastics are a wide range of synthetic or semi-synthetic materials, that use polymers as a main ingredient. The plasticity during production makes it possible for plastic to be molded, extruded, or pressed into solid objects of various shapes, making it an adaptable material for many different uses. The components disclosed herein are suitable for injection molding, which is the preferred method of manufacturing the components. However, other methods for producing the components of the tools disclosed herein are of course also possible.
The abrasive tool 200 comprises an abrasive tool section 220 at least partly formed in an abrasive material. This abrasive material preferably comprises diamond granules held in a supporting matrix of, e.g., phenolic novolac, although other binding matrix materials can also be used. The abrasive tool section 220 comprises two or more protruding abrasive elements (
Each of the components 210, 220, and 230 in
With reference also to
Advantageously, the attachment plate 230 and the abrasive tool section 220 are held together by one or more welds. These welds are preferably ultrasonic welds which can be formed in a cost efficient manner during assembly, and which provide a sufficient bond strength for the abrasive tool. However, other types of welds are also possible, such as laser welds, vibration welds, or simply welds formed by melting plastic components together to form welded sections.
According to one example, the abrasive tool section 220 is welded directly to the attachment plate.
According to another example, the abrasive tool section 220 is held in position by a cage part 210 which is welded to the attachment plate 230. In this case the abrasive tool section 220 does not necessarily need to be welded or otherwise directly attached to any other component of the abrasive tool 200, although this is certainly an option also.
According to a third and preferred example, the abrasive tool section 220 is first welded to the attachment plate 230, whereupon the cage part 210 is welded to the attachment plate to reinforce the abrasive tool structure.
Further alternatives for assembling an abrasive tool will be discussed below in connection to
The attachment plate 230 optionally also comprises a rim portion 320 as shown in
The opposing and angled wings 310 configured for mounting the attachment plate to the tool holder 120 are located at an offset 0 from the edge of the attachment plate 230. Thus, the supporting surface 235 extends beyond the opposing and angled wings 310.
There are at least two abrasive elements 520, and preferably six abrasive elements.
The abrasive tool section 220 comprises an abrasive material which is preferably embedded in an at least partly plastic material. This allows the abrasive tool section 220 to be ultrasonically welded directly to the attachment plate 230, which is an advantage since it enables a cost efficient assembly. However, it is noted that the abrasive tool section 220 may also be attached by other means of the attachment plate 230, e.g., by means of the cage part 210 which will be discussed below in connection to
Various compositions can be used with advantage for various grit sizes. The table below illustrates a number of examples which have been found to yield favorable results in terms of both concrete processing efficiency, wear rate, and mechanical resilience and endurance. The example grit sizes range from grit which is a relatively coarse grit used for grinding operations, to a very fine grit of 3000 which is suitable for polishing operations. The percentage values given are volume percentages. The diamond concentration in the rightmost column is given in carats per cm3. It is understood that the relative percentages below are approximate values, and that a similar technical effect can be achieved by altering the relative percentages somewhat.
The silicon carbide (SiC) content of about 15% in the course grit variants 30-200 together with the reduced talc content of about 10% provides for an increased wear resistance at the same time as an improved grinding efficiency is obtained.
Thus, according to various aspects, the abrasive tool section 220 comprises any of talc, rubber, silicon carbide, green chromium oxide and diamond granules. The abrasive tool section 220 is optionally associated with a grit between 30-200 in which case the abrasive tool section advantageously comprises a relative volume percentage of silicon carbide between 10-20%, and preferably about 15%. Also, the abrasive tool section 220 optionally comprises a relative volume percentage of talc between 5-15%, and preferably about 10%.
The cage part 210 may be at least partly formed in a plastic material. In this case the cage part 210 can be ultrasonically welded to the attachment plate 230 and/or to the abrasive tool section 220, thereby holding the attachment plate 230 and the abrasive tool section 220 together by the one or more welds. Towards this end, the abrasive tool 200 may comprise one or more ridges 620 extending from the back side of the cage part in the direction of the attachment plate 230. These ridges are configured to facilitate ultrasonic welding of the cage part 210 to the attachment plate 230 and/or to the abrasive tool section 220.
According to aspects, the cage part 210 comprises at least two apertures, and preferably six apertures as shown in
According to aspects, the apertures constitute at least half of a total surface area of the cage part 210. This means that the cage part 210 is shaped as a frame to hold the abrasive tool section in place, and to reinforce the structure, but does not comprise a lot of plastic material. The primary function of the cage part is to keep the abrasive tool section 220 pressed in position against the attachment plate 230.
The apertures of the cage part 210 are substantially polygon shaped with at least three sides. The cage part 210 illustrated in
The cage part 210 may, as mentioned above, further comprise a centrally positioned solid portion 630, as shown in
Any of the parts 210, 220, 230 may be formed by an injection molding process in a cost efficient manner.
It is appreciated that the assembly methods shown in
Number | Date | Country | Kind |
---|---|---|---|
2150241-4 | Mar 2021 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2022/050129 | 2/7/2022 | WO |