Not Applicable.
The present invention relates in general to the field of vehicle safety, and more specifically to an ABS/ESC activated brake light device.
Not Applicable.
Without limiting the scope of the invention, its background is described in connection with vehicle safety. Despite the sophistication of modern vehicles, the brake light systems of vehicles today remain very simple—an operator applies pressure to the brake pedal and the brake lights are illuminated. A vehicle's brake lights indicate that the operator is applying pressure to the brake pedal, but do not indicate the urgency of the braking or magnitude of the deceleration. In other words, the brake lights “light up” in the same manner whether the vehicle is making a soft stop or a hard or panic stop. As a result, those following the vehicle have a difficult time determining if the braking is a soft stop or a hard or panic stop.
Warning other nearby vehicles of rapid or urgent deceleration of a vehicle has been of great interest, but has not been adopted by car manufacturers most likely as a result of cost, reliability concerns and/or lack of governmental regulations. The proposed systems typically require installation of various sensors, such as accelerometers, and processor(s) to calculate deceleration values that are then compared to threshold values to determine whether to illuminate the brake lights. Some of these systems illuminate the brake lights even if the operator does not apply pressure to the brake pedal.
There is, therefore, a need for an inexpensive, reliable and easily installed device to warn others that a vehicle is braking hard, sliding, or not under control.
The present invention alerts other drivers that the vehicle ahead of them is braking hard, sliding, or not under control enabling the other drivers to react more quickly. This device provides a rapid flashing brake light when there is a hard or panic stop, or when the vehicle is not operating under normal circumstances.
For example, the present invention enhances the safety feature of a vehicle's existing automatic braking system (ABS) and electronic stability control (ESC) by interlocking it with the vehicles brake lighting system. Anytime the ABS and/or ESC are activated, a signal is sent to the brake light circuitry causing a rapid flashing that will provide warning to other drivers behind that the vehicle ahead of them may be having a hard or panic stop, or loss of control of the automobile. One embodiment of the present invention provides a small battery operated unit, which provides additional safety, and easily plugs into a vehicle's fuse panel or box without modifying the vehicle's systems, thus making the device appealing to the automobile aftermarket industry
More specifically, the present invention provides an apparatus that includes a first connector, a second connector, an antilock brake system and/or electronic stability control (ABS/ESC) signal detection circuit, a control circuit, a brake light signal generation circuit, and a power supply. The first connector is configured to plug into an antilock brake system pump motor circuit on a fuse panel or box of a vehicle. The second connector is configured to plug into a brake light circuit on the fuse panel or box of the vehicle. The ABS/ESC signal detection circuit is connected to the first connector. The control circuit is connected to the ABS/ESC signal detection circuit and sends one or more control signals to the brake light generation circuit whenever the ABS/ESC signal detection circuit detects an ABS/ESC signal. The brake light signal generation circuit is connected to the control circuit and the second connector. The brake light signal generation circuit causes the brake lights of the vehicle to flash whenever the one or more control signals are received from the control circuit. The power supply is connected to the control circuit and the brake light signal generation circuit.
In addition, the present invention provides an apparatus that includes a first connector, a second connector, an induction coil detector, a first magnetic reed switch, a second magnetic reed switch, a timer circuit, a control circuit, a brake light signal generation circuit, and a power supply. The first connector is configured to plug into an antilock brake system pump motor circuit on a fuse panel or box of a vehicle. The second connector is configured to plug into a brake light circuit on the fuse panel or box of the vehicle. The second magnetic reed switch is configured to be positioned next to an ignition latching relay on the fuse panel or box of the vehicle. The induction coil detector is connected to the first connector. The first magnetic reed switch is connected to the induction coil detector. The second magnetic reed switch is connected to the third connector. The timer circuit is connected to the second magnetic reed switch and disables a brake light signal generation circuit for a time period after the second magnetic reed switch detects an ignition signal. The control circuit is connected to the first magnetic reed switch and the timer circuit, and sends one or more control signals to the brake light generation circuit whenever the first magnetic reed switch detects an ABS/ESC signal. The brake light signal generation circuit is connected to the control circuit and the second connector. The brake light signal generation circuit causes the brake lights of the vehicle to flash whenever the one or more control signals are received from the control circuit and the brake light signal generation circuit is not disabled by the timer circuit. The power supply is connected to the timer circuit, control circuit and the brake light signal generation circuit.
Moreover, the present invention provides a method for flashing the brake lights of a vehicle by providing an apparatus that includes a first connector configured to plug into an antilock brake system pump motor circuit on a fuse panel or box of a vehicle, a second connector configured to plug into a brake light circuit on the fuse panel or box of the vehicle, an antilock brake system and/or electronic stability control (ABS/ESC) signal detection circuit connected to the first connector, a control circuit connected to the ABS/ESC signal detection circuit, a brake light signal generation circuit connected to the control circuit and the second connector, and a power supply connected to the control circuit and the brake light signal generation circuit. One or more control signals are sent to the brake light generation circuit using the control circuit whenever an ABS/ESC signal is detected by the ABS/ESC signal detection circuit. The brake lights of the vehicle are flashed using the brake light signal generation circuit whenever the one or more control signals are received from the control circuit.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims. As used herein, a vehicle can be a car, a truck, a van, a motorcycle, a recreational vehicle, a motorized equipment, a combination thereof, or any other type of moving object having brake lights.
Now referring to
The apparatus 100 typically includes a housing that encloses at least a portion of the ABS/ESC signal detection circuit 106, at least a portion of the brake light signal generation circuit 110, at least a portion of the power supply 112 and the control circuit 108. A first wire connects the first connector 102 to the portion of the ABS/ESC signal detection circuit 106 within the enclosure. A second wire connects the second connector 105 to the portion of the brake light signal generation circuit 110 within the enclosure. The phrase “portion of” means that all or part of the components forming the named circuit are disposed within the housing. For example, the named circuit might have two components where one component is integrated into the connector or wire and the second component is on the device circuit board. The apparatus is preferably housed and configured such that the first connector 102 and the second connector 104 plug into the fuse panel or box 114 of the vehicle with little to no modification of an electrical or control system of the vehicle.
The apparatus may include many additional features as will be appreciated by those skilled in the art. Some non-limiting examples include: (1) an on/off switch that disables the apparatus without preventing normal operation of the vehicle; (2) a flash rate speed control circuit connected to the control circuit 108; (3) the control circuit 108 generates the one or more control signals for a minimum period of time regardless of a duration of the ABS/ESC signal; and/or (4) a communications interface to change various operating parameters, update firmware or software or otherwise configure the device. The flash rate speed control circuit can operate at a first flash rate for incandescent brake lights, a second flash rate for solid-state brake lights, or other desired flash rate.
Referring now to
The apparatus typically includes a housing that encloses at least a portion of the induction coil detector 202, at least a portion of the brake light signal generation circuit 110, at least a portion of the power supply 112, the timer circuit 208 and the control circuit 108. The phrase “portion of” means that all or part of the components forming the named circuit are disposed within the housing. A first wire connects the first connector 102 to the portion of the induction coil detector 202 within the enclosure. A second wire connects the second connector 104 to the portion of the brake light signal generation circuit 110 within the enclosure. A third wire connects the second magnetic reed switch 206 to the timer circuit 208 within the enclosure. The apparatus is preferably housed and configured such that the first connector 102, the second connector 104 and the second magnetic reed switch 206 plug into the fuse panel or box 114 of the vehicle with little to no modification of an electrical or control system of the vehicle.
The apparatus may include many additional features as will be appreciated by those skilled in the art. Some non-limiting examples include: (1) an on/off switch that disables the apparatus without preventing normal operation of the vehicle; (2) a flash rate speed control circuit 212 connected to the control circuit 108; (3) the control circuit 108 generates the one or more control signals for a minimum period of time regardless of a duration of the ABS/ESC signal; (4) change or adjust the time delay; and/or (5) a communications interface to change various operating parameters, update firmware or software or otherwise configure the device. The flash rate speed control circuit can operate at a first flash rate for incandescent brake lights, a second flash rate for solid-state brake lights or other desired flash rate
Now referring to
Additional steps may include: (1) installing the apparatus by plugging the first connector into an ABS pump motor circuit on a fuse panel or box of a vehicle, and plugging the second connector into a brake light circuit on the fuse panel or box of the vehicle; (2) recharging the battery from the vehicle power supply; (3) flashing the brake lights at a first flash rate for incandescent brake lights and a second flash rate for solid-state brake lights; and/or (4) generating the one or more control signals for a minimum period of time regardless of a duration of the ABS/ESC signal.
Referring now to
Now referring to
The ABS pump motor fuse (cartridge type) (FUSE-1) is removed from the vehicle fuse panel or box and a cable with a cartridge type fuse plug 404 is inserted into it. The fuse (FUSE-1) that is removed from the vehicle fuse panel or box is plugged into the circuit board of the device 500 and keeps the ABS circuitry protected. The induction coil detector (ICD-1) 202 will detect a signal whenever the ABS pump motor is operating. The magnetic reed switch (MRS-1) 204 will react to this by closing its contacts due to the magnetic field in the induction coil.
Integrated circuit (IC-1) including resistors (R-1, R-2) and capacitors (C-2, C-3) form an astable multivibrator which is used as a gated oscillator. The output of this oscillator 416 pulses the field effect transistor (FET-1) at a specific rate which determines how fast the relay (RLY-1) contacts will open and close.
Integrated circuit (IC-2) including resistors (R-3, R-4) and capacitors (C-4, C-5) form a monostable multivibrator that controls the amount of time the gated oscillator will be activated. For example, a minimum of five flashes (or other desired number) is guaranteed regardless of the duration of the ABS signal.
Integrated circuit (IC-3) including resistors (R-5, R-6) and capacitors (C-6, C-7) form another (monostable multivibrator) that is used as a 30 second timing circuit. Other time periods can be used. Integrated circuit (IC-4) consists of two D-type bi-stable mulitvibrators which creates a divide by two counter when both D-type flip-flops are connected together. Integrated circuits (IC-3) and (IC-4) are combined to create a timer circuit 208 that will circumvent the computers (ABS/ECU) diagnostic system from falsely triggering the brake lights when the vehicle is started.
The vehicle's stop light circuit fuse (FUSE-2) is removed from the vehicle's fuse panel or box and a cable with a blade type fuse plug 408 is inserted into it. The fuse (FUSE-2) that is removed is plugged into the circuit board of device 500 and keeps the stop light circuitry protected.
Magnetic reed switch (MRS-2) and resistor (R-7) form a network that will control the divide by two counter (IC-4). The magnetic reed switch (MRS-2) is positioned next to the automobiles latching ignition relay to monitor its electrical state.
This device is a plug-in device that can be easily installed in about a minute (see enclosed pictures) (plug and play). There is no need to factory hard-wire any components to the automobiles electronics or sub-systems. This device does not use the automobiles electronic control unit (ECU) or optional computer to manipulate signals from the ABS's electronic sensors to control the flashing of the brake lights. Moreover, this device does not need to incorporate extra electronic/mechanical sensors such as accelerometers, radar beams or tilt switches.
As shown, the device contains its own power supply (9V battery), so there is no need to use the automobiles 12 volt system to power the device. But, the device can alternatively connect to the vehicle power system as the power supply and/or to recharge the device battery. The device has its own on board flasher, so there is no need to use the automobiles standard slow emergency flashers. This device utilizes selectable flash rates to accommodate either incandescent or solid state stop (brake) lights.
The operation of the circuit shown in
Every time the engine is started the computers diagnostic program will check the ABS system by activating the pump motor and solenoid valves. This procedure will be detected by the induction coil detector (ICD-1). The magnetic field of the induction coil will close the first magnetic reed switch (MRS-1) and trigger both integrated circuits (IC-2) and (IC-3) simultaneously. Integrated circuit's (IC-3) output (a logic one) will change the logic state of the first D-Type flip-flop, this identical high output from integrated circuit (IC-3) is also connected to PIN-4 of (IC-2) and will cancel the timing circuit so the relay (RLY-1) does not operate. This blocks the computers ABS/ECU diagnostic program from activating the brake lights every time the engine is started. This also extends the life of the 9-volt battery that powers the device.
As long as the engine is not tuned off, the next signal intercepted by (ICD-1) will be from the automatic brake system (ABS) or the electronic stability control (ESC). (MRS-1) will close, triggering both integrated circuits (IC-2) and (IC-3), but this time the logic one for the output of integrated circuit (IC-3) will change the logic state of the second D-type flip-flop to Q-1 zero and Q-2 one. Pin-4 of integrated circuit (IC-3) is now at logic zero, this will disable (IC-3) cancelling its timing circuit. The gated oscillator (IC-1) will now operate the FET driver (FET-1) and rapid flash the brake lights by opening and closing the relay (RLY-1) as a specific flash rate.
The timing circuit of integrated circuit (IC-3) will stay disabled until the engine is turned off. When the engine is tuned back on (MRS-2) will open and reset the divide by two counter (IC-4) and the same sequence of events will now take place.
Because the automobile may have either incandescent or solid state brake lights (SW-1) and (C-4) provide a choice of flash rates, a faster flash speed for solid state (SW-1 is open) and a slower flash speed for incandescent (SW-1 is closed).
The battery saver circuit operates by using the second magnetic reed switch (MRS-2) to remove the negative terminal of the 9-volt battery from the electronic circuit when the ignition's latching relay is off (engine not operating) and reconnects the battery's negative terminal when the ignition's latching relay is on (engine operating).
Referring now to
It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
All publications, patents and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.
As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 61/820,308, filed on May 7, 2013, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61820308 | May 2013 | US |