The present invention relates to absorbent articles having an elastic belt having elastic bodies overlapping the absorbent core.
Infants and other incontinent individuals wear absorbent articles such as diapers to receive and contain urine and other body exudates. Pull-on absorbent articles, or pant-type absorbent articles, are those which are donned by inserting the wearer's legs into the leg openings and sliding the article up into position about the lower torso. Pant-type absorbent articles have become popular for use on children who are able to walk and often children who are toilet training, as well as for younger children who become more active in movement such that application of taped-type absorbent articles tends to be more difficult.
Many pant-type absorbent articles use elastic elements secured in an elastically contractible condition in the waist and/or leg openings. Typically, in order to insure full elastic fit about the leg and the waist such as is provided with durable undergarments, the leg openings and waist opening are encircled at least in part with elasticized elements positioned along the periphery of the respective opening.
Pant-type absorbent articles having a main body to cover the crotch region of the wearer and a separate elastic belt defining the waist opening and leg opening are known in the art, such as described in PCT Publication WO 2006/17718A. Such pant-type absorbent articles may be referred to as belt-type pants. Belt-type pants are advantageous in that they have good breathability around the elastic belt, and in that they may be manufactured economically. Belt-type pants may be removed of elasticity of the elastic belt where the elastic belt overlaps the absorbent core, for avoiding bunching up of the absorbent core. Such removal of elasticity may provide a gap between the area where the absorbent core overlaps and not. Such gap may interfere with bringing the absorbent core close to the wearer. Further, in that the gap obviates the existence of an absorbent core, this may negatively affect a garment like appearance.
Based on the foregoing, there is a need for a pant-type absorbent article having balanced performance such as fit, comfort during wear, prevention of sagging, and prevention of leakage, while also providing a garment like appearance. There is further a need for providing such an absorbent article in an economical manner.
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter which is regarded as forming the present invention, it is believed that the invention will be better understood from the following description which is taken in conjunction with the accompanying drawings and which like designations are used to designate substantially identical elements, and in which:
As used herein, the following terms shall have the meaning specified thereafter:
“Absorbent article” refers to articles of wear which may be in the form of pants, taped diapers, incontinent briefs, feminine hygiene garments, and the like configured to also absorb and contain various exudates such as urine, feces, and menses discharged from the body. The “absorbent article” may serve as an outer cover adaptable to be joined with a separable disposable absorbent insert for providing absorbent and containment function, such as those disclosed in PCT publication WO 2011/087503A.
“Pant” refers to disposable absorbent articles having a pre-formed waist and leg openings. A pant may be donned by inserting a wearer's legs into the leg openings and sliding the pant into position about the wearer's lower torso. Pants are also commonly referred to as “closed diapers”, “prefastened diapers”, “pull-on diapers”, “training pants” and “diaper-pants.”
“Longitudinal” refers to a direction running substantially perpendicular from a waist edge to an opposing waist edge of the article and generally parallel to the maximum linear dimension of the article.
“Transverse” refers to a direction perpendicular to the longitudinal direction.
“Body-facing” and “garment-facing” refer respectively to the relative location of an element or a surface of an element or group of elements. “Body-facing” implies the element or surface is nearer to the wearer during wear than some other element or surface. “Garment-facing” implies the element or surface is more remote from the wearer during wear than some other element or surface (i.e., element or surface is proximate to the wearer's garments that may be worn over the disposable absorbent article).
“Disposed” refers to an element being located in a particular place or position.
“Joined” refers to configurations whereby an element is directly secured to another element by affixing the element directly to the other element and to configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
“Extendibility” and “extensible” mean that the width or length of the component in a relaxed state can be extended or increased.
“Elasticated” and “elasticized” mean that a component comprises at least a portion made of elastic material.
“Elongatable material,” “extensible material,” or “stretchable material” are used interchangeably and refer to a material that, upon application of a biasing force, can stretch to an elongated length of at least about 110% of its relaxed, original length (i.e. can stretch to 10 percent more than its original length), without rupture or breakage, and upon release of the applied force, shows little recovery, less than about 20% of its elongation without complete rupture or breakage as measured by EDANA method 20.2-89. In the event such an elongatable material recovers at least 40% of its elongation upon release of the applied force, the elongatable material will be considered to be “elastic” or “elastomeric.” For example, an elastic material that has an initial length of 100 mm can extend at least to 150 mm, and upon removal of the force retracts to a length of at least 130 mm (i.e., exhibiting a 40% recovery). In the event the material recovers less than 40% of its elongation upon release of the applied force, the elongatable material will be considered to be “substantially non-elastic” or “substantially non-elastomeric”. For example, an elongatable material that has an initial length of 100 mm can extend at least to 150 mm, and upon removal of the force retracts to a length of at least 145 mm (i.e., exhibiting a 10% recovery).
The main body 38 may contain an absorbent core 62 for absorbing and containing body exudates disposed on the main body 38. In the embodiment shown in
Referring to
The front and back belts 84, 86 are discontinuous with one another in the crotch region 30. In such embodiment, there is no material that covers the entirety of either the wearer-facing surface or garment-facing surface of the article. The front central panel 80 may partly overlap with the front waist panel 52 of the main body 38. The back central panel 80 may partly overlap with the back waist panel 54 of the main body 38. However, the central panels 80 may not extend into the crotch panel 56 of the main body 38 and not be disposed in the crotch panel 56. In the embodiment shown in
Referring to
In one embodiment, the transverse width LW of the back belt 86 in the uncontracted condition may be the same as the transverse width of the front belt 84 of the same condition. In one embodiment, each of the proximal edges 90 and the distal edges 88 of the front belt 84 and the back belt 86 may be substantially parallel, as in
In one embodiment, the longitudinal length LB of the back belt 86 between the back distal edge 88 and the back proximal edge 90 along its entire width LW of the back belt 86 may be approximately the same as the longitudinal length LF of the front belt 84 between the front distal edge 88 and the front proximal edge 90. In such embodiment, the seams 32 close the front and back belt 84, 86 side edges 89 of the same length for forming the article. Such an article may be economically made.
In one embodiment, the back belt 86 may have a greater longitudinal length LB between the back distal edge 88 and the back proximal edge 90 along its entire width LW of the back belt 86 in the transverse direction than the longitudinal length LF of the front belt 84 between the front distal edge 88 and the front proximal edge 90 (
Whether or not the longitudinal length LB of the back belt 86 and the longitudinal length LF of the front belt 84 are the same, the entirety of the longitudinal length LF of the belt side edge 89 of the front belt 84 is seamed with the belt side edge 89 of the back belt 86 to define a seam length LS, as in
In one embodiment, the outer sheet 92 of the front or back belt 84, 86 towards the distal edge 88 may be longer than the size of the inner sheet 94 in the longitudinal direction, and an end flap of the outer sheet 92 may be folded over the distal end of the inner sheet 94 at the waist opening. The front and back belts 84, 86 may be provided in non-woven material having a basis weight of less than 45 gsm for sake of breathability perception and softness of the belt 40.
The tensile stress (N/m) of the front and back elastic belts 84, 86, respectively, may be profiled in order to provide the benefits of the present invention. The waist belt 40 exhibits elasticity due to the plurality of elastic bodies running in the transverse direction, wherein the elastic bodies adhered to the inner and outer sheets 92, 94 impart elasticity to the waist belt 40. Tensile stress of the waist belt 40 may be adjusted by one or more of the following methods; 1) elongation rate of the elastic bodies; 2) density (dtex) of the elastic bodies; 3) longitudinal interval of multiple elastic bodies; and 4) effective length of elasticity of the elastic bodies in the transverse direction. By elongation, “0% elongation” means the original unstrained length of the elastic body. Each elastic body disposed on the waist belt 40 may be disposed over the entire transverse width LW. Some elastic bodies may be removed of its elasticity contributing to the elasticity of the waist belt 40 in the transverse center of the front and/or back belt 84, 86. When a portion of an elastic body is not contributing to the elasticity of the waist belt 40, the remainder of the intact elastic body capable of imparting elasticity to the waist belt 40 is defined as the “effective length of elasticity of an elastic body”. An elastic body unadhered to the inner and outer sheets 92, 94 may be left dangling, thereby still exhibiting elasticity as an elastic body per se. However, so long as the elasticity is non-contributory to elasticity of the waist belt 40, such length or area is described herein as “non-elastic”. The elastic bodies disposed on the front and/or back belt 84, 86 may be treated such that certain of the area overlapping the front and/or back waist panels 52, 54 of the main body 38 are removed of elasticity. Removal of elasticity from at least a portion of the area overlapping the absorbent core 62 in the back belt, or both the front and back belt, may be advantageous, in that elasticity in the front and/or back area may cause bunching of the absorbent core 62 and interfere with close fit of the main body 38 to the wearer.
In the present invention, the elastic bodies disposed on at least the back belt 86, and optionally the front belt 84, comprises:
a plurality of waist elastic bodies 96 disposed between the distal edge 51, 53, of the absorbent core 62 and the distal edge 88 of the belt, the waist elastic bodies 96 having elasticity over the entire transverse width LW of the back belt 86 and optionally the front belt 84;
a plurality of a tummy elastic bodies 97 disposed overlapping the absorbent core 62 and removed of its elasticity in at least a portion overlapping the absorbent core 62, wherein all elastic bodies but a single core edge elastic body 98 overlapping the absorbent core 62 are removed of its elasticity in at least a portion; and
the core edge elastic body 98 disposed overlapping the absorbent core 62 and adjacent the distal edge 51, 53 of the absorbent core, the core edge elastic body 98 having elasticity over the entire transverse width LW of the back belt 86 and optionally the front belt 84.
The waist elastic bodies 96 herein are disposed between the distal edge 51, 53, of the absorbent core 62 and the distal edge 88 of the waist belt, the waist elastic bodies 96 having elasticity over the entire transverse width LW of the back belt 86 and optionally the front belt 84. When the waist elastic bodies 96 are disposed on both the front and back belts 84, 86, at least some of the waist elastic bodies 96 may be matched at the seams 32 to provide good fit and prevent sagging of the entire article, as well as provide a waist band appearance around the waist opening.
The tummy elastic bodies 97 herein are disposed in the longitudinal direction overlapping the absorbent core, and removed of its elasticity in at least a portion overlapping the absorbent core 62. Such removal of elasticity in a certain portion may be referred to herein as tummy cut. The tummy elastic bodies 97 are tummy cut at approximately the center of the waist belt along the longitudinal axis, while leaving an effective length of elasticity of an elastic body to create side panels 82. By tummy cut, at least a certain area of the back belt 86, and optionally the front belt 84, overlapping the absorbent core 62 is rendered non-elastic.
The core edge elastic body 98 herein is may be a single elastic body as in
Without intending to be bound by theory, it is believed that the core edge elastic body 98 prevents creating a gap between the area where the absorbent core overlaps and not, by providing a gradation of tensile stress between the area where the waist elastic bodies 96 are disposed, and the area where the tummy elastic bodies 97 do not exhibit elasticity. By having just one or one array of a core edge elastic body 98, the absorbent core 62 may be fit closer to the wearer, while also avoiding bunching up of the majority of the area of the absorbent core 62 overlapping with the waist belt 40. Further, by preventing creation of such a gap which may obviate the existence of the absorbent core 62, the absorbent article may have a garment like appearance.
For effectively preventing the gap, the core edge elastic body 98 may be disposed at a distance of from 1 mm to 30 mm, or from 3 mm to 20 mm away from the distal edge 51, 53 of the absorbent core 62. The relationship between the core edge elastic body 98 and the waist elastic bodies 96 disposed adjacent the core edge elastic body 98 may be adjusted to further effectively prevent the gap. The waist elastic bodies disposed adjacent the core edge elastic body may be disposed at a distance of from 2 mm to 20 mm, or from 3 mm to 20 mm of the distal edge 51, 53 of the absorbent core 62. The waist elastic bodies disposed adjacent the core edge elastic body may have a density of 470-1100 dtex, and disposed at an elongation of from 150-250%.
In one embodiment, the main body 38 may be joined to the front and back belts 84, 86, such that the transverse centerline of the absorbent core 62 does not match the transverse centerline T1 of the article. Such a configuration may be advantageous to provide the front or back region 26, 28 to have higher containment capacity compared to the other region. Accordingly, in this embodiment, when the front belt comprises the waist elastic bodies 96, tummy elastic bodies 97 and core edge elastic body 98, the core edge elastic body 98 of the front belt and back belt are disposed at different distances from the distal edge 88 of the waist belt in the longitudinal direction.
Referring to
The article of the present invention may have a dimension of from 300 mm to 440 mm, or from 350 mm to 440 mm, in the longitudinal axis by using a total of no more than 40, or from 15 to 40 elastic bodies 96, 97, 98 for the elastic belt 40 per article. In the embodiments of
The article of the present invention may have a Waist Circumference Force provided by the elastic bodies 96, 97, 98 disposed on the waist belt 40 of no more than 10N, or no more than 8N, according to the Whole Article Force Measurement as described herein below. The Whole Article Force Measurement is for quantifying the force provided by the article 20 when stretched along the waist circumference, simulating initial stretch experience of the article 20 in the transverse direction when the user inserts hands in the article and expands the article. Namely, more or less the total tensile force provided by the elastic bodies 96, 97, 98 disposed in the transverse direction are measured. While there may be other elastic bodies disposed on the article, for example along the longitudinal side edges of the main body, the impact of such other elastic bodies are known to be small, when the user stretches the article in the transverse direction. The Whole Article Force Measurement is obtained by extending, or loading, the article in the transverse direction until a force of 19.6N is attained, wherein the force at the point where the belt 40 article reaches 70% of the maximum stretch is obtained. The force expected to be perceived by the user for expanding the article may be controlled, such that the user may experience a satisfying expansion of the belt 40 without excess effort.
The obtained wearable article of the present invention may provide fit, ease of application, prevention of leakage and gather marking around the leg opening. The obtained wearable article of the present invention may be made in an economical manner.
Whole Article Force Measurement
Force is measured using an Electronic Tensile Tester with a computer interface such as the MTS Criterion C42 running TestWorks 4 Software (available from MTS SYSTEMS (CHINA) CO., LTD) or equivalent instrument. A load cell is selected so that force results for the samples tested will be between 10 and 90% of capacity of the load cell used. The instrument is calibrated according to the manufacturer's instructions. All testing is performed in a room maintained at 23±2° C. and 50±5% relative humidity.
The tensile tester is fitted with hanger-type sample holding fixtures 300 as shown in
Gauge Circumference=2×(H+D+πD/2)
where H is the vertical gap between the horizontal bar sections 302, and D is the outer diameter of the bar.
The instrument is set up to go through the following steps:
A sample article 20 is inserted onto the upper horizontal bar section 302 so that the bar passes through the waist opening and one leg opening of the article. The crosshead is raised until the specimen hangs above the lower bar and does not touch lower bar 302. The load cell is tared and the crosshead is lowered to enable the lower bar 302 to be inserted through the waist opening and other leg opening without stretching the article. The article is adjusted so that the longitudinal centerline L1 of the article is in a horizontal plane halfway between the upper and lower bars 302. The center of the side portion in contact with the bar 302 is situated on the same vertical axis as the instrument load cell. The crosshead is raised slowly while the article is held in place by hand as necessary until the force is between 0.05 and 0.1N, while taking care not to add any unnecessary force. The gauge circumference at this point is the Initial Gauge Circumference. The test is initiated and the crosshead moves up at 254 mm/min until a force of 19.6N is attained, then the crosshead immediately returns to the initial gauge circumference at the same speed. The maximum circumference at 19.6N and the force at 70% stretch circumference during the extension segment of the test are recorded.
Circumference (mm)=2×(H+D+πD/2)
The maximum circumference at 19.6N is defined as the Full Stretch Circumference (mm). The 70% stretch circumference is defined as the full stretch circumference×0.7. The Waist Circumference Force is defined as the force at 70% stretch circumference during the load (extension) segment of the test.
Five samples are analyzed and their average Initial Gauge Circumference, average Full Stretch Circumference and average Waist Circumference Force are calculated and reported to the nearest 1 mm, 1 mm and 0.01 N, respectively.
An absorbent article of the present invention having an elastic profiling according to
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CN2014/094895 | Dec 2014 | WO | international |
Number | Name | Date | Kind |
---|---|---|---|
4919738 | Ball et al. | Apr 1990 | A |
5340648 | Rollins et al. | Aug 1994 | A |
5382400 | Pike et al. | Jan 1995 | A |
5415649 | Watanabe et al. | May 1995 | A |
5418045 | Pike et al. | May 1995 | A |
5501756 | Rollins et al. | Mar 1996 | A |
5507909 | Rollins et al. | Apr 1996 | A |
5622722 | Stokes et al. | Apr 1997 | A |
5707468 | Arnold et al. | Jan 1998 | A |
6077375 | Kwok | Jun 2000 | A |
6200635 | Kwok | Mar 2001 | B1 |
6235137 | Van Eperen et al. | May 2001 | B1 |
6361634 | White et al. | Mar 2002 | B1 |
6375646 | Widlund et al. | Apr 2002 | B1 |
6454989 | Neely et al. | Sep 2002 | B1 |
6520237 | Bolyard et al. | Feb 2003 | B1 |
6561430 | Ou | May 2003 | B2 |
6582518 | Riney | Jun 2003 | B2 |
6610161 | Erdman | Aug 2003 | B2 |
6613146 | Bolyard | Sep 2003 | B2 |
6632385 | Kauschke et al. | Oct 2003 | B2 |
6632386 | Shelley et al. | Oct 2003 | B2 |
6645569 | Cramer et al. | Nov 2003 | B2 |
6652693 | Burriss et al. | Nov 2003 | B2 |
6719846 | Nakamura et al. | Apr 2004 | B2 |
6737102 | Saidman et al. | May 2004 | B1 |
6803103 | Kauschke et al. | Oct 2004 | B2 |
6863933 | Cramer et al. | Mar 2005 | B2 |
7112621 | Rohrbaugh et al. | Sep 2006 | B2 |
7291239 | Polanco et al. | Nov 2007 | B2 |
7331946 | Shimada et al. | Feb 2008 | B2 |
7858544 | Turi et al. | Dec 2010 | B2 |
8186296 | Brown et al. | May 2012 | B2 |
8308706 | Rukae | Nov 2012 | B2 |
8445744 | Autran et al. | May 2013 | B2 |
8475424 | Fujimoto et al. | Jul 2013 | B2 |
8500710 | Takino et al. | Aug 2013 | B2 |
8518009 | Saito et al. | Aug 2013 | B2 |
8728051 | Lu et al. | May 2014 | B2 |
20050008839 | Cramer et al. | Jan 2005 | A1 |
20050107763 | Matsuda et al. | May 2005 | A1 |
20060025746 | Sasaki et al. | Feb 2006 | A1 |
20060030831 | Matsuda et al. | Feb 2006 | A1 |
20110071488 | Kuwano | Mar 2011 | A1 |
20130211363 | LaVon et al. | Aug 2013 | A1 |
20130310785 | Wade et al. | Nov 2013 | A1 |
20130324957 | Gassner et al. | Dec 2013 | A1 |
20150019958 | Yoshioka | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
2659870 | Nov 2013 | EP |
2008253583 | Oct 2008 | JP |
2009125088 | Jun 2009 | JP |
2011-115304 | Jun 2011 | JP |
2013123447 | Jun 2013 | JP |
WO 2014-122980 | Aug 2014 | WO |
WO 2014-192981 | Dec 2014 | WO |
WO 2014-203679 | Dec 2014 | WO |
Entry |
---|
PCT International Search Report, dated Feb. 23, 2017 (10 pages). |
PCT International Search Report, dated Aug. 24, 2015 (7 pages). |
PCT Written Opinion dated Jun. 27, 2017. |
Number | Date | Country | |
---|---|---|---|
20160184145 A1 | Jun 2016 | US |