Absorbent article with high absorbent material content

Information

  • Patent Grant
  • 10022280
  • Patent Number
    10,022,280
  • Date Filed
    Monday, December 9, 2013
    10 years ago
  • Date Issued
    Tuesday, July 17, 2018
    5 years ago
Abstract
An absorbent article comprising a pair of leg cuffs (32) with an raised section (34) and an absorbent core (28) comprising at least one channel (26, 26′) at least partially oriented in the longitudinal direction (80) of the article. The article has crotch width (Wd) before use as measured between the proximal edges of the leg cuffs at the level of the crotch point of from to 70 mm to 200 mm, and a Relative Crotch Width Reduction (RCWR) of at least 30 mm/kg.
Description
FIELD OF THE INVENTION

The invention provides an absorbent article for personal hygiene such as a baby diaper, a training pant or an adult incontinence product.


BACKGROUND OF THE INVENTION

Absorbent articles for personal hygiene, such as disposable diapers for infants, training pants for toddlers or adult incontinence undergarments are designed to absorb and contain body exudates, in particular large quantity of urine. These absorbent articles comprise several layers providing different functions, for example a topsheet, a backsheet and in-between an absorbent core, among other layers.


The function of the absorbent core is to absorb and retain the exudates for a prolonged amount of time, for example overnight for a diaper, minimize re-wet to keep the wearer dry and avoid soiling of clothes or bed sheets. The majority of currently marketed absorbent articles comprise as absorbent material a blend of comminuted wood pulp with superabsorbent polymers (SAP) in particulate form, also called absorbent gelling materials (AGM), see for example U.S. Pat. No. 5,151,092 (Buell). Absorbent articles having a core consisting essentially of SAP as absorbent material (so called “airfelt-free” cores) have also been proposed but are less common than traditional mixed cores (see e.g. WO2008/155699 (Hundorf), WO95/11652 (Tanzer), WO2012/052172 (Van Malderen)).


Absorbent articles comprising a core with slits or grooves have also been proposed, typically to increase the fluid acquisition properties of the core WO95/11652 (Tanzer) discloses absorbent articles which include superabsorbent material located in discrete pockets having water-sensitive and water-insensitive containment structure. WO2009/047596 (Wright) discloses an absorbent article with a slit absorbent core.


These absorbent articles may typically comprise leg cuffs which provide improved containment of liquids and other body exudates. Leg cuffs may also be referred to as leg bands, side flaps, barrier cuffs, or elastic cuffs. Usually each leg cuff will comprise one or more elastic string or element comprised in the chassis of the diaper for example between the topsheet and backsheet in the area of the leg openings to provide an effective seal while the diaper is in use. These elasticized elements which are substantially planar with the chassis of the absorbent article will be referred to herein as gasketing cuffs. It is also usual for the leg cuffs to comprise raised elasticized flaps, herein referred to as barrier leg cuffs, which improve the containment of fluid in the leg-torso joint regions. Each barrier leg cuff typically comprises one or more elastic strings. U.S. Pat. No. 4,808,178 and U.S. Pat. No. 4,909,803 (Aziz) describe disposable diapers having such raised elasticized flaps. U.S. Pat. No. 4,695,278 (Lawson) and U.S. Pat. No. 4,795,454 (Dragoo) describe disposable diapers having dual cuffs, including gasketing cuffs and barrier leg cuffs. U.S. Pat. No. 4,704,116 (Enloe) discloses an absorbent garment comprising a pair of gasketing cuffs and a pair of barrier leg cuffs which attached to or formed from the topsheet and spaced inwardly from said elasticized leg openings, defining a waste-containment pocket.


Absorbent articles generally have a high absorbent capacity and the absorbent core can expand to several times its weight and volume. These increases will typically cause the absorbent articles to sag in the crotch region as it becomes saturated with liquid, which may cause the barrier cuffs to partially lose contact with the wearer's skin. This can lead to a loss of functionality of the barrier cuffs, with the increased possibly of leakage.


US2007/088308 (Ehrnsperger) addresses this problem by suggesting a barrier cuff strip which extends longitudinally from front to back waist regions along the topsheet and includes front and back ends and proximal and distal edges connecting the front and back ends. The distal edge is attached at a cuff end bond region having an outer bond edge and an inner bond edge spaced longitudinally from the outer bond edge. A longitudinal distance from the inner bond edge to the laterally extending side at the one of the front and back waist regions is about ½ or more of a longitudinal length of the front or back waist regions.


US2004/220541 (Suzuki) discloses an absorbent sheet having concave and convex portions on its surface and spontaneously exhibiting a three-dimensional structure in that a concave-convex structure is formed. US2007/244455 (Hansson) discloses an absorbent core in an absorbent article provided with at least two folding guides extending in a substantially longitudinal direction in the crotch region and dividing at least a part of the crotch region of the absorbent core in a central portion and two lateral portions as seen in a transverse direction. At least two stretchable crotch elastic members are arranged in the crotch portion of the article and are attached to the absorbent core and/or to the inner or outer cover.


Although the prior art has provided different solutions to the problem of improving leakage prevention, it still beneficial to develop new and improved solution to provide better fit of the leg cuffs at high load. The present inventors have found that it may be beneficial for the free edges of the barrier leg cuffs to follow the fold lines between legs and torso. These fold lines are a very good position for the raised edge of the barrier leg cuffs to follow because of (a) it is a low motion area, and (b) it is in a region closest to the body. These anatomical fold lines are not straight, but rather the distance between the left and right fold line is larger in the front and back than in the crotch.


The inventors have found that when the width of the diaper between the barrier leg cuffs in the crotch portion is reduced as indicated further below, the barrier leg cuff's free edge can better follow the curved fold lines as the article becomes loaded which improves leakage prevention. This is particularly advantageous as the leakage prevention is thus increased when the article becomes highly loaded and thus when the leakage prevention is most needed. The inventors have found that this effect was particularly present when the absorbent core contains high proportions of superabsorbent polymers and at least partially longitudinally extending channels.


SUMMARY OF THE INVENTION

The invention provides an absorbent article for personal hygiene such as a diaper or training pant having a front edge and a back edge. The article has a length L as measured along the longitudinal axis from its front edge to its back edge, and a crotch point (C) defined as the point placed at a distance of two fifth of L from the front edge of the article on the longitudinal axis. The article comprises:

    • a liquid permeable topsheet,
    • a liquid impermeable backsheet,
    • a pair of barrier leg cuffs extending at least partially between the front edge and the back edge of the diaper on opposite sides of the longitudinal axis and present at least at the longitudinal position of the crotch point, each barrier leg cuff being delimited by a proximal edge joined directly or indirectly to the topsheet and/or the backsheet and a free terminal edge,
    • and an absorbent core comprising a core wrap enclosing an absorbent material, wherein the absorbent material comprises at least 80% of superabsorbent polymers by weight of the absorbent material, wherein the absorbent core comprises at least one channel at least partially oriented in the longitudinal direction of the article.


The article has a Relative Crotch Width Reduction (RCWR) of at least 30 mm/kg, wherein the RCWR is calculated according to the formula:






RCWR
=


Wd
-
Ww


Mw
-
Md






wherein Wd is the dry crotch width and Ww is the wet crotch width at the crotch point, and Mw is the wet mass of the article and Md is the dry mass of the article, the measurements being made as indicated according to RCWR Test described herein. The article has dry crotch width (Wd) (before use) at the level of the crotch point of from to 70 mm to 200 mm.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top view of an embodiment of the present invention in the form of a diaper with some layers partially removed;



FIG. 2 is a transversal cross-section of the embodiment of FIG. 1 at the crotch point;



FIG. 3 is a transversal cross-section of the embodiment of FIG. 1 taken at the same point as FIG. 2 where the diaper has been loaded with fluid;



FIG. 4 is a top view of an alternative embodiment of the invention with two channels.



FIG. 5 is a transversal cross-section of the embodiment of FIG. 4 at the crotch point;



FIG. 6 is a top view of an embodiment of the absorbent core of FIG. 4 with some layers partially removed;



FIG. 7 is a transversal cross-section of the core of FIG. 6 at the crotch point;



FIG. 8 is a longitudinal cross-section of the embodiment of FIG. 6.





DETAILED DESCRIPTION OF THE INVENTION
Introduction

As used herein, the term “absorbent article” refers to disposable devices such as infant or adult diapers, training pants, and the like which are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body. Typically these articles comprise a topsheet, backsheet, an absorbent core and optionally an acquisition system (which may be comprised of one or several layers) and typically other components, with the absorbent core normally placed between the backsheet and the acquisition system or topsheet.


The absorbent articles of the invention will be further illustrated in the below description and in the Figures in the form of a taped diaper. Nothing in this description should be however considered limiting the scope of the claims unless explicitly indicated otherwise. Unless indicated otherwise, the description refers to the dry article, i.e. before use and conditioned at least 24 hours at 21° C.+/−2° C. and 50+/−20% Relative Humidity (RH).


A “nonwoven web” as used herein means a manufactured sheet, web or batt of directionally or randomly orientated fibers, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet-milling, whether or not additionally needled. The fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ. Commercially available fibers have diameters ranging from less than about 0.001 mm to more than about 0.2 mm and they come in several different forms such as short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yam). Nonwoven webs can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, carding and airlaying. The basis weight of nonwoven webs is usually expressed in grams per square meter (g/m2 or gsm).


The term “joined” or “bonded” or “attached”, as used herein, encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.


“Comprise,” “comprising,” and “comprises” are open ended terms, each specifies the presence of what follows, e.g., a component, but does not preclude the presence of other features, e.g., elements, steps, components known in the art, or disclosed herein. These terms based on the verb “comprise” should be read as encompassing the narrower terms “consisting of” which excludes any element, step, or ingredient not specified and “consisting essentially of” which limits the scope of an element to the specified materials or steps and those that do not materially affect the way the element performs its function. Any preferred or exemplary embodiments described below are not limiting the scope of the claims, unless specifically indicated to do so. The words “typically”, “normally”, “advantageously” and the likes also qualify elements which are not intended to limit the scope of the claims unless specifically indicated to do so.


General Description of the Absorbent Article


An exemplary absorbent article according to the invention in the form of an infant diaper 20 is represented in FIGS. 1-3. FIG. 1 is a plan view of the exemplary diaper 20, in a flattened state, with portions of the structure being cut-away to more clearly show the construction of the diaper 20. This diaper 20 is shown for illustration purpose only as the invention may be used for making a wide variety of diapers or other absorbent articles.


The absorbent article comprises a liquid permeable topsheet 24, a liquid impermeable backsheet 25, an absorbent core 28 between the topsheet 24 and the backsheet 25, and barrier leg cuffs 34. The absorbent article may also comprise an acquisition-distribution system (“ADS”), which in the example represented comprises a distribution layer 54 and an acquisition layer 52, which will be further detailed in the following. The article may also comprise elasticized gasketing cuffs 32 joined to the chassis of the absorbent article, typically via the topsheet and/or backsheet, and substantially planar with the chassis of the diaper.


The Figures also show typical taped diaper components such as a fastening system comprising adhesive tabs 42 attached towards the back edge of the article and cooperating with a landing zone 44 on the front of the article. The absorbent article may also comprise other typical elements, which are not represented, such as a back elastic waist feature, a front elastic waist feature, transverse barrier cuff(s), a lotion application, etc. . . .


The absorbent article 20 comprises a front edge 10, a back edge 12, and two side edges. The front edge 10 is the edge of the article which is intended to be placed towards the front of the user when worn, and the back edge 12 is the opposite edge. In a taped diapers, as exemplarily shown in FIG. 1, the back edge of the diaper is typically on the side of the diaper that comprises the fastening tabs 42 and the front edge is typically on the side of the diaper that comprise the matching landing zone 44. More generally, the front of the article has typically more absorbent capacity than the back of the article. The absorbent article may be notionally divided by a longitudinal axis 80 extending from the front edge to the back edge of the article and dividing the article in two substantially symmetrical halves relative to this axis, with article placed flat and viewed from above as in FIG. 1. The length L of the article can be measured along the longitudinal axis 80 from front edge 10 to back edge 12. The article comprises a crotch point C defined herein as the point placed on the longitudinal axis at a distance of two fifth (⅖) of L starting from the front edge 10 of the article 20.


The crotch region can be defined as the region of the diaper longitudinally centered at the crotch point C and extending towards the front and towards the back of the absorbent article by a distance of one fifth of L (L/5) in each direction for a total length of ⅖ of L. A front region and a back region can be defined as the remaining portions of the diapers placed respectively towards the front and the back edges of the article.


The topsheet 24, the backsheet 25, the absorbent core 28 and the other article components may be assembled in a variety of well known configurations, in particular by gluing or heat embossing. Exemplary diaper configurations are described generally in U.S. Pat. No. 3,860,003, U.S. Pat. No. 5,221,274, U.S. Pat. No. 5,554,145, U.S. Pat. No. 5,569,234, U.S. Pat. No. 5,580,411, and U.S. Pat. No. 6,004,306. The absorbent article is preferably thin. The caliper at the crotch point C of the article may be for example from 4.0 mm to 12.0 mm, in particular from 6.0 mm to 10.0 mm, as measured with the Caliper Test described herein.


The absorbent core 28 comprises absorbent material comprising at least 80% by weight of superabsorbent polymers and a core wrap enclosing the absorbent material. The core wrap may typically comprise two substrates 16 and 16′ for the top side and bottom side of the core. The core further comprises at least one channel, represented in FIG. 1 as the four channels 26, 26′ and 27, 27′.


These and other components of the articles will now be discussed in more details.


Topsheet 24


The topsheet 24 is the part of the absorbent article that is directly in contact with the wearer's skin. The topsheet 24 can be joined to the backsheet 25, the core 28 and/or any other layers as is known in the art. Usually, the topsheet 24 and the backsheet 25 are joined directly to each other in some locations (e.g. on or close to the periphery of the article) and are indirectly joined together in other locations by directly joining them to one or more other elements of the article 20.


The topsheet 24 is preferably compliant, soft-feeling, and non-irritating to the wearer's skin. Further, at least a portion of the topsheet 24 is liquid permeable, permitting liquids to readily penetrate through its thickness. A suitable topsheet may be manufactured from a wide range of materials, such as porous foams, reticulated foams, apertured plastic films, or woven or nonwoven materials of natural fibers (e.g., wood or cotton fibers), synthetic fibers or filaments (e.g., polyester or polypropylene or bicomponent PE/PP fibers or mixtures thereof), or a combination of natural and synthetic fibers. If the topsheet 24 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art, in particular spunbond PP nonwoven. A suitable topsheet comprising a web of staple-length polypropylene fibers is manufactured by Veratec, Inc., a Division of International Paper Company, of Walpole, Mass. under the designation P-8.


Suitable formed film topsheets are also described in U.S. Pat. No. 3,929,135, U.S. Pat. No. 4,324,246, U.S. Pat. No. 4,342,314, U.S. Pat. No. 4,463,045, and U.S. Pat. No. 5,006,394. Other suitable topsheets may be made in accordance with U.S. Pat. Nos. 4,609,518 and 4,629,643 issued to Curro et al. Such formed films are available from The Procter & Gamble Company of Cincinnati, Ohio as “DRI-WEAVE” and from Tredegar Corporation, based in Richmond, Va., as “CLIFF-T”.


Any portion of the topsheet 24 may be coated with a lotion as is known in the art. Examples of suitable lotions include those described in U.S. Pat. No. 5,607,760, U.S. Pat. No. 5,609,587, U.S. Pat. No. 5,643,588, U.S. Pat. No. 5,968,025 and U.S. Pat. No. 6,716,441. The topsheet 24 may also include or be treated with antibacterial agents, some examples of which are disclosed in PCT Publication WO95/24173. Further, the topsheet 24, the backsheet 25 or any portion of the topsheet or backsheet may be embossed and/or matte finished to provide a more cloth like appearance.


The topsheet 24 may comprise one or more apertures to ease penetration of exudates therethrough, such as urine and/or feces (solid, semi-solid, or liquid). The size of at least the primary aperture is important in achieving the desired waste encapsulation performance. If the primary aperture is too small, the waste may not pass through the aperture, either due to poor alignment of the waste source and the aperture location or due to fecal masses having a diameter greater than the aperture. If the aperture is too large, the area of skin that may be contaminated by “rewet” from the article is increased. Typically, the total area of the apertures at the surface of a diaper may have an area of between about 10 cm2 and about 50 cm2, in particular between about 15 cm2 and 35 cm2. Examples of apertured topsheet are disclosed in U.S. Pat. No. 6,632,504, assigned to BBA NONWOVENS SIMPSONVILLE. WO2011/163582 also discloses suitable colored topsheet having a basis weight of from 12 to 18 gsm and comprising a plurality of bonded points. Each of the bonded points has a surface area of from 2 mm2 to 5 mm2 and the cumulated surface area of the plurality of bonded points is from 10 to 25% of the total surface area of the topsheet.


Typical diaper topsheets have a basis weight of from about 10 to about 21 gsm, in particular between from about 12 to about 18 gsm but other basis weights are possible.


Backsheet 25


The backsheet 25 is generally that portion of the article 20 positioned adjacent the garment-facing surface of the absorbent core 28 and which prevents the exudates absorbed and contained therein from soiling articles such as bedsheets and undergarments. The backsheet 25 is typically impermeable to liquids (e.g. urine). The backsheet may for example be or comprise a thin plastic film such as a thermoplastic film having a thickness of about 0.012 mm to about 0.051 mm. Exemplary backsheet films include those manufactured by Tredegar Corporation, based in Richmond, Va., and sold under the trade name CPC2 film. Other suitable backsheet materials may include breathable materials which permit vapors to escape from the diaper 20 while still preventing exudates from passing through the backsheet 25. Exemplary breathable materials may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, microporous films such as manufactured by Mitsui Toatsu Co., of Japan under the designation ESPOIR NO and by Tredegar Corporation of Richmond, Va., and sold under the designation EXAIRE, and monolithic films such as manufactured by Clopay Corporation, Cincinnati, Ohio under the name HYTREL blend P18-3097. Some breathable composite materials are described in greater detail in PCT Application No. WO 95/16746 published on Jun. 22, 1995 in the name of E. I. DuPont; U.S. Pat. No. 5,938,648 to LaVon et al., U.S. Pat. No. 4,681,793 to Linman et al., U.S. Pat. No. 5,865,823 to Curro; and U.S. Pat. No. 5,571,096 to Dobrin et al, U.S. Pat. No. 6,946,585B2 to London Brown.


The backsheet 25 may be joined to the topsheet 24, the absorbent core 28 or any other element of the diaper 20 by any attachment means known in the art. Suitable attachment means are described above with respect to means for joining the topsheet 24 to other elements of the article 20. For example, the attachment means may include a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive. Suitable attachment means comprises an open pattern network of filaments of adhesive as disclosed in U.S. Pat. No. 4,573,986. Other suitable attachment means include several lines of adhesive filaments which are swirled into a spiral pattern, as is illustrated by the apparatus and methods shown in U.S. Pat. No. 3,911,173, U.S. Pat. No. 4,785,996; and U.S. Pat. No. 4,842,666. Adhesives which have been found to be satisfactory are manufactured by H. B. Fuller Company of St. Paul, Minn. and marketed as HL-1620 and HL 1358-XZP. Alternatively, the attachment means may comprise heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds, or any other suitable attachment means or combinations of these attachment means as are known in the art.


Absorbent Core 28


As used herein, the term “absorbent core” refers to the individual component of the article having the most absorbent capacity and comprising an absorbent material and a core wrap enclosing the absorbent material. The term “absorbent core” does not include the acquisition-distribution system or layer or any other component of the article which is not either integral part of the core wrap or placed within the core wrap. The core may consist essentially of, or consist of, a core wrap, absorbent material as defined below and glue enclosed within the core wrap.


The absorbent core 28 of the invention comprises absorbent material with a high amount of superabsorbent polymers (herein abbreviated as “SAP”) enclosed within a core wrap. The SAP content represents at least 80% by weight of the absorbent material contained in the core wrap. The core wrap is not considered as absorbent material for the purpose of assessing the percentage of SAP in the absorbent core.


By “absorbent material” it is meant a material which has some absorbency property or liquid retaining properties, such as SAP, cellulosic fibers as well as synthetic fibers. Typically, glues used in making absorbent cores have no absorbency properties and are not considered as absorbent material. The SAP content may be higher than 80%, for example at least 85%, at least 90%, at least 95% and even up to and including 100% of the weight of the absorbent material contained within the core wrap. This provides a relatively thin core compared to conventional core typically comprising between 40-60% SAP and high content of cellulose fibers. The absorbent material may in particular comprises less than 10% weight percent of natural or synthetic fibers, or less than 5% weight percent, or even be substantially free of natural and/or synthetic fibers. The absorbent material may advantageously comprise little or no airfelt (cellulose) fibers, in particular the absorbent core may comprise less than 15%, 10%, 5% airfelt (cellulose) fibers by weight of the absorbent core, or even be substantially free of cellulose fibers.


The exemplary absorbent core 28 of the absorbent article of FIG. 4-5 is shown in isolation in FIGS. 6-8. The absorbent core typically comprises a front edge 280, a back edge 282 and two longitudinal edges 284, 286 joining the front edge 280 and the back edge 282. The absorbent core may also comprise a generally planar top edge and a generally planar bottom edge. The front edge 280 of the core is the edge of the core intended to be placed towards the front edge 10 of the absorbent article. The core may have a longitudinal axis 80′ corresponding substantially to the longitudinal axis of the article 80, as seen from the top in a planar view as in FIG. 1. Typically the absorbent material will be advantageously distributed in higher amount towards the front edge than towards the back edge as more absorbency is required at the front. Typically the front and back edges of the core are shorter than the longitudinal edges of the core. The core wrap may be formed by two nonwoven material 16, 16′ which may be at least partially sealed along the edges of the absorbent core. The core wrap may be at least partially sealed along its front edge, back edge and two longitudinal edges so that substantially no absorbent material leaks out of the absorbent core wrap.


The absorbent core of the invention may further comprise adhesive for example to help immobilizing the SAP within the core wrap and/or to ensure integrity of the core wrap, in particular when the core wrap is made of two or more substrates. The core wrap will typically extend to a larger area than strictly needed for containing the absorbent material within. The absorbent core advantageously achieve an SAP loss of no more than about 70%, 60%, 50%, 40%, 30%, 20%, 10% according to the Wet Immobilization Test described in WO2010/0051166A1.


Cores comprising relatively high amount of SAP with various core designs have been proposed in the past, see for example in U.S. Pat. No. 5,599,335 (Goldman), EP1,447,066 (Busam), WO95/11652 (Tanzer), US2008/0312622A1 (Hundorf), WO2012/052172 (Van Malderen).


The absorbent material may be a continuous layer present within the core wrap. In other embodiments, the absorbent material may be comprised of individual pockets or stripes of absorbent material enclosed within the core wrap. In the first case, the absorbent material may be for example obtained by the application of a single continuous layer of absorbent material. The continuous layer of absorbent material, in particular of SAP, may also be obtained by combining two absorbent layers having discontinuous absorbent material application pattern wherein the resulting layer is substantially continuously distributed across the absorbent particulate polymer material area, as taught in US2008/0312622A1 (Hundorf) for example. The absorbent core 28 may for example comprise a first absorbent layer and a second absorbent layer, the first absorbent layer comprising a first substrate 16 and a first layer 61 of absorbent material, which may be 100% SAP, and the second absorbent layer comprising a second substrate 16′ and a second layer 62 of absorbent material, which may also be 100% SAP, and a fibrous thermoplastic adhesive material 51 at least partially bonding each layer of absorbent material 61, 62 to its respective substrate. This is illustrated in FIG. 8 where the first and second SAP layers have been applied as transversal stripes or “land areas” having the same width as the desired absorbent material deposition area on their respective substrate before being combined. The stripes or land areas may be separated by junction areas. The stripes may advantageously comprise different amount of absorbent material (SAP) to provide a profiled basis weight along the longitudinal axis of the core 80′. The first substrate 16 and the second substrate 16′ may form the core wrap.


The fibrous thermoplastic adhesive material 51 may be at least partially in contact with the absorbent material 61, 62 in the land areas and at least partially in contact with the substrate layer in the junction areas. This imparts an essentially three-dimensional structure to the fibrous layer of thermoplastic adhesive material 51, which in itself is essentially a two-dimensional structure of relatively small thickness, as compared to the dimension in length and width directions. Thereby, the fibrous thermoplastic adhesive material may provide cavities to cover the absorbent material in the land area, and thereby immobilizes this absorbent material, which may be 100% SAP.


The thermoplastic adhesive material 51 may comprise, in its entirety, a single thermoplastic polymer or a blend of thermoplastic polymers, having a softening point, as determined by the ASTM Method D-36-95 “Ring and Ball”, in the range between 50° C. and 300° C., and/or the thermoplastic adhesive material may be a hotmelt adhesive comprising at least one thermoplastic polymer in combination with other thermoplastic diluents such as tackifying resins, plasticizers and additives such as antioxidants.


The thermoplastic polymer has typically a molecular weight (Mw) of more than 10,000 and a glass transition temperature (Tg) usually below room temperature or −6° C.<Tg<16° C. Typical concentrations of the polymer in a hotmelt are in the range of about 20 to about 40% by weight. The thermoplastic polymers may be water insensitive. Exemplary polymers are (styrenic) block copolymers including A-B-A triblock structures, A-B diblock structures and (A-B)n radial block copolymer structures wherein the A blocks are non-elastomeric polymer blocks, typically comprising polystyrene, and the B blocks are unsaturated conjugated diene or (partly) hydrogenated versions of such. The B block is typically isoprene, butadiene, ethylene/butylene (hydrogenated butadiene), ethylene/propylene (hydrogenated isoprene), and mixtures thereof. Other suitable thermoplastic polymers that may be employed are metallocene polyolefins, which are ethylene polymers prepared using single-site or metallocene catalysts. Therein, at least one comonomer can be polymerized with ethylene to make a copolymer, terpolymer or higher order polymer. Also applicable are amorphous polyolefins or amorphous polyalphaolefins (APAO) which are homopolymers, copolymers or terpolymers of C2 to C8 alpha olefins.


The tackifying resin may exemplarily have a Mw below 5,000 and a Tg usually above room temperature, typical concentrations of the resin in a hotmelt are in the range of about 30 to about 60%, and the plasticizer has a low Mw of typically less than 1,000 and a Tg below room temperature, with a typical concentration of about 0 to about 15%.


The thermoplastic adhesive used for the fibrous layer preferably has elastomeric properties, such that the web formed by the fibers on the SAP layer is able to be stretched as the SAP swell. Exemplary elastomeric, hotmelt adhesives include thermoplastic elastomers such as ethylene vinyl acetates, polyurethanes, polyolefin blends of a hard component (generally a crystalline polyolefin such as polypropylene or polyethylene) and a Soft component (such as ethylene-propylene rubber); copolyesters such as poly (ethylene terephthalate-co-ethylene azelate); and thermoplastic elastomeric block copolymers having thermoplastic end blocks and rubbery mid blocks designated as A-B-A block copolymers: mixtures of structurally different homopolymers or copolymers, e.g., a mixture of polyethylene or polystyrene with an A-B-A block copolymer; mixtures of a thermoplastic elastomer and a low molecular weight resin modifier, e.g., a mixture of a styrene-isoprenestyrene block copolymer with polystyrene; and the elastomeric, hot-melt, pressure-sensitive adhesives described herein. Elastomeric, hot-melt adhesives of these types are described in more detail in U.S. Pat. No. 4,731,066 issued to Korpman on Mar. 15, 1988.


The thermoplastic adhesive material is advantageously applied as fibers. The fibers may exemplarily have an average thickness of about 1 to about 50 micrometers or about 1 to about 35 micrometers and an average length of about 5 mm to about 50 mm or about 5 mm to about 30 mm. To improve the adhesion of the thermoplastic adhesive material to the substrate or to any other layer, in particular any other nonwoven layer, such layers may be pre-treated with an auxiliary adhesive. The fibers adhere to each other to form a fibrous layer, which can also be described as a mesh.


In certain embodiments, the thermoplastic adhesive material will meet at least one, or several, or all of the following parameters. An exemplary thermoplastic adhesive material may have a storage modulus G′ measured at 20° C. of at least 30,000 Pa and less than 300,000 Pa, or less than 200,000 Pa, or between 140,000 Pa and 200,000 Pa, or less than 100,000 Pa. In a further aspect, the storage modulus G′ measured at 35° C. may be greater than 80,000 Pa. In a further aspect, the storage modulus G′ measured at 60° C. may be less than 300,000 Pa and more than 18,000 Pa, or more than 24,000 Pa, or more than 30,000 Pa, or more than 90,000 Pa. In a further aspect, the storage modulus G′ measured at 90° C. may be less than 200,000 Pa and more than 10,000 Pa, or more than 20,000 Pa, or more then 30,000 Pa. The storage modulus measured at 60° C. and 90° C. may be a measure for the form stability of the thermoplastic adhesive material at elevated ambient temperatures. This value is particularly important if the absorbent product is used in a hot climate where the thermoplastic adhesive material would lose its integrity if the storage modulus G′ at 60° C. and 90° C. is not sufficiently high.


G′ can be measured using a rheometer as indicated in WO2010/27719. The rheometer is capable of applying a shear stress to the adhesive and measuring the resulting strain (shear deformation) response at constant temperature. The adhesive is placed between a Peltier-element acting as lower, fixed plate and an upper plate with a radius R of e.g., 10 mm, which is connected to the drive shaft of a motor to generate the shear stress. The gap between both plates has a height H of e.g., 1500 micron. The Peltier-element enables temperature control of the material (+0.5° C.). The strain rate and frequency should be chosen such that all measurements are made in the linear viscoelastic region.


Superabsorbent Polymer (SAP)


“Superabsorbent polymers” (“SAP”) as used herein refer to absorbent material which are cross-linked polymeric materials that can absorb at least 10 times their weight of an aqueous 0.9% saline solution as measured using the Centrifuge Retention Capacity (CRC) test (EDANA method WSP 241.2-05E). The SAP used may in particular have a CRC value of more than 20 g/g, or more than 24 g/g, or of from 20 to 50 g/g, or from 20 to 40 g/g, or 24 to 30 g/g. The SAP useful in the present invention include a variety of water-insoluble, but water-swellable polymers capable of absorbing large quantities of fluids.


The superabsorbent polymer can be in particulate form so as to be flowable in the dry state. Typical particulate absorbent polymer materials are made of poly(meth)acrylic acid polymers. However, e.g. starch-based particulate absorbent polymer material may also be used, as well polyacrylamide copolymer, ethylene maleic anhydride copolymer, cross-linked carboxymethylcellulose, polyvinyl alcohol copolymers, cross-linked polyethylene oxide, and starch grafted copolymer of polyacrylonitrile. The superabsorbent polymer may be polyacrylates and polyacrylic acid polymers that are internally and/or surface cross-linked. Suitable materials are described in the PCT Patent Application WO07/047,598 or for example WO07/046,052 or for example WO2009/155265 and WO2009/155264. In some embodiments, suitable superabsorbent polymer particles may be obtained by current state of the art production processes as is more particularly as described in WO 2006/083584. The superabsorbent polymers are preferably internally cross-linked, i.e. the polymerization is carried out in the presence of compounds having two or more polymerizable groups which can be free-radically copolymerized into the polymer network. Useful crosslinkers include for example ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane as described in EP-A 530 438, di- and triacrylates as described in EP-A 547 847, EP-A 559 476, EP-A 632 068, WO 93/21237, WO 03/104299, WO 03/104300, WO 03/104301 and in DE-A 103 31 450, mixed acrylates which, as well as acrylate groups, include further ethylenically unsaturated groups, as described in DE-A 103 31 456 and DE-A 103 55 401, or crosslinker mixtures as described for example in DE-A 195 43 368, DE-A 196 46 484, WO 90/15830 and WO 02/32962 as well as cross-linkers described in WO2009/155265. The superabsorbent polymer particles may be externally surface cross-linked, or: post cross-linked). Useful post-crosslinkers include compounds including two or more groups capable of forming covalent bonds with the carboxylate groups of the polymers. Useful compounds include for example alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds as described in EP-A 083 022, EP-A 543 303 and EP-A 937 736, polyhydric alcohols as described in DE-C 33 14 019, cyclic carbonates as described in DE-A 40 20 780, 2-oxazolidone and its derivatives, such as N-(2-hydroxyethyl)-2-oxazolidone as described in DE-A 198 07 502, bis- and poly-2-oxazolidones as described in DE-A 198 07 992, 2-oxotetrahydro-1,3-oxazine and its derivatives as described in DE-A 198 54 573, N-acyl-2-oxazolidones as described in DE-A 198 54 574, cyclic ureas as described in DE-A 102 04 937, bicyclic amide acetals as described in DE-A 103 34 584, oxetane and cyclic ureas as described in EP1,199,327 and morpholine-2,3-dione and its derivatives as described in WO03/031482.


In some embodiments, the SAP are formed from polyacrylic acid polymers/polyacrylate polymers, for example having a neutralization degree of from 60% to 90%, or about 75%, having for example sodium counter ions.


The SAP useful for the present invention may be of numerous shapes. The term “particles” refers to granules, fibers, flakes, spheres, powders, platelets and other shapes and forms known to persons skilled in the art of superabsorbent polymer particles. In some embodiments, the SAP particles can be in the shape of fibers, i.e. elongated, acicular superabsorbent polymer particles. In those embodiments, the superabsorbent polymer particles fibers have a minor dimension (i.e. diameter of the fiber) of less than about 1 mm, usually less than about 500 μm, and preferably less than 250 μm down to 50 μm. The length of the fibers is preferably about 3 mm to about 100 mm. The fibers can also be in the form of a long filament that can be woven.


Typically, SAP are spherical-like particles. In contrast to fibers, “spherical-like particles” have a longest and a smallest dimension with a particulate ratio of longest to smallest particle dimension in the range of 1-5, where a value of 1 would equate a perfectly spherical particle and 5 would allow for some deviation from such a spherical particle. The superabsorbent polymer particles may have a particle size of less than 850 μm, or from 50 to 850 μm, preferably from 100 to 710 μm, more preferably from 150 to 650 μm, as measured according to EDANA method WSP 220.2-05. SAP having a relatively low particle size help to increase the surface area of the absorbent material which is in contact with liquid exudates and therefore support fast absorption of liquid exudates.


The SAP may have a particle sizes in the range from 45 μm to 4000 μm, more specifically a particle size distribution within the range of from 45 μm to about 2000 μm, or from about 100 μm to about 1000, 850 or 600 μm. The particle size distribution of a material in particulate form can be determined as it is known in the art, for example by means of dry sieve analysis (EDANA 420.02 “Particle Size distribution).


In some embodiments herein, the superabsorbent material is in the form of particles with a mass medium particle size up to 2 mm, or between 50 microns and 2 mm or to 1 mm, or preferably from 100 or 200 or 300 or 400 or 500 μm, or to 1000 or to 800 or to 700 μm; as can for example be measured by the method set out in for example EP-A-0,691,133. In some embodiments of the invention, the superabsorbent polymer material is in the form of particles whereof at least 80% by weight are particles of a size between 50 μm and 1200 μm and having a mass median particle size between any of the range combinations above. In addition, or in another embodiment of the invention, said particles are essentially spherical. In yet another or additional embodiment of the invention the superabsorbent polymer material has a relatively narrow range of particle sizes, e.g. with the majority (e.g. at least 80% or preferably at least 90% or even at least 95% by weight) of particles having a particle size between 50 μm and 1000 μm, preferably between 100 μm and 800 μm, and more preferably between 200 μm and 600 μm.


Suitable SAP may for example be obtained from inverse phase suspension polymerizations as described in U.S. Pat. No. 4,340,706 and U.S. Pat. No. 5,849,816 or from spray- or other gas-phase dispersion polymerizations as described in US Patent Applications No. 2009/0192035, 2009/0258994 and 2010/0068520. In some embodiments, suitable SAP may be obtained by current state of the art production processes as is more particularly described from page 12, line 23 to page 20, line 27 of WO 2006/083584.


The surface of the SAP may be coated, for example, with a cationic polymer. Preferred cationic polymers can include polyamine or polyimine materials. In some embodiments, the SAP may be coated with chitosan materials such as those disclosed in U.S. Pat. No. 7,537,832 B2. In some other embodiments, the SAP may comprise mixed-bed Ion-Exchange absorbent polymers such as those disclosed in WO 99/34841 and WO 99/34842.


The absorbent core will typically comprise only one type of SAP, but it is not excluded that a blend of SAPs may be used. The fluid permeability of a superabsorbent polymer can be quantified using its Urine Permeability Measurement (UPM) value, as measured in the test disclosed European patent application number EP12174117.7. The UPM of the SAP may for example be of at least 10×10−7 cm3·sec/g, or at least 30×10−7 cm3·sec/g, or at least 50×10−7 cm3·sec/g, or more, e.g. at least 80 or 100×10−7 cm3·sec/g. The flow characteristics can also be adjusted by varying the quantity and distribution of the SAP used in the second absorbent layer.


For most absorbent articles, the liquid discharge occurs predominately in the front half of the article, in particular for diaper. The front half of the article (as defined by the region between the front edge and a transversal line placed at a distance of half L from the front or back edge may therefore comprise most of the absorbent capacity of the core. Thus, at least 60% of the SAP, or at least 65%, 70%, 75% or 80% of the SAP may be present in the front half of the absorbent article, the remaining SAP being disposed in the back half of the absorbent article.


The total amount of SAP present in the absorbent core may also vary according to expected user. Diapers for newborns may require less SAP than infant or adult incontinence diapers. The amount of SAP in the core may be for example comprised from about 5 to 60 g, in particular from 5 to 50 g. The average SAP basis weight within the (or “at least one”, if several are present) deposition area 8 of the SAP may be for example of at least 50, 100, 200, 300, 400, 500 or more g/m2. The areas of the channels present in the absorbent material deposition area 8 are deduced from the absorbent material deposition area to calculate this average basis weight.


Core Wrap (16, 16′)


The core wrap may be made of a single substrate folded around the absorbent material, or may advantageously comprise two (or more) substrates which are attached to another. Typical attachments are the so-called C-wrap and/or sandwich wrap. In a C-wrap, as exemplarily shown in FIGS. 2 and 7, the longitudinal and/or transversal edges of one of the substrate are folded over the other substrate to form flaps. These flaps are then bonded to the external surface of the other substrate, typically by gluing.


The core wrap may be formed by any materials suitable for receiving and containing the absorbent material. Typical substrate materials used in the production of conventional cores may be used, in particular paper, tissues, films, wovens or nonwovens, or laminate of any of these. The core wrap may in particular be formed by a nonwoven web, such as a carded nonwoven, spunbond nonwoven (“S”) or meltblown nonwoven (“M”), and laminates of any of these. For example spunmelt polypropylene nonwovens are suitable, in particular those having a laminate web SMS, or SMMS, or SSMMS, structure, and having a basis weight range of about 5 gsm to 15 gsm. Suitable materials are for example disclosed in U.S. Pat. No. 7,744,576, US2011/0268932A1, US2011/0319848A1 or US2011/0250413A1. Nonwoven materials provided from synthetic fibers may be used, such as PE, PET and in particular PP.


If the core wrap comprises a first substrate 16 and a second substrate 16′ these may be made of the same type of material, or may be made of different materials or one of the substrate may be treated differently than the other to provide it with different properties. As the polymers used for nonwoven production are inherently hydrophobic, they are preferably coated with hydrophilic coatings if placed on the fluid receiving side of the absorbent core. It is advantageous that the top side of the core wrap, i.e. the side placed closer to the wearer in the absorbent article, be more hydrophilic than the bottom side of the core wrap. A possible way to produce nonwovens with durably hydrophilic coatings is via applying a hydrophilic monomer and a radical polymerization initiator onto the nonwoven, and conducting a polymerization activated via UV light resulting in monomer chemically bound to the surface of the nonwoven. An alternative possible way to produce nonwovens with durably hydrophilic coatings is to coat the nonwoven with hydrophilic nanoparticles, e.g. as described in WO 02/064877.


Permanently hydrophilic nonwovens are also useful in some embodiments. Surface tension, as described in U.S. Pat. No. 7,744,576 (Busam et al.), can be used to measure how permanently a certain hydrophilicity level is achieved. Liquid strike through, as described in U.S. Pat. No. 7,744,576, can be used to measure the hydrophilicity level. The first and/or second substrate may in particular have a surface tension of at least 55, preferably at least 60 and most preferably at least 65 mN/m or higher when being wetted with saline solution. The substrate may also have a liquid strike through time of less than 5 s for a fifth gush of liquid. These values can be measured using the test methods described in U.S. Pat. No. 7,744,576B2: “Determination Of Surface Tension” and “Determination of Strike Through” respectively.


Hydrophilicity and wettability are typically defined in terms of contact angle and the strike through time of the fluids, for example through a nonwoven fabric. This is discussed in detail in the American Chemical Society publication entitled “Contact angle, wettability and adhesion”, edited by Robert F. Gould (Copyright 1964). A substrate having a lower contact angle between the water and the surface of substrate may be said to be more hydrophilic than another.


The substrates may also be air-permeable. Films useful herein may therefore comprise micro-pores. The substrate may have for example an air-permeability of from 40 or from 50, to 300 or to 200 m3/(m2×min), as determined by EDANA method 140-1-99 (125. Pa, 38.3 cm2). The material of the core wrap may alternatively have a lower air-permeability, e.g. being non-air-permeable, for example to facilitate handling on a moving surface comprising vacuum.


The core wrap may be at least partially sealed along all the sides of the absorbent core so that substantially no absorbent material leaks out of the core while performing the RCWR Test indicated below. By “substantially no absorbent material” it is meant that less than 5%, advantageously less than 2%, or less than 1% or 0% by weight of absorbent material escape the core wrap. In particular the core wrap should not in an appreciate way burst open while the test is conducted. The term “seal” is to be understood in a broad sense. The seal does not need to be continuous along the whole periphery of the core wrap but may be discontinuous along part or the whole of it, such as formed by a series of seal points spaced on a line. Typically a seal may be formed by gluing and/or thermal bonding.


If the core wrap is formed by two substrates 16, 16′, four seals may be typically be used to enclose the absorbent material 60 within the core wrap. For example, a first substrate 16 may be placed on one side of the core (the top side as represented in the Figures) and extends around the core's longitudinal edges to at least partially wrap the opposed bottom side of the core. The second substrate 16′ is typically present between the wrapped flaps of the first substrate 16 and the absorbent material 60. The flaps of the first substrate 16 may be glued to the second substrate 16′ to provide a strong seal. This so called C-wrap construction can provide benefits such as improved resistance to bursting in a wet loaded state compared to a sandwich seal. The front side and back side of the core wrap may then also be sealed for example by gluing the first substrate and second substrate to another to provide complete encapsulation of the absorbent material across the whole of the periphery of the core. For the front side and back side of the core the first and second substrate may extend and be joined together in a substantially planar direction, forming for these edges a so-called sandwich construction. In the so-called sandwich construction, the first and second substrates may also extend outwardly on all sides of the core and be sealed flat along the whole or parts of the periphery of the core typically by gluing and/or heat/pressure bonding. Typically neither first nor second substrates need to be shaped, so that they can be rectangularly cut for ease of production but of course other shapes are possible.


The core wrap may also be formed by a single substrate which may enclose as in a parcel wrap the absorbent material and be for example sealed along the front side and back side of the core and one longitudinal seal.


Absorbent Material Deposition Area 8


The absorbent material deposition area 8 can be defined by the periphery of the layer formed by the absorbent material 60 within the core wrap, as seen from the top side of the absorbent core. The absorbent material deposition area 8 can take various shapes, in particular display a so-called “dog bone” or “hour-glass” shape, which shows a tapering along its width towards the middle or “crotch” region of the core. In this way, the absorbent material deposition area may have a relatively narrow width in an area of the core intended to be placed in the crotch region of the absorbent article, as illustrated in FIG. 1. This may provide for example better wearing comfort. The absorbent material deposition area 8 may thus have a width (as measured in the transversal direction) at its narrowest point which is less than about 100 mm, 90 mm, 80 mm, 70 mm, 60 mm or even less than about 50 mm. This narrowest width may further be for example at least 5 mm, or at least 10 mm, smaller than the width of the deposition area at its largest point in the front and/or back regions of the deposition area 8. The absorbent material deposition area 8 can also be generally rectangular, for example as shown in FIGS. 4-6, but other deposition areas can also be used such as a “T” or “Y” or “hour-glass” or “dog-bone” shape.


The basis weight (amount deposited per unit of surface) of the SAP may also be varied along the deposition area 8 to create a profiled distribution of absorbent material, in particular SAP, in the longitudinal direction, in the transversal direction, or both directions of the core. Hence along the longitudinal axis of the core, the basis weight of absorbent material may vary, as well as along the transversal axis, or any axis parallel to any of these axes. The basis weight of SAP in area of relatively high basis weight may thus be for example at least 10%, or 20%, or 30%, or 40%, or 50% higher than in an area of relatively low basis weight. In particular the SAP present in the absorbent material deposition area at the level of the crotch point C may have more SAP per unit of surface deposited as compared to another area of the absorbent material deposition area 8.


The absorbent material may be deposited using known techniques, which may allow relatively precise deposition of SAP at relatively high speed. In particular the SAP printing technology as disclosed for example in US2006/24433 (Blessing), US2008/0312617 and US2010/0051166A1 (both to Hundorf et al.) may be used. This technique uses a printing roll to deposit SAP onto a substrate disposed on a grid of a support which may include a plurality of cross bars extending substantially parallel to and spaced from one another so as to form channels extending between the plurality of cross-bars. This technology allows high-speed and precise deposition of SAP on a substrate. The channels of the absorbent core can be formed for example by modifying the pattern of the grid and receiving drums so that no SAP is applied in certain areas to form absorbent material free areas in the form of channels. EP application number 11169396.6 discloses this modification in more details.


Channels 26, 26


The absorbent material deposition area 8 comprises at least one channel 26, which is at least partially oriented in the longitudinal direction of the article 80. If the following the plural form “channels” will be used to mean “at least one channel”. The channels may have a length L′ projected on the longitudinal axis 80 of the article that is at least 10% of the length L of the article. The channels may be formed in various ways. For example the channels may be formed by zones within the absorbent material deposition area which may be substantially free of absorbent material, in particular SAP. In addition or alternatively, the channel(s) may also be formed by continuously or discontinuously bonding the top side of the core wrap to the bottom side of the core wrap through the absorbent material deposition area. The channels may be advantageously continuous and may be defined by continuous side portions extending in the longitudinal direction, which may be formed by the core wrap. However, it is not excluded that the channels are intermittent. The acquisition-distribution system or any sub-layer between topsheet and absorbent core layer, or another layer of the article, may also comprise channels, which may or not correspond to the channels of the absorbent core.


The channels may in particular be present at least at the same longitudinal level as the crotch point C in the absorbent article, as represented in FIG. 1 with the two longitudinally extending channels 26, 26′. The channels may also extend from the crotch region or be present in the front region and/or in the back region of the article.


The absorbent core 28 may also comprise more than two channels, for example at least 3, or at least 4 or at least 5 or at least 6. Shorter channels may also be present, for example in the back region or the front region of the core as represented by the pair of channels 27, 27′ in FIG. 1 towards the front of the article. The channels may comprise one or more pairs of channels symmetrically arranged relative to the longitudinal axis 80.


The channels may be particularly useful in the absorbent core when the absorbent material deposition area is rectangular, as the channels can improve the flexibility of the core to an extent that there is less advantage in using a non-rectangular (shaped) core. Of course channels may also be present in a layer of SAP having a shaped deposition area.


The channels may extend substantially longitudinally, which means typically that each channel extends more in the longitudinal direction than in the transverse direction, and typically at least twice as much in the longitudinal direction than in the transverse direction (as measured after projection on the respective axis). In some embodiments there is no completely or substantially transverse channels in the core.


The channels may be completely oriented longitudinally and parallel to the longitudinal axis but also may be curved. In particular some or all the channels, in particular the channels present in the crotch region, may be concave towards the longitudinal centerline 80, as for example represented in FIG. 1 for the pair of channels 26, 26′. The radius of curvature may typically be at least equal (and preferably at least 1.5 or at least 2.0 times this average transverse dimension) to the average transverse dimension of the absorbent layer; and also straight but under an angle of (e.g. from 5°) up to 30°, or for example up to 20°, or up to 10° with a line parallel to the longitudinal axis. The radius of curvature may be constant for a channel, or may vary along its length. This may also includes channels with an angle therein, provided said angle between two parts of a channel is at least 120°, preferably at least 150°; and in any of these cases, provided the longitudinal extension of the channel is more than the transverse extension. The channels may also be branched, for example a central channel superposed with the longitudinal axis in the crotch region which branches towards the back and/or towards the front of the article.


In some embodiments, there is no channel that coincides with the longitudinal axis 80 of the article or the core. When present as symmetrical pairs relative to the longitudinal axis, the channels may be spaced apart from one another over their whole longitudinal dimension. The smallest spacing distance may be for example at least 5 mm, or at least 10 mm, or at least 16 mm.


Furthermore, in order to reduce the risk of fluid leakages, the longitudinal main channels typically do not extend up to any of the edges of the absorbent material deposition area, and are therefore fully encompassed within the absorbent material deposition area of the core. Typically, the smallest distance between a channel and the closest edge of the absorbent material deposition area is at least 5 mm.


The channels may have a width We along at least part of its length which is at least 2 mm, or at least 3 mm or at least 4 mm, up to for example 20 mm, or 16 mm or 12 mm. The width of the channel may be constant through substantially the whole length of the channel or may vary along its length. When the channels are formed by absorbent material-free zone within the absorbent material deposition area, the width of the channels is considered to be the width of the material free zone, disregarding the possible presence of the core wrap within the channels. If the channels are not formed by absorbent material free zones, for example mainly though bonding of the core wrap through the absorbent material zone, the width of the channels is the width of this bonding.


At least some or all the channels are advantageously permanent channels, meaning their integrity is at least partially maintained both in the dry state and in the wet state. Permanent channels may be obtained by provision of one or more adhesive material, for example the fibrous layer of adhesive material or a construction glue that helps adhering for example a substrate with an absorbent material within the walls of the channel. Permanent channels may be also in particular formed by bonding the upper side and lower side of the core wrap (e.g. first substrate 16 and the second substrate 16′) together through the channels. Typically, an adhesive can be used to bond both sides of the core wrap through the channels, but it is possible to bond via other known means, such as pressure bonding, ultrasonic bonding or heat bonding or combination thereof. The core wrap can be continuously bonded or intermittently bonded along the channels. The channels may advantageously remain or become visible at least through the topsheet and/or backsheet when the absorbent article is fully loaded with a fluid as disclosed in the Wet Channel Integrity Test below. This may be obtained by making the channels substantially free of SAP, so they will not swell, and sufficiently large so that they will not close when wet. Furthermore bonding the core wrap to itself through the channels may be advantageous. The Wet Channel Integrity Test described below can be used to test if channels are permanent and visible following wet saturation and to what extent. Advantageously, a permanent channel according to the invention has a percentage of integrity of at least 20%, or 30%, or 40%, or 50%, or 60, or 70%, or 80%, or 90% following the Wet Channel Integrity Test.


Barrier Leg Cuffs 34


The absorbent article comprises a pair of barrier leg cuffs 34. The barrier leg cuffs can be formed from a piece of material, typically a nonwoven, which is partially bonded to the rest of the article so that a portion of the material, the barrier leg cuffs, can be partially raised away and stand up from the plane defined by the topsheet when the article is pulled flat as shown e.g. in FIG. 1. The barrier leg cuffs can provide improved containment of liquids and other body exudates approximately at the junction of the torso and legs of the wearer. The barrier leg cuffs extend at least partially between the front edge and the back edge of the diaper on opposite sides of the longitudinal axis and are at least present at the level of the crotch point (C). The barrier leg cuffs are delimited by a proximal edge 64 joined to the rest of the article, typically the topsheet and/or the backsheet, and a free terminal edge 66, which is intended to contact and form a seal with the wearer's skin. The barrier leg cuffs are joined at the proximal edge 64 with the chassis of the article by a bond 65 which may be made for example by gluing, fusion bonding or combination of known bonding means. The bond 65 at the proximal edge 64 may be continuous or intermittent. The side of the bond 65 closest to the raised section of the leg cuffs delimits the proximal edge 64 of the standing up section of the leg cuffs. The distance between the inner sides of these bonds 65 define the dry and wet width of the article at this level for the purpose of RCWR test (see below).


The barrier leg cuffs can be integral with the topsheet or the backsheet, or more typically be formed from a separate material joined to the rest of the article. Typically the material of the barrier leg cuffs may extend through the whole length of the diapers but is “tack bonded” to the topsheet towards the front edge and back edge of the article so that in these sections the barrier leg cuff material remains flush with the topsheet. Each barrier leg cuff 34 may comprise one, two or more elastic strings 35 close to this free terminal edge 66 to provide a better seal.


In addition to the barrier leg cuffs 34, the article may comprise gasketing cuffs 32, which are joined to the chassis of absorbent article, in particular the topsheet and/or the backsheet and are placed transversely outwardly relative to the barrier leg cuffs. The gasketing cuffs can provide a better seal around the thighs of the wearer. Usually each gasketing leg cuff will comprise one or more elastic string or elastic element comprised in the chassis of the diaper for example between the topsheet and backsheet in the area of the leg openings.


U.S. Pat. No. 3,860,003 describes a disposable diaper which provides a contractible leg opening having a side flap and one or more elastic members to provide an elasticized leg cuff (a gasketing cuff). U.S. Pat. No. 4,808,178 and U.S. Pat. No. 4,909,803 issued to Aziz et al. describe disposable diapers having “stand-up” elasticized flaps (barrier leg cuffs) which improve the containment of the leg regions. U.S. Pat. No. 4,695,278 and U.S. Pat. No. 4,795,454 issued to Lawson and to Dragoo respectively, describe disposable diapers having dual cuffs, including gasketing cuffs and barrier leg cuffs. All or a portion of the barrier leg and/or gasketing cuffs may be treated with a lotion.


Acquisition-Distribution System 50


The absorbent articles of the invention may comprise an acquisition-distribution layer or system 50 (herein “ADS”). The function of the ADS is to quickly acquire the fluid and distribute it to the absorbent core in an efficient manner. The ADS may comprise one, two or more layers, which may form a unitary layer or remain discrete layers which may be attached to each other. In the examples below, the ADS comprises two layers: a distribution layer 54 and an acquisition layer 52 disposed between the absorbent core and the topsheet, but the invention is not restricted to this example.


Typically, the ADS will not comprise SAP as this may slow the acquisition and distribution of the fluid. The prior art discloses many type of acquisition-distribution system, see for example WO2000/59430 (Daley), WO95/10996 (Richards), U.S. Pat. No. 5,700,254 (McDowall), WO02/067809 (Graef). The ADS may comprise, although not necessarily, two layers: a distribution layer and an acquisition layer, which will now be exemplified in more details.


Distribution Layer 54


The distribution layer may for example comprise at least 50% by weight of cross-linked cellulose fibers. The cross-linked cellulosic fibers may be crimped, twisted, or curled, or a combination thereof including crimped, twisted, and curled. This type of material has been used in the past in disposable diapers as part of an acquisition system, for example US 2008/0312622 A1 (Hundorf. The cross-linked cellulosic fibers provide higher resilience and therefore higher resistance to the first absorbent layer against the compression in the product packaging or in use conditions, e.g. under baby weight. This provides the core with a higher void volume, permeability and liquid absorption, and hence reduced leakage and improved dryness.


Exemplary chemically cross-linked cellulosic fibers suitable for a distribution layer are disclosed in U.S. Pat. No. 5,549,791, U.S. Pat. No. 5,137,537, WO9534329 or US2007/118087. Exemplary cross-linking agents include polycarboxylic acids such as citric acid and/or polyacrylic acids such as acrylic acid and maleic acid copolymers. For example, the crosslinked cellulosic fibers may have between about 0.5 mole % and about 10.0 mole % of a C2-C9 polycarboxylic acid cross-linking agent, calculated on a cellulose anhydroglucose molar basis, reacted with said fibers in an intrafiber ester crosslink bond form. The C2-C9 polycarboxylic acid cross-linking agent may be selected from the group consisting of:

    • aliphatic and alicyclic C2-C9 polycarboxylic acids having at least three carboxyl groups per molecule; and
    • aliphatic and alicyclic C2-C9 polycarboxylic acids having two carboxyl groups per molecule and having a carbon-carbon double bond located alpha, beta to one or both of the carboxyl groups, wherein one carboxyl group in said C2-C9 polycarboxylic acid crosslinking agent is separated from a second carboxyl group by either two or three carbon atoms. The fibers may have in particular between about 1.5 mole % and about 6.0 mole % crosslinking agent, calculated on a cellulose anhydroglucose molar basis, reacted therewith in the form of intrafiber ester crosslink bonds. The cross-linking agent may be selected from the group consisting of citric acid, 1, 2, 3, 4 butane tetracarboxylic acid, and 1, 2, 3 propane tricarboxylic acid, in particular citric acid.


Polyacrylic acid cross-linking agents may also be selected from polyacrylic acid homopolymers, copolymers of acrylic acid, and mixtures thereof. The fibers may have between 1.0 weight % and 10.0 weight %, preferably between 3 weight % and 7 weight %, of these cross-linking agents, calculated on a dry fiber weight basis, reacted therewith in the form of intra-fiber crosslink bonds. The cross-linking agent may be a polyacrylic acid polymer having a molecular weight of from 500 to 40,000, preferably from 1,000 to 20,000. The polymeric polyacrylic acid cross-linking agent may be a copolymer of acrylic acid and maleic acid, in particular wherein the weight ratio of acrylic acid to maleic acid is from 10:1 to 1:1, preferably from 5:1 to 1.5:1. An effective amount of citric acid may be further mixed with said polymeric polyacrylic acid cross-linking agent.


The distribution layer comprising cross-linked cellulose fibers of the invention may comprise other fibers, but this layer may advantageously comprise at least 50%, or 60%, or 70%, or 80%, or 90% or even up to 100%, by weight of the layer, of cross-linked cellulose fibers (including the cross-linking agents). Examples of such mixed layer of cross-linked cellulose fibers may comprise about 70% by weight of chemically cross-linked cellulose fibers, about 10% by weight polyester (PET) fibers, and about 20% by weight untreated pulp fibers. In another example, the layer of cross-linked cellulose fibers may comprise about 70% by weight chemically cross-linked cellulose fibers, about 20% by weight lyocell fibers, and about 10% by weight PET fibers. In another example, the layer may comprise about 68% by weight chemically cross-linked cellulose fibers, about 16% by weight untreated pulp fibers, and about 16% by weight PET fibers. In another example, the layer of cross-linked cellulose fibers may comprise from about 90-100% by weight chemically cross-linked cellulose fibers.


The distribution layer 54 may be a material having a water retention value of from 25 to 60, preferably from 30 to 45, measured as indicated in the procedure disclosed in U.S. Pat. No. 5,137,537.


The distribution layer may typically have an average basis weight of from 30 to 400 g/m2, in particular from 100 to 300 g/m2. The density of the distribution layer may vary depending on the compression of the article, but may be of between 0.03 to 0.15 g/cm3, in particular 0.08 to 0.10 g/cm3 measured at 0.30 psi (2.07 kPa).


Acquisition Layer 52


The ADS may comprise an acquisition layer 52. The acquisition layer may be disposed between the distribution layer 54 and topsheet 24. The acquisition layer 52 may typically be or comprise a non-woven material, for example a SMS or SMMS material, comprising a spunbonded, a melt-blown and a further spunbonded layer or alternatively a carded chemical-bonded nonwoven. The non-woven material may in particular be latex bonded. Exemplary upper acquisition layers 52 are disclosed in U.S. Pat. No. 7,786,341. Carded, resin-bonded nonwovens may be used, in particular where the fibers used are solid round or round hollow PET staple fibers (50/50 or 40/60 mix of 6 denier and 9 denier fibers). An exemplary binder is a butadiene/styrene latex. Non-wovens have the advantage that they can be manufactured outside the converting line and stored and used as a roll of material.


Further useful non-wovens are described in U.S. Pat. No. 6,645,569 to Cramer et al., U.S. Pat. No. 6,863,933 to Cramer et al., U.S. Pat. No. 7,112,621 to Rohrbaugh et al., and co patent applications US2003/148684 to Cramer et al. and US2005/008839 to Cramer et al.


The acquisition layer 52 may be stabilized by a latex binder, for example a styrene-butadiene latex binder (SB latex). Processes for obtaining such lattices are known, for example, from EP 149 880 (Kwok) and US 2003/0105190 (Diehl et al.). In certain embodiments, the binder may be present in the acquisition layer 52 in excess of about 12%, about 14% or about 16% by weight. SB latex is available under the trade name GENFLO™ 3160 (OMNOVA Solutions Inc.; Akron, Ohio).


A further acquisition layer may be used in addition to a first acquisition layer described above. For example a tissue layer may be placed between the first acquisition layer and the distribution layer. The tissue may have enhanced capillarity distribution properties compared to the acquisition layer described above. The tissue and the first acquisition layer may be of the same size or may be of different size, for example the tissue layer may extend further in the back of the absorbent article than the first acquisition layer. An example of hydrophilic tissue is a 13-15 gsm high wet strength made of cellulose fibers from supplier Havix.


Fastening System


The absorbent article may include a fastening system. The fastening system can be used to provide lateral tensions about the circumference of the absorbent article to hold the absorbent article on the wearer as is typical for taped diapers. This fastening system is not necessary for training pant article since the waist region of these articles is already bonded. The fastening system usually comprises a fastener such as tape tabs, hook and loop fastening components, interlocking fasteners such as tabs & slots, buckles, buttons, snaps, and/or hermaphroditic fastening components, although any other known fastening means are generally acceptable. A landing zone is normally provided on the front waist region for the fastener to be releasably attached. Some exemplary surface fastening systems are disclosed in U.S. Pat. No. 3,848,594, U.S. Pat. No. 4,662,875, U.S. Pat. No. 4,846,815, U.S. Pat. No. 4,894,060, U.S. Pat. No. 4,946,527, U.S. Pat. No. 5,151,092 and U.S. Pat. No. 5,221,274 issued to Buell. An exemplary interlocking fastening system is disclosed in U.S. Pat. No. 6,432,098. The fastening system may also provide a means for holding the article in a disposal configuration as disclosed in U.S. Pat. No. 4,963,140 issued to Robertson et al.


The fastening system may also include primary and secondary fastening systems, as disclosed in U.S. Pat. No. 4,699,622 to reduce shifting of overlapped portions or to improve fit as disclosed in U.S. Pat. No. 5,242,436, U.S. Pat. No. 5,499,978, U.S. Pat. No. 5,507,736, and U.S. Pat. No. 5,591,152.


Front and Back Ears 46, 40


The absorbent article may comprise front ears 46 and back ears 40 as is known in the art. The ears can be integral part of the chassis, for example formed from the topsheet and/or backsheet as side panel. Alternatively, as represented on FIG. 1, they may be separate elements attached by gluing and/or heat embossing or pressure bonding. The back ears 40 are advantageously stretchable to facilitate the attachment of the tabs 42 on the landing zone 40 and maintain the taped diapers in place around the wearer's waist. The back ears 40 may also be elastic or extensible to provide a more comfortable and contouring fit by initially conformably fitting the absorbent article to the wearer and sustaining this fit throughout the time of wear well past when absorbent article has been loaded with exudates since the elasticized ears allow the sides of the absorbent article to expand and contract.


Elastic Waist Feature


The absorbent article may also comprise at least one elastic waist feature (not represented) that helps to provide improved fit and containment. The elastic waist feature is generally intended to elastically expand and contract to dynamically fit the wearer's waist. The elastic waist feature preferably extends at least longitudinally outwardly from at least one waist edge of the absorbent core 28 and generally forms at least a portion of the end edge of the absorbent article. Disposable diapers can be constructed so as to have two elastic waist features, one positioned in the front waist region and one positioned in the back waist region. The elastic waist feature may be constructed in a number of different configurations including those described in U.S. Pat. No. 4,515,595, U.S. Pat. No. 4,710,189, U.S. Pat. No. 5,151,092 and U.S. Pat. No. 5,221,274.


Relations Between the Layers


Typically, adjacent layers and components will be joined together using conventional bonding method such as adhesive coating via slot coating or spraying on the whole or part of the surface of the layer, or thermo-bonding, or pressure bonding or combinations thereof. This bonding is not represented in the Figures (except for the bonding between the raised element of the leg cuffs 65 with the topsheet 24) for clarity and readability but bonding between the layers of the article should be considered to be present unless specifically excluded. Adhesives may be typically used to improve the adhesion of the different layers, for example between the backsheet and the core wrap. The glue may be any standard hotmelt glue as known in the art.


If an acquisition layer 52 is present, it may be advantageous that this acquisition layer is larger than or least as large as the distribution layer 54 in the longitudinal and/or transversal dimension. In this way the distribution layer 52 can be deposited on the acquisition layer 54 during the manufacturing process before assembling these layers in the finished article. This simplifies handling, in particular if the acquisition layer is a nonwoven which can be unrolled from a roll of stock material. The distribution layer may also be deposited directly on the absorbent core's upper side of the core wrap or another layer of the article. Also, an acquisition layer 52 larger than the distribution layer allows to directly glue the acquisition layer to the storage core (at the larger areas). This can give increased integrity to the article and better liquid communication.


The absorbent core and in particular its absorbent material deposition area 8 may advantageously be at least as large and long and advantageously at least partially larger and/or longer than the acquisition-distribution system (ADS). This is because the absorbent material in the core can usually more effectively retain fluid and provide dryness benefits across a larger area than the ADS. The absorbent article may have a rectangular SAP layer and a non-rectangular (shaped) ADS. The absorbent article may also have a rectangular (non-shaped) ADS and a rectangular layer of SAP.


Method of Making the Article


The absorbent articles of the invention may be made by any conventional methods known in the art. In particular the articles may be hand-made or industrially produced at high speed.


Experimental Settings


The values indicated herein are measured according to the methods indicated herein below, unless specified otherwise. All measurements are performed at 21±2° C. and 50±20% RH, unless specified otherwise. All samples should be kept at least 24 hours in these conditions to equilibrate before conducting the tests, unless indicated otherwise. All measurements should be reproduced on at least 4 samples and the average value obtained indicated, unless otherwise indicated.


Centrifuge Retention Capacity (CRC)


The CRC measures the liquid absorbed by the superabsorbent polymer particles for free swelling in excess liquid. The CRC is measured according to EDANA method WSP 241.2-05.


Caliper Test


Equipment:


Mitutoyo manual caliper gauge with a resolution of 0.01 mm—or equivalent instrument.


Contact Foot:


Flat circular foot with a diameter of 17.0 mm (±0.2 mm). A circular weight may be applied to the foot (e.g., a weight with a slot to facilitate application around the instrument shaft) to achieve the target weight. The total weight of foot and added weight (including shaft) is selected to provide 2.07 kPa (0.30 psi) of pressure to the sample. If there was a spring present to push the foot to the sample the spring is removed from the equipment, such that indeed the equipment applies a pressure of 2.07 kPa.


The caliper gauge is mounted with the lower surface of the contact foot in an horizontal plane so that the lower surface of the contact foot contacts the center of the flat horizontal upper surface of a base plate approximately 20×25 cm. The gauge is set to read zero with the contact foot resting on the base plate.


Ruler:


Calibrated metal ruler graduated in mm.


Stopwatch:


Accuracy 1 second


Sample Preparation:


If the absorbent articles are provided in a package, the sample articles to be tested are removed from the center area of a package. If the package contains more than 4 articles, the outer most two articles on each side of the package are not used in the testing. If the package contains more than 4 but fewer than 14 articles, then more than one package of articles is required to complete the testing. If the package contains 14 or more articles, then only one package of articles is required to perform the testing. If the package contains 4 or fewer articles then all articles in the package are measured and multiple packages are required to perform the measurement. Caliper readings should be taken 24±1 hours after the article is removed from the package. Physical manipulation of product should be minimal and restricted only to necessary sample preparation.


Any elastic components of the article that prevent the article from being laid flat under the caliper foot are cut or removed. These may include leg cuffs or waistbands. Pant-type articles are opened or cut along the side seams as necessary. Apply sufficient tension to flatten out any folds/wrinkles Care is taken to avoid touching and/or compressing the absorbent core and ADS area.


Measurement Procedure:


The article is laid flat on a counter top, garment-facing side down. A lateral line is drawn across the body-facing surface of the article at the level of the crotch point C.


The contact foot of the caliper gauge is raised and the article is placed on base plate, garment-facing surface side down so that when lowered, the center of the foot is on marked measuring point at the crotch point C.


The foot is gently lowered onto the article and released (ensure calibration to “0” prior to the start of the measurement). The caliper value is read to the nearest 0.01 mm, 10 seconds after the foot is released.


The procedure is repeated for each measuring point. If there is a fold at the measuring point, the measurement is done in the closest area to this point but without any folds. Ten articles are measured in this manner for a given product and the average caliper is calculated and reported with an accuracy of one tenth mm.


Wet Channel Integrity Test


This test is designed to check the integrity of a channel following wet saturation. The test can be performed directly on an absorbent article or on an absorbent core taken separately.


1. The full length (in millimeters) of the channel is measured in the dry state (if the channel is not straight, the curvilinear length through the middle of the channel is measured).


2. The absorbent article or core is then completely immersed in a large excess (e.g. 5 liters) of synthetic urine “Saline”, with a concentration of 9.00 g NaCl per 1000 ml solution prepared by dissolving the appropriate amount of sodium chloride in distilled water. The temperature of the solution must be 20+/−5° C.


3. After 1 minute in the saline, the absorbent article or core is removed and held vertically by one end for 5 seconds to drain, then extended flat on an horizontal surface with the wearer (topsheet) side intended to be facing the wearer facing up. If the absorbent article or core comprises stretch elements, it is pulled taut in both X and Y dimensions so that no contraction is observed. The front and back edges of the absorbent article or core are fixed to an horizontal surface, so that no contraction can happen.


4. The absorbent article or core is covered with a rectangular suitably weighted rigid plate, with dimensions as follows: length equal to the full length of the absorbent article or core, and width equal to the maximum absorbent structure or core width at the widest point.


5. A pressure of 18.0 kPa is applied for 30 seconds over the area of the rigid plate above mentioned. Pressure is calculated on the basis of overall area encompassed by the rigid plate. Pressure is achieved by placing additional weights in the geometric center of the rigid plate, such that the combined weight of the rigid plate and the additional weights result in a pressure of 18.0 kPa over the total area of the rigid plate.


6. After 30 seconds, the additional weights and the rigid plate are removed.


7. Immediately afterwards, the cumulative length of the portions of the channel which remained intact is measured (in millimeters; if the channel is not straight, the curvilinear length through the middle of the channel is measured). If no portions of the channel remained intact then the channel is not permanent.


The percentage of integrity of the permanent channel is calculated by dividing the cumulative length of the portions of the channel which remained intact by the length of the channel in the dry state, and then multiplying the quotient by 100.


Relative Crotch Width Reduction (RCWR) Test Principle: this test determines the amount of width reduction of the diaper at the level of crotch point following application of saline water according to the test protocol below. The crotch point is the point on the longitudinal axis placed at a distance of two fifth (⅖), as measured from the front edge, of the length L of the article.


The distance between the proximal ends 64 of the standing sections 34 of the raised leg cuffs at the level of the crotch point C of the absorbent article defines the crotch width of the article. The method requires separately measuring the dry crotch width Wd (i.e. before use) and the wet crotch width Ww (of the loaded absorbent article).


Sample preparation: the dry weight of the article is measured and recorded as Md. The absorbent article is placed with the topsheet side up on a sufficiently large Plexiglas plate. The front and rear edges of the absorbent article are fixed with clamps on the Plexiglas plate such that the article lays flat on the plate. The clamps are applied only in the front and the back regions of the absorbent article and should apply enough tension to flatten the article. For a pants type of absorbent article, the absorbent article is cut open at the side seams. If the pants type absorbent article does not have side seams it is cut at the corresponding two side positions at the belt. For absorbent articles that come with a fastening system the article is opened. The Plexiglas plate together with the absorbent article is placed in horizontal position with the topsheet of the article facing upwards.


The longitudinal axis is marked on the topsheet of the absorbent article and the length of the article L between front and back edge is measured. The longitudinal axis generally divides the product along its length into two roughly symmetric pieces in the plane of the topsheet. The crotch line is also marked on the topsheet. The crotch line is perpendicular to the longitudinal axis in the plane of the topsheet, crosses the longitudinal axis at ⅖ of the absorbent articles length L, measured from the front edge of the absorbent article. The front is the part of the absorbent article intended to be placed closer to the belly button of the wearer. The back is the part closer to the buttocks.


Measuring the Dry Crotch Width Wd:


As indicated before, the barrier leg cuffs 34 is the portion of the cuffs which can be raised away from the plane defined by the topsheet. The barrier leg cuffs 34 are bonded to the rest of article, typically the topsheet, at their proximal edges 64 by one or more bond 65. The dry crotch width Wd is determined by measuring with a caliper gauge the distance along the crotch line from the innermost bond 65 of one barrier leg cuff to the innermost bond 65 of the opposed barrier leg cuff, as represented in FIGS. 2-3. The barrier leg cuffs can be gently held outwardly of the article for the measurement of the dry and wet width, so that the measuring gauge can be held directly at the side of the bond closest to the longitudinal axis. The tips of the caliper gauge should touch the two intersections of the crotch line and the proximal edge of the barrier leg cuff. The tips of the caliper gauge should touch, but not distort the intersections. The caliper gauge should not touch other part(s) of the absorbent article. The dry crotch width is recorded as Wd. The dry crotch width (Wd) of the article of the invention range from to 70 mm to 200 mm.


Absorbent article loading: The fluid loading step is used to load the absorbent article in a reproducible manner. A sufficiently large bowl with a large excess amount of saline solution (0.9% NaCl) is provided on a flat support. The absorbent article still attached to the Plexiglas plate is loaded by fully immersing it into the bowl with saline with the Topsheet side up into the bowl so that the liquid is covering the entire absorbent article for 15 seconds. The saline needs to fully cover the surface of the absorbent article during the entire time. The Plexiglas plate (with the absorbent article) is removed from the bowl immediately after the 15 seconds. The absorbent article is let to equilibrate for 3 minutes by placing the Plexiglas plate in horizontal position with the article facing up.


Wet measurement: After these 3 minutes, the wet crotch width is measured and reported as Ww. The wet crotch width is measured by applying the caliper gauge at the crotch line and measuring the distance between the two proximal edges of the barrier leg cuffs without wrinkling the absorbent material in the same manner as was measured the dry width Wd. The absorbent article is then removed from the Plexiglas plate and the wet weight of the absorbent article is measured. This is recorded as the wet weight Mw.


Calculation of the relative crotch width reduction (RCWR):


The RCWR is calculated according to the following formula:






RCWR
=


Wd
-
Ww


Mw
-
Md






EXPERIMENTALS

The following products according to the invention were prepared:


Invention Example 1

Diapers having a rectangular absorbent material deposition area and two pair of channels similar to one represented for embodiment of FIG. 1 were prepared with the following specification. One pair of channel was relatively long and mainly present in the crotch region of the article and the other pair was smaller and placed towards the front of the article. The channels were absorbent material free and the top and bottom sides of the core wrap were attached together through these channels. The width of the channels was uniformly 8 mm and the projected lengths on the longitudinal axis of the article of the long and short channels were about 170 mm and 40 mm respectively. The longer channels were curved and concave towards the longitudinal centerline of the article as shown in FIG. 1. The smallest distance between the longer channels was about 16 mm. The smallest distance between the shorter channels was about 14 mm. The smaller channels were also slightly curved.


The absorbent core comprised in total 14.1 g fast absorbing SAP applied in an area of deposition having a length of 360 mm and a shaped width profile as shown in FIG. 1. The width of the absorbent material deposition area was 110 mm at the front and the back of the deposition area and 90 mm at the crotch point of the absorbent material deposition area. The SAP was distributed so that the basis weight of SAP was higher in the crotch region than at the front region and still lower towards the back region. There was no profiling of the SAP in the transversal direction (“cross-machine direction” or “CD”). The absorbent core was formed by SAP printing technology as disclosed in US2010/0051166A1, which combines two nonwoven substrates each supporting a SAP layer and having a microfiber elastic glue applied on each SAP layer which immobilizes the SAP layer on the substrate. These nonwoven substrates form the core wrap by C-wrapping to upper substrate onto the lower substrate. Auxiliary glue was applied between the SAP layers and their respective substrate which was slot coated with 41 slots 1 mm wide with a distance of 1 mm between the slots along the whole length of the core wrap (390 mm). The microfiber glue (from H. B. Fuller) applied on each SAP layer was uniformly applied at width of 108 mm and length of 390 mm on each SAP layer, 0.211 g of microfiber glue was used on the core cover (top) side and 0.168 g on the dusting layer (bottom) side. The channels were formed by using a suitable printing drum delimiting the channels shape, further information on how to form channels can be found in EP application number EP12174117.7 using printed SAP technology.


The core wrap had a length of 390 mm with two end flaps free of absorbent material having a length of 15 mm at the back and at the front of the absorbent core. The front and back end seals of the core were slot glued together, the glue slots having a length of 30 mm from the front end seal and 20 mm from the back end seal. The folded width of the core wrap was 120 mm. The core wrap comprised two nonwovens, the top substrate (16 in FIG. 1, referred further as “Core cover”) was a 10 gsm SMMS nonwoven treated by a surfactant to be hydrophilic. The lower substrate (16′ in FIG. 1, referred further as “Dusting layer”) was a 11 gsm SMMS nonwoven. The core cover was cut at a length of 390 mm and a cut width of 165 mm. The dusting layer had a cut length of 390 mm and a cut width of 130 mm. The core cover was C-wrapped around the dusting layer on the lateral sides of the core and the lateral edges of the dusting layer slightly formed upwards on the edge of the absorbent material of the core so that the overall width of the folded core wrap was about 120 mm.


The core cover and dusting layer were bonded together through the channels. The bond was formed by the auxiliary and microfiber glue discussed hereinabove. The bond was strong.


The acquisition-distribution system was formed by an acquisition layer of 43 gsm latex bonded nonwoven having a length of 298 mm and a width of 90 mm, and a distribution layer of cross-linked cellulose fibers having a length of 248 mm and a width of 80 mm with a uniform basis weight of 207 gsm. The acquisition layer was glued to the distribution layer and the distribution layer was glued to nonwoven core cover using slot coating. The topsheet was a 15 gsm nonwoven and the backsheet a 16 gsm impermeable film.


The leg cuffs were commercial leg cuffs similar to those shown in FIGS. 1-2, and comprised two 15 gsm, 478 mm long and 77 mm wide nonwovens on each side of the diaper. The leg cuffs were tackdown bonded at a distance of 100 mm from the front and 91 mm from the back of the edges of the diaper at a distance of 4 mm from the free edge. The nonwovens were fusion bonded along their length to the topsheet with a continuous bond width of 3 mm along their bond line. A 1 mm wide slot of glue was further applied along the continuous bond between the leg cuff material and the topsheet. The distance between the continuous bonds was 148 mm (this distance corresponding to Wd). The gasketing cuffs (the part of the cuffs not raised) were elasticized with three lines of elastic adhesive (ref 33 in the Figures) on each side of the cuffs, starting at 75 mm from the front edge of the diaper and extending along a length of 266 mm for the two outmost lines and 301 mm for the innermost line. The raised barrier leg cuffs were elasticized with two elastics (ref. 35 in the Figs.) each close to the terminal edge (ref 66 in the Figs.) of the barrier leg cuffs. These elastic had a pre strain of 300% and a contracted cut length of 119.5 mm. The glued in elastic length was 298 mm. The various components of the diapers were assembled in a conventional manner, typically by gluing or fusion bonding, unless indicated otherwise.


Invention Example 2

The diapers made for the second example were similar to these of Invention example 1. The core comprised two pair of channels, one relatively long in the crotch portion and one relatively smaller towards the front of the article. The channels were as in example 1 material free and the core wrap was attached to itself through the channels. The same materials were used in all invention examples unless otherwise indicated.


The differences with example 1 included a SAP distribution area which was rectangular with a width of 110 mm and a length of 360 mm. The acquisition layer was 318 mm long and 90 mm wide. The distribution layer was profiled in the longitudinal direction, having a higher basis towards the front and crotch region than in the back region of the diaper. The basis weight of the distribution layer was 196.5 gsm for the first 247 mm from the front and 120 gsm from the back 41 mm with a 10 mm transition length for a total length of 298 mm and a width of 80 mm. There was no auxiliary glue on the core cover side. The basis weight of the glue for the front and back core wrap end seals was 15 gsm instead of 20 gsm for invention example 1.


Invention Example 3

This example was made in the same way as example 1 with the difference that the absorbent material (SAP) distribution area was rectangular with a SAP deposition width of 110 mm and comprised only one pair of absorbent material free channels in the crotch region of the absorbent article, as exemplarily shown in FIGS. 4 and 5. The channels were symmetric in relation to the longitudinal axis 80 had a projected length thereon of about 227 mm, a width of about 8 mm and a shortest distance from each other of 20 mm. Another difference with example was that there was no auxiliary glue between the SAP layer and the substrate on the dusting layer, and the dusting layer was a 10 gsm nonwoven. The distribution layer was 298 mm long and 80 mm wide with an homogenous basis weight of 176 gsm. As for the previous examples, the core cover was C-wrapped around the dusting layer and both layer permanently bonded through the channels.


Prior Products


Several commercially available products were also tested, all in size 4 unless indicated otherwise:


Example 4 was a commercially available in Germany Pampers® Baby-Dry diaper. The absorbent core in this product is made of a mixture of cellulose fluff and SAP. This product comprises a dual layer acquisition-distribution system similar to the one used in the invention examples.


Example 5 was a German commercially available Pampers® Active Fit diaper. The absorbent core in this product does not comprise cellulose fluff, the absorbent material comprises essentially SAP. This product also comprises a dual layer acquisition-distribution system similar to the one used in the invention examples.


Example 6 was a diaper commercially available in Sweden under the tradename Libero® manufactured by SCA. The diaper comprises a cellulose fluff/SAP mixed core featuring two material free channels in the crotch region of the core.


Example 7 was a diaper commercially available in Germany at the retailer Lidl® under the Tradename Toujours. The absorbent core of this product is essentially cellulose fluff free. While not being wished to be bound by theory, it is believed that this product is made according to the teaching of WO 2012/048879 (Van De Maele).


Example 8 was an adult incontinence pant product in size M commercially available in Japan from the company Unicharm. This product has a cellulose-free absorbent core comprising relatively large pockets of SAP separated by transversally extending glue bonds. While not wishing to be bound by this assessment, the structure seems similar to the ones described in Unicharm WO2012/101934 A1 and WO2012/102034 A1.


Test Results


For five samples of each above mentioned products, width reduction and load were measured as indicated in the Test method described above to determine the RCWR of the products. The averaged results are compiled below:
















Width





Reduction
Load
RCWR



(mm)
(g)
(mm/kg)


















Invention Example 1
11.8
233
50.9


(4 channels,





shaped absorbent material deposition





area)





Invention Example 2
10.0
396
32.6


(4 channels,





rectangular absorbent material





deposition area)





Invention Example 3
9.0
213
42.7


(2 channels,





rectangular absorbent material





deposition area)





Example 4
7.9
427
25.1


(Pampers ® Baby-Dry)





Example 5
5.8
236
24.6


(Pampers ® Active Fit)





Example 6
8.3
417
19.8


Libero ®





Example 7
5.0
218
22.9


Toujours ® Diapers from Lidl ®





Example 8
6.6
234
27.9


Adult Pant from Unicharm









Discussion


While not wishing to be bound by theory it is believed that the following features can provide alone or in combinations an increase in the RCWR relative to an absorbent article missing one or more of the below features. None of these features should be considered as being limited the scope of the claims unless specifically claimed.

    • 1) The top side of the core wrap, which contacts the upper side of the absorbent material, and the bottom portion of the core wrap, which contacts the lower side of the absorbent material, may advantageously be at least partially bonded to each other through the channels. These bonds may be continuous or intermittent, and may be made via gluing and/or heat bonding, and may advantageously be sufficiently strong to resist delamination upon fluid loading (“permanent channels”), as discussed above. By constraining the core wrap in the channels, these bonds increase the strain of the core wrap and can promote core width reduction upon loading.
    • 2) The core wrap may comprise a first layer and a second layer, both typically made of a nonwoven, wherein the first layer forms a C-wrap around the second layer at least along the longitudinal edges of the core. The first layer may be the layer forming the top side of the core wrap and the second layer may be the layer forming the bottom side of the core wrap. Typically the layers are bonded, for example by gluing, along the wrapped flaps of the first layer together with the bottom side of the second layer. The inventors believe that a C-wrap, especially along part or whole of the longitudinal sides of the absorbent core, can better restrain the absorbent material from expanding towards the sides of the article, thus providing for more expansion of the absorbent material in the vertical direction and providing for increasing contraction of the width of the article at the crotch point as the layers of the absorbent article contracts to follow this expansion.
    • 3) Relatively inelastic materials can be used for the core wrap, as these will provide more constrain than relatively more elastic material and thus will follow the vertical (thickness direction) expansion of the absorbent material by reducing the width of the absorbent core.
    • 4) A higher relative amount of SAP material in the core absorbent material will provide a relatively larger expansion of the core upon loading than a core comprising higher amount of non superabsorbent absorbent material such as cellulose fluffs. It may also be advantageous to have a higher basis weight of SAP in the crotch region of the article.
    • 5) The core can be directly or indirectly joined to the backsheet to provide a larger reduction of the article width, as the backsheet will follow the contraction of the core as the core is loaded.


The above listed factors were identified by the inventors as potential features that may be used alone or in combination to increase the RCWR of an absorbent article. They should not be seen as limiting the scope of the claims, unless expressly mentioned in the claims, but may serve as guidelines for the skilled person to design an absorbent article providing the RCWR claimed. The Relative Crotch Width Reduction at the crotch point may advantageously ranges from 32 mm/kg to 150 mm/kg, in particular from 35 mm/kg to 100 mm/kg.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”


Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. An absorbent article comprising a front edge, a back edge, a longitudinal axis extending in a longitudinal direction of the article, a length L as measured along the longitudinal axis from the front edge to the back edge, and a crotch point defined as the point placed at a distance two fifths of L from the front edge of the article on the longitudinal axis, the absorbent article comprising: a liquid permeable topsheet;a liquid impermeable backsheet;a pair of barrier leg cuffs extending at least partially between the front edge and the back edge of the absorbent article on opposite sides of the longitudinal axis and present at least at the longitudinal position of the crotch point, each barrier leg cuff being delimited by a proximal edge joined directly or indirectly to the topsheet or the backsheet and a free terminal edge; an absorbent core disposed between the topsheet and backsheet and comprising a core wrap enclosing an absorbent material, wherein the absorbent material comprises at least 80% of superabsorbent polymers by weight of the absorbent material, wherein the absorbent core comprises at least one longitudinally extending channel formed by continuously bonding a top side of the core wrap through a bottom side of the core wrap; wherein the at least one channel is continuous in the longitudinal direction and is defined by continuous side portions extending in the longitudinal direction and wherein the width of a portion of the channel is at least 2 mm;wherein the article has a Relative Crotch Width Reduction (RCWR) of from 30 mm/kg to 51 mm/kg, wherein the RCWR is calculated according to the formula:
  • 2. The absorbent article of claim 1, wherein the RCWR is from 32 mm/kg to 150 mm/kg.
  • 3. The absorbent article of claim 2, wherein the RCWR is from 35 mm/kg to 100 mm/kg.
  • 4. The absorbent article of claim 1, comprising a pair of channels.
  • 5. The absorbent article of claim 4, wherein the channels of the pair of channels are symmetrically disposed relative to the longitudinal axis.
  • 6. The absorbent article of claim 1, wherein the at least one channel has a length projected on the longitudinal axis of the article which is at least 10% of the length L of the absorbent article.
  • 7. The absorbent article of claim 1, wherein the core wrap comprises a first nonwoven and a second nonwoven, and wherein the first nonwoven forms a C-wrap around the second non-woven.
  • 8. The absorbent article of claim 1, wherein the absorbent article comprises an acquisition-distribution system comprising one or more layers, and wherein the acquisition-distribution system is at least partially disposed between the absorbent core and the topsheet.
  • 9. The absorbent article of claim 8, wherein the acquisition-distribution system comprises at least one layer comprising at least 50% by weight of the layer of cross-linked cellulose fibers.
  • 10. The absorbent article of claim 1, wherein the periphery of the absorbent material within the core wrap defines an absorbent material deposition area, and wherein the absorbent material deposition area is rectangular or is shaped with a width narrower at the crotch point than the maximum width of the absorbent material deposition area.
  • 11. The absorbent article of claim 1, wherein the absorbent core comprises a first absorbent layer and a second absorbent layer, wherein the first absorbent layer comprises a first substrate and a first layer of superabsorbent polymers, wherein the second absorbent layer comprises a second substrate and a second layer of superabsorbent polymers, wherein the absorbent core comprises a fibrous thermoplastic adhesive material at least partially bonding the layers of superabsorbent polymers to their respective substrates, and wherein the first substrate and the second substrate form the core wrap.
  • 12. The absorbent core of claim 1, wherein the absorbent material of the absorbent core comprises at least 90% of superabsorbent polymers by total weight of the absorbent material.
  • 13. The absorbent article of claim 1, wherein the absorbent material of the absorbent core comprises 10% or less of natural or synthetic fibers by total weight of the absorbent material.
  • 14. The absorbent article of claim 13, wherein the absorbent material of the absorbent core is substantially free of natural or synthetic fibers.
  • 15. The absorbent article of claim 1, wherein the basis weight of the superabsorbent polymers is not homogenously distributed along the longitudinal axis of the core.
  • 16. The absorbent article of claim 1, wherein the absorbent core comprises from 5 g to 60 g of superabsorbent polymers.
  • 17. The absorbent article of claim 1, wherein the absorbent core comprises from 10 g to 50 g of superabsorbent polymers.
  • 18. The absorbent article of claim 1, wherein the caliper of the article, as measured at the crotch point according to the Caliper Test, is from 5 mm to 12 mm.
Priority Claims (1)
Number Date Country Kind
12196341 Dec 2012 EP regional
US Referenced Citations (1156)
Number Name Date Kind
1733997 Marr Oct 1929 A
1734499 Marinsky Nov 1929 A
1989283 Limacher Jan 1935 A
2058509 Rose Oct 1936 A
2271676 Bjornbak Feb 1942 A
2450789 Frieman Oct 1948 A
2508811 Best et al. May 1950 A
2568910 Condylis Sep 1951 A
2570796 Gross Oct 1951 A
2570963 Mesmer Oct 1951 A
2583553 Faure Jan 1952 A
2705957 Mauro Apr 1955 A
2788003 Morin Apr 1957 A
2788786 Dexter Apr 1957 A
2798489 Behrman Jul 1957 A
2807263 Newton Sep 1957 A
2830589 Doner Apr 1958 A
2890700 Lönberg-Holm Jun 1959 A
2890701 Weinman Jun 1959 A
2898912 Adams Aug 1959 A
2931361 Sostsrin Apr 1960 A
2977957 Clyne Apr 1961 A
3071138 Gustavo Jan 1963 A
3180335 Duncan et al. Apr 1965 A
3207158 Yoshitake et al. Sep 1965 A
3227160 Joy Jan 1966 A
3386442 Sabee Jun 1968 A
3411504 Glassman Nov 1968 A
3561446 Jones Feb 1971 A
3572342 Lindquist et al. Mar 1971 A
3572432 Burton Mar 1971 A
3575174 Mogor Apr 1971 A
3578155 Small et al. May 1971 A
3606887 Roeder Sep 1971 A
3610244 Jones Oct 1971 A
3618608 Brink Nov 1971 A
3642001 Sabee Feb 1972 A
3653381 Warnken Apr 1972 A
3670731 Harmon Jun 1972 A
3688767 Goldstein Sep 1972 A
3710797 Marsan Jan 1973 A
3731688 Litt et al. May 1973 A
3756878 Willot Sep 1973 A
3774241 Zerkle Nov 1973 A
3776233 Schaar Dec 1973 A
3814100 Nystrand et al. Jun 1974 A
3828784 Sabee Oct 1974 A
3840418 Sabee Oct 1974 A
3847702 Jones Nov 1974 A
3848594 Buell Nov 1974 A
3848595 Endres Nov 1974 A
3848597 Endres Nov 1974 A
3860003 Buell Jan 1975 A
3863637 MacDonald et al. Feb 1975 A
3882870 Hathaway May 1975 A
3884234 Taylor May 1975 A
3900032 Heurlen Aug 1975 A
3911173 Sprague, Jr. Oct 1975 A
3920017 Karami Nov 1975 A
3924626 Lee et al. Dec 1975 A
3926189 Taylor Dec 1975 A
3929134 Karami Dec 1975 A
3929135 Thompson Dec 1975 A
3930501 Schaar Jan 1976 A
3938523 Gilliland et al. Feb 1976 A
3968799 Schrading Jul 1976 A
3978861 Schaar Sep 1976 A
3981306 Krusko Sep 1976 A
3987794 Schaar Oct 1976 A
3995637 Schaar Dec 1976 A
3995640 Schaar Dec 1976 A
3999547 Hernandez Dec 1976 A
4014338 Schaar Mar 1977 A
4034760 Amirsakis Jul 1977 A
4055180 Karami Oct 1977 A
4074508 Reid Feb 1978 A
4079739 Whitehead Mar 1978 A
4084592 Tritsch Apr 1978 A
4100922 Hernandez Jul 1978 A
4232674 Melican Nov 1980 A
4257418 Hessner Mar 1981 A
4259220 Bunnelle et al. Mar 1981 A
4287153 Towsend Sep 1981 A
4296750 Woon et al. Oct 1981 A
4315508 Bolick Feb 1982 A
4324246 Mullane et al. Apr 1982 A
4340706 Obayashi et al. Jul 1982 A
4341216 Obenour Jul 1982 A
4342314 Radel et al. Aug 1982 A
4360021 Stima Nov 1982 A
4381783 Elias May 1983 A
4388075 Mesek et al. Jun 1983 A
4410571 Korpman Oct 1983 A
4461621 Karami et al. Jul 1984 A
4463045 Ahr et al. Jul 1984 A
4469710 Rielley et al. Sep 1984 A
4475912 Coates Oct 1984 A
4490148 Beckeström Dec 1984 A
4507438 Obayashi et al. Mar 1985 A
4515595 Kievet et al. May 1985 A
4527990 Sigl Jul 1985 A
4541871 Obayashi et al. Sep 1985 A
4551191 Kock et al. Nov 1985 A
4573986 Minetola et al. Mar 1986 A
4578072 Lancaster Mar 1986 A
4578702 Campbell Mar 1986 A
4585448 Enloe Apr 1986 A
4585450 Rosch et al. Apr 1986 A
4589878 Mitrani May 1986 A
4596568 Flug Jun 1986 A
4601717 Blevins Jul 1986 A
4606964 Wideman Aug 1986 A
4609518 Curro et al. Sep 1986 A
4610678 Weisman et al. Sep 1986 A
4623342 Ito et al. Nov 1986 A
4624666 Derossett Nov 1986 A
4629643 Curro et al. Dec 1986 A
4636207 Buell Jan 1987 A
4641381 Heran et al. Feb 1987 A
4643727 Rosenbaum Feb 1987 A
4646510 McIntyre Mar 1987 A
4662875 Hirotsu et al. May 1987 A
4666983 Tsubakimoto et al. May 1987 A
4670011 Mesek Jun 1987 A
4670012 Johnson Jun 1987 A
4680030 Coates et al. Jul 1987 A
4681579 Toussant et al. Jul 1987 A
4681581 Coates Jul 1987 A
4681793 Linman et al. Jul 1987 A
4690680 Higgins Sep 1987 A
4695278 Lawson Sep 1987 A
4699622 Toussant et al. Oct 1987 A
4704115 Buell Nov 1987 A
4704116 Enloe Nov 1987 A
4710189 Lash Dec 1987 A
4720321 Smith Jan 1988 A
4731066 Korpman Mar 1988 A
4731070 Koci Mar 1988 A
RE32649 Brandt et al. Apr 1988 E
4741941 Englebert et al. May 1988 A
4747846 Boland et al. May 1988 A
4753648 Jackson Jun 1988 A
4773905 Molee Sep 1988 A
4784892 Storey et al. Nov 1988 A
4785996 Ziecker et al. Nov 1988 A
4787896 Houghton et al. Nov 1988 A
4795454 Dragoo Jan 1989 A
4800102 Takada Jan 1989 A
4802884 Fröidh et al. Feb 1989 A
4806408 Pierre et al. Feb 1989 A
4806598 Morman Feb 1989 A
4808176 Kielpikowski Feb 1989 A
4808178 Aziz Feb 1989 A
4826880 Lesniak et al. May 1989 A
4834735 Alemany et al. May 1989 A
4834740 Suzuki et al. May 1989 A
4834742 Wilson et al. May 1989 A
4838886 Kent Jun 1989 A
4842666 Werenicz Jun 1989 A
4846815 Scripps Jul 1989 A
4846825 Enloe et al. Jul 1989 A
4848815 Molloy Jul 1989 A
4861652 Lippert et al. Aug 1989 A
4869724 Scripps Sep 1989 A
4886697 Perdelwitz, Jr. et al. Dec 1989 A
4888231 Angstadt Dec 1989 A
4892528 Suzuki et al. Jan 1990 A
4892535 Bjornberg Jan 1990 A
4892536 DesMarais et al. Jan 1990 A
4894060 Nestegard Jan 1990 A
4894277 Akasaki Jan 1990 A
4904251 Igaue et al. Feb 1990 A
4900317 Buell Mar 1990 A
4909802 Ahr et al. Mar 1990 A
4909803 Aziz et al. Mar 1990 A
4936839 Molee Jun 1990 A
4940463 Leathers et al. Jul 1990 A
4940464 Van Gompel et al. Jul 1990 A
4946527 Battrell Aug 1990 A
4950264 Osborn Aug 1990 A
4960477 Mesek Oct 1990 A
4963140 Robertson et al. Oct 1990 A
4966809 Tanaka et al. Oct 1990 A
4968313 Sabee Nov 1990 A
4990147 Freeland Feb 1991 A
4994053 Lang Feb 1991 A
5006394 Baird Apr 1991 A
5019063 Marsan et al. May 1991 A
5019072 Polski May 1991 A
5021051 Hiuke Jun 1991 A
5030314 Lang Jul 1991 A
5032120 Freeland et al. Jul 1991 A
5034008 Breitkopf Jul 1991 A
5037416 Allen et al. Aug 1991 A
5071414 Elliott Aug 1991 A
5072687 Mitchell Dec 1991 A
5085654 Buell Feb 1992 A
5087255 Sims et al. Feb 1992 A
5092861 Nomura et al. Mar 1992 A
5102597 Roe et al. Apr 1992 A
5114420 Igaue et al. May 1992 A
5124188 Roe et al. Jun 1992 A
5135522 Fahrenkrug et al. Aug 1992 A
5137537 Herron et al. Aug 1992 A
D329697 Fahrenkrug et al. Sep 1992 S
5143679 Weber et al. Sep 1992 A
5147343 Kellenberger Sep 1992 A
5147345 Young et al. Sep 1992 A
5149334 Roe et al. Sep 1992 A
5149335 Kellenberger et al. Sep 1992 A
5151091 Glaug Sep 1992 A
5151092 Buell et al. Sep 1992 A
5156793 Buell et al. Oct 1992 A
5167653 Igaue et al. Dec 1992 A
5167897 Weber et al. Dec 1992 A
5175046 Nguyen Dec 1992 A
5180622 Berg et al. Jan 1993 A
5188624 Young et al. Feb 1993 A
5190563 Herron et al. Mar 1993 A
5190606 Merkatoris et al. Mar 1993 A
5204997 Suzuki et al. Apr 1993 A
5213817 Pelley May 1993 A
5221274 Buell et al. Jun 1993 A
5235515 Ungpiyakul et al. Aug 1993 A
5242436 Weil et al. Sep 1993 A
5246431 Minetola et al. Sep 1993 A
5246432 Suzuki et al. Sep 1993 A
5246433 Hasse et al. Sep 1993 A
5248309 Serbiak et al. Sep 1993 A
5260345 Desmarais et al. Nov 1993 A
5269775 Freeland et al. Dec 1993 A
5281683 Yano et al. Jan 1994 A
H1298 Ahr Apr 1994 H
5300565 Berg et al. Apr 1994 A
5312386 Correa et al. May 1994 A
5331059 Engelhardt et al. Jul 1994 A
5336552 Strack et al. Aug 1994 A
5348547 Payne et al. Sep 1994 A
5358500 LaVon et al. Oct 1994 A
5366451 Levesque Nov 1994 A
5366782 Curro et al. Nov 1994 A
5382610 Harada et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387208 Ashton et al. Feb 1995 A
5387209 Yamamoto et al. Feb 1995 A
5389095 Suzuki Feb 1995 A
5397316 Lavon et al. Mar 1995 A
5397317 Thomas Mar 1995 A
5399175 Glaug Mar 1995 A
5401792 Babu et al. Mar 1995 A
5409771 Dahmen et al. Apr 1995 A
H1440 New et al. May 1995 H
5411497 Tanzer et al. May 1995 A
5415644 Enloe May 1995 A
5425725 Tanzer et al. Jun 1995 A
5429630 Beal et al. Jul 1995 A
5433715 Tanzer et al. Jul 1995 A
5451219 Suzuki Sep 1995 A
5451442 Pieniak Sep 1995 A
5460622 Dragoo et al. Oct 1995 A
5460623 Emenaker et al. Oct 1995 A
5462541 Bruemmer et al. Oct 1995 A
5476458 Glaug et al. Dec 1995 A
5486166 Bishop et al. Jan 1996 A
5486167 Dragoo et al. Jan 1996 A
5487736 Phan Jan 1996 A
5490846 Ellis et al. Feb 1996 A
5492962 Lahrman et al. Feb 1996 A
5494622 Heath et al. Feb 1996 A
5499978 Buell et al. Mar 1996 A
5507736 Clear et al. Apr 1996 A
5507895 Suekane Apr 1996 A
5509915 Hanson et al. Apr 1996 A
5514104 Cole May 1996 A
5518801 Chappell et al. May 1996 A
5520674 Hines et al. May 1996 A
5522810 Allen, Jr. Jun 1996 A
5527300 Sauer Jun 1996 A
5531730 Dreier Jul 1996 A
5532323 Yano et al. Jul 1996 A
5542943 Sageser Aug 1996 A
5549592 Fries et al. Aug 1996 A
5549593 Ygge et al. Aug 1996 A
5549791 Herron et al. Aug 1996 A
5554145 Roe et al. Sep 1996 A
5559335 Zing et al. Sep 1996 A
5560878 Dragoo et al. Oct 1996 A
5562634 Flumene et al. Oct 1996 A
5562646 Goldman et al. Oct 1996 A
5562650 Everett et al. Oct 1996 A
5569234 Buell et al. Oct 1996 A
5571096 Dobrin et al. Nov 1996 A
5574121 Irie et al. Nov 1996 A
5575783 Clear et al. Nov 1996 A
5580411 Nease et al. Dec 1996 A
5584829 Lavash et al. Dec 1996 A
5586979 Thomas Dec 1996 A
5591152 Buell et al. Jan 1997 A
5591155 Nishikawa et al. Jan 1997 A
5593399 Tanzer et al. Jan 1997 A
5599335 Goldman et al. Feb 1997 A
5601542 Melius et al. Feb 1997 A
5607414 Richards et al. Mar 1997 A
5607537 Johnson et al. Mar 1997 A
5607760 Roe et al. Mar 1997 A
5609587 Roe Mar 1997 A
5609588 DiPalma et al. Mar 1997 A
5611879 Morman Mar 1997 A
5613959 Roessler et al. Mar 1997 A
5613960 Mizutani Mar 1997 A
5614283 Potnis et al. Mar 1997 A
5622589 Johnson et al. Apr 1997 A
5624423 Anjur Apr 1997 A
5624424 Saisaka et al. Apr 1997 A
5625222 Yoneda et al. Apr 1997 A
5607416 Yamamoto et al. May 1997 A
5626571 Young et al. May 1997 A
5628736 Yamada May 1997 A
5628741 Buell et al. May 1997 A
5628845 Murray et al. May 1997 A
5635191 Roe et al. Jun 1997 A
5635271 Zafiroglu Jun 1997 A
5637106 Mitchell Jun 1997 A
5643238 Baker Jul 1997 A
5643243 Klemp Jul 1997 A
5643588 Roe et al. Jul 1997 A
5649914 Glaug Jul 1997 A
5650214 Anderson Jul 1997 A
H1674 Ames et al. Aug 1997 H
5658268 Johns et al. Aug 1997 A
5662634 Yamamoto et al. Sep 1997 A
5662638 Johnson et al. Sep 1997 A
5662758 Hamilton et al. Sep 1997 A
5669894 Goldman et al. Sep 1997 A
5674215 Ronnberg Oct 1997 A
5681300 Ahr Oct 1997 A
5683374 Yamamoto Nov 1997 A
5685874 Buell et al. Nov 1997 A
5690624 Sasaki et al. Nov 1997 A
5690627 Clear et al. Nov 1997 A
5691035 Chappell et al. Nov 1997 A
5691036 Chappell et al. Nov 1997 A
5695488 Sosalla Dec 1997 A
5700254 McDowall et al. Dec 1997 A
5702376 Glaug Dec 1997 A
5713881 Rezai et al. Feb 1998 A
5714156 Schmidt et al. Feb 1998 A
5723087 Chappell et al. Mar 1998 A
5733275 Davis et al. Mar 1998 A
5749866 Roe et al. May 1998 A
5752947 Awolin May 1998 A
5756039 Mcfall et al. May 1998 A
H1732 Johnson Jun 1998 H
5762641 Bewick et al. Jun 1998 A
5766388 Pelley Jun 1998 A
5766389 Brandon et al. Jun 1998 A
5772825 Schmitz Jun 1998 A
5776121 Roe et al. Jul 1998 A
5779831 Schmitz Jul 1998 A
5788684 Abuto et al. Aug 1998 A
5795345 Mizutani Aug 1998 A
5797892 Glaug Aug 1998 A
5797894 Cadieux et al. Aug 1998 A
5807365 Luceri Sep 1998 A
5810796 Kimura et al. Sep 1998 A
5810800 Hunter et al. Sep 1998 A
5814035 Gryskiewicz et al. Sep 1998 A
5820618 Roberts et al. Oct 1998 A
5827257 Fujioka Oct 1998 A
5830202 Bogdanski et al. Nov 1998 A
5833678 Ashton et al. Nov 1998 A
5837789 Stockhausen et al. Nov 1998 A
5840404 Graff Nov 1998 A
5843059 Niemeyer et al. Dec 1998 A
5846231 Fujioka et al. Dec 1998 A
5846232 Serbiak et al. Dec 1998 A
5849816 Suskind et al. Dec 1998 A
5851204 Mitzutani Dec 1998 A
5855572 Schmidt Jan 1999 A
5858013 Kling Jan 1999 A
5858515 Stokes et al. Jan 1999 A
5865823 Curro Feb 1999 A
5865824 Chen Feb 1999 A
5873868 Nakahata Feb 1999 A
5876391 Roe et al. Mar 1999 A
5879751 Bogdanski Mar 1999 A
5891118 Toyoshima Apr 1999 A
5891544 Chappell et al. Apr 1999 A
5897545 Kline et al. Apr 1999 A
5904673 Roe et al. May 1999 A
5925439 Haubach Jul 1999 A
5928184 Etheredge Jul 1999 A
5931825 Kuen et al. Aug 1999 A
5938648 Lavon et al. Aug 1999 A
5938650 Baer et al. Aug 1999 A
5941862 Haynes et al. Aug 1999 A
5944706 Palumbo et al. Aug 1999 A
5947949 Inoue et al. Sep 1999 A
5951536 Osborn, III et al. Sep 1999 A
5957908 Kline et al. Sep 1999 A
5964743 Abuto et al. Oct 1999 A
5968025 Roe et al. Oct 1999 A
5968029 Chappell et al. Oct 1999 A
5980500 Shimizu et al. Nov 1999 A
5981824 Luceri Nov 1999 A
5989236 Roe et al. Nov 1999 A
6004306 Roe et al. Dec 1999 A
6010490 Freeland et al. Jan 2000 A
6022430 Blenke et al. Feb 2000 A
6022431 Blenke et al. Feb 2000 A
6042673 Johnson et al. Mar 2000 A
6050984 Fujioka Apr 2000 A
6054631 Gent Apr 2000 A
6056732 Fujioka et al. May 2000 A
6060115 Borowski et al. May 2000 A
6068620 Chmielewski May 2000 A
6080909 Osterdahl et al. Jun 2000 A
6083210 Young et al. Jul 2000 A
6090994 Chen Jul 2000 A
6091336 Zand Jul 2000 A
6093474 Sironi Jul 2000 A
6099515 Sugito Aug 2000 A
6102892 Putzer et al. Aug 2000 A
6103814 Van Drongelen et al. Aug 2000 A
6107537 Elder et al. Aug 2000 A
6110157 Schmidt Aug 2000 A
6117121 Faulks et al. Sep 2000 A
6117803 Morman et al. Sep 2000 A
6120486 Toyoda et al. Sep 2000 A
6120487 Ashton Sep 2000 A
6120489 Johnson et al. Sep 2000 A
6120866 Arakawa et al. Sep 2000 A
6121509 Ashraf et al. Sep 2000 A
6129717 Fujioka et al. Oct 2000 A
6129720 Blenke et al. Oct 2000 A
6132411 Huber et al. Oct 2000 A
6139912 Onuschak Oct 2000 A
6143821 Houben Nov 2000 A
6152908 Widlund Nov 2000 A
6156023 Yoshioka Dec 2000 A
6156424 Taylor Dec 2000 A
6160197 Lassen Dec 2000 A
6165160 Suzuki et al. Dec 2000 A
6174302 Kumasaka Jan 2001 B1
6177606 Etheredge Jan 2001 B1
6177607 Blaney et al. Jan 2001 B1
6186996 Martin Feb 2001 B1
6210386 Inoue Apr 2001 B1
6210390 Karlsson Apr 2001 B1
6221460 Weber et al. Apr 2001 B1
6231556 Osborn, III May 2001 B1
6231566 Lai May 2001 B1
6238380 Sasaki May 2001 B1
6241714 Raidel et al. Jun 2001 B1
6241716 Rönnberg Jun 2001 B1
6254294 Muhar Jul 2001 B1
6258996 Goldman Jul 2001 B1
6261679 Chen et al. Jul 2001 B1
6264639 Sauer Jul 2001 B1
6265488 Fujino et al. Jul 2001 B1
6290686 Tanzer et al. Sep 2001 B1
6306122 Narawa et al. Oct 2001 B1
6307119 Cammarota et al. Oct 2001 B1
6315765 Datta Nov 2001 B1
6319239 Daniels et al. Nov 2001 B1
6322552 Blenke et al. Nov 2001 B1
6325787 Roe et al. Dec 2001 B1
6326525 Hamajima Dec 2001 B1
6330735 Hahn et al. Dec 2001 B1
6334858 Rönnberg et al. Jan 2002 B1
6336922 Van Gompel et al. Jan 2002 B1
6340611 Shimizu Jan 2002 B1
6342715 Shimizu Jan 2002 B1
6402731 Suprise et al. Jan 2002 B1
6350332 Thomas et al. Feb 2002 B1
6368687 Joseph et al. Apr 2002 B1
6371948 Mizutani Apr 2002 B1
6372952 Lash et al. Apr 2002 B1
6375644 Mizutani Apr 2002 B2
6376034 Brander Apr 2002 B1
6383431 Dobrin et al. May 2002 B1
6383960 Everett et al. May 2002 B1
6394989 Mizutani May 2002 B2
6403857 Gross et al. Jun 2002 B1
6406467 Dilnik et al. Jun 2002 B1
6409883 Makolin Jun 2002 B1
6410820 McFall et al. Jun 2002 B1
6410822 Mizutani Jun 2002 B1
6402729 Boberg et al. Jul 2002 B1
6413248 Mizutani Jul 2002 B1
6413249 Turi et al. Jul 2002 B1
6414214 Engelhardt et al. Jul 2002 B1
6416502 Connelly et al. Jul 2002 B1
6416697 Venturino et al. Jul 2002 B1
6419667 Avalon et al. Jul 2002 B1
6420622 Johnston et al. Jul 2002 B1
6423046 Fujioka et al. Jul 2002 B1
6423048 Suzuki et al. Jul 2002 B1
6423884 Oehmen Jul 2002 B1
6429350 Tanzer et al. Aug 2002 B1
6432094 Fujioka et al. Aug 2002 B1
6432098 Kline et al. Aug 2002 B1
6432099 Rönnberg Aug 2002 B2
6437214 Everett et al. Aug 2002 B1
6441268 Edwardsson Aug 2002 B1
6443933 Suzuki et al. Sep 2002 B1
6444064 Henry et al. Sep 2002 B1
6447496 Mizutani Sep 2002 B1
6458111 Onishi et al. Oct 2002 B1
6458877 Ahmed et al. Oct 2002 B1
6459016 Rosenfeld et al. Oct 2002 B1
6461034 Schaefer et al. Oct 2002 B1
6461342 Tanji et al. Oct 2002 B2
6461343 Schaefer et al. Oct 2002 B1
6472478 Funk et al. Oct 2002 B1
6475201 Saito et al. Nov 2002 B2
6494872 Suzuki et al. Dec 2002 B1
6494873 Karlsson et al. Dec 2002 B2
6500159 Carvalho Dec 2002 B1
6503233 Chen Jan 2003 B1
6503979 Funk et al. Jan 2003 B1
6506186 Roessler Jan 2003 B1
6506961 Levy Jan 2003 B1
6515195 Lariviere Feb 2003 B1
6517525 Berthou Feb 2003 B1
6518479 Graef Feb 2003 B1
6520947 Tilly et al. Feb 2003 B1
6521811 Lassen Feb 2003 B1
6521812 Graef Feb 2003 B1
6524294 Hilston et al. Feb 2003 B1
6525240 Graef Feb 2003 B1
6528698 Mizutani et al. Mar 2003 B2
6529860 Strumolo et al. Mar 2003 B1
6531025 Lender et al. Mar 2003 B1
6531027 Lender et al. Mar 2003 B1
6534149 Daley et al. Mar 2003 B1
6559081 Erspamer May 2003 B1
6559239 Riegel et al. May 2003 B1
6562168 Schmitt et al. May 2003 B1
6562192 Hamilton May 2003 B1
6569137 Suzuki et al. May 2003 B2
6573422 Rosenfeld Jun 2003 B1
6585713 LaMahieu et al. Jul 2003 B1
6585858 Otto et al. Jul 2003 B1
6602234 Klemp et al. Aug 2003 B2
6605070 Ludwig et al. Aug 2003 B2
6605172 Anderson et al. Aug 2003 B1
6605752 Magnusson et al. Aug 2003 B2
6610900 Tanzer Aug 2003 B1
6613955 Lindsay et al. Sep 2003 B1
6630054 Graef Oct 2003 B1
6632209 Chmielewski Oct 2003 B1
6632504 Gillespie et al. Oct 2003 B1
6645569 Cramer et al. Nov 2003 B2
6646180 Chmielewski Nov 2003 B1
6648869 Gillies et al. Nov 2003 B1
6648870 Itoh et al. Nov 2003 B2
6648871 Kusibojoska et al. Nov 2003 B2
6649807 Mizutani Nov 2003 B2
6649810 Minato et al. Nov 2003 B1
6657015 Riegel et al. Dec 2003 B1
6657102 Furuya Dec 2003 B2
6667424 Hamilton Dec 2003 B1
6670522 Graef Dec 2003 B1
6673982 Chen Jan 2004 B1
6673983 Graef Jan 2004 B1
6673985 Mizutani Jan 2004 B2
6682515 Mizutani et al. Jan 2004 B1
6682516 Johnston Jan 2004 B2
6689115 Popp et al. Feb 2004 B1
6689934 Dodge, II et al. Feb 2004 B2
6695827 Chen Feb 2004 B2
6700034 Lindsay et al. Mar 2004 B1
6700036 Thomas et al. Mar 2004 B2
6703538 Lassen Mar 2004 B2
6705465 Ling et al. Mar 2004 B2
6706129 Ando et al. Mar 2004 B2
6706943 Onishi Mar 2004 B2
6710224 Chmielewski et al. Mar 2004 B2
6710225 Everett et al. Mar 2004 B1
6716205 Popp et al. Apr 2004 B2
6716441 Osborne et al. Apr 2004 B1
6717029 Baker Apr 2004 B2
6726668 Underhill et al. Apr 2004 B2
6726792 Johnson et al. Apr 2004 B1
6730387 Rezai et al. May 2004 B2
6734335 Graef May 2004 B1
6746976 Urankar et al. Jun 2004 B1
6790798 Suzuki et al. Sep 2004 B1
6802834 Melius et al. Oct 2004 B2
6809158 Ikeuchi et al. Oct 2004 B2
6811642 Ochi Nov 2004 B2
6818083 Mcamish et al. Nov 2004 B2
6818166 Edwardson et al. Nov 2004 B2
6830800 Curro et al. Dec 2004 B2
6832905 Delzer et al. Dec 2004 B2
6840929 Kurata Jan 2005 B2
6846374 Popp Jan 2005 B2
6858771 Yoshimasa Feb 2005 B2
6863933 Cramer et al. Mar 2005 B2
6863960 Curro et al. Mar 2005 B2
6867345 Shimoe et al. Mar 2005 B2
6867346 Dopps Mar 2005 B1
6878433 Curro et al. Apr 2005 B2
6878647 Rezai Apr 2005 B1
6880211 Jackson et al. Apr 2005 B2
6891080 Minato May 2005 B2
6903243 Burton Jun 2005 B1
6904865 Klofta Jun 2005 B2
6911574 Mizutani Jun 2005 B1
6923797 Shinohara et al. Aug 2005 B2
6923926 Walter et al. Aug 2005 B2
6926703 Sugito Aug 2005 B2
6929629 Drevik et al. Aug 2005 B2
6939914 Qin et al. Sep 2005 B2
6946585 Brown Sep 2005 B2
6953451 Berba Oct 2005 B2
6955667 Tanaka et al. Oct 2005 B1
6955733 Henry et al. Oct 2005 B2
6962578 Lavon Nov 2005 B1
6962645 Graef Nov 2005 B2
6965058 Raidel Nov 2005 B1
6969781 Graef Nov 2005 B2
6972010 Pesce et al. Dec 2005 B2
6972011 Maeda et al. Dec 2005 B2
6974892 DeCarvalho et al. Dec 2005 B2
6979564 Glucksmann et al. Dec 2005 B2
6982052 Daniels et al. Jan 2006 B2
7001167 Venturino Feb 2006 B2
7014632 Takino et al. Mar 2006 B2
7015370 Watanabe Mar 2006 B2
7037299 Turi et al. May 2006 B2
7037571 Fish et al. May 2006 B2
7048726 Kusagawa et al. May 2006 B2
7056311 Kinoshita Jun 2006 B2
7067711 Kinoshita et al. Jun 2006 B2
7073373 La Fortune Jul 2006 B2
7078583 Kudo Jul 2006 B2
7090665 Ohashi Aug 2006 B2
7108759 You Sep 2006 B2
7108916 Ehrnsperger et al. Sep 2006 B2
7112621 Rohrbaugh et al. Sep 2006 B2
7122713 Komatsu Oct 2006 B2
7125470 Graef Oct 2006 B2
7132585 Kudo Nov 2006 B2
7147628 Drevik Dec 2006 B2
7150729 Shimada Dec 2006 B2
7154019 Mishima et al. Dec 2006 B2
7160281 Leminh et al. Jan 2007 B2
7163528 Christon et al. Jan 2007 B2
7166190 Graef Jan 2007 B2
7169136 Otsubo Jan 2007 B2
7183360 Daniel et al. Feb 2007 B2
7189888 Wang et al. Mar 2007 B2
7196241 Kinoshita Mar 2007 B2
7199211 Popp et al. Apr 2007 B2
7204830 Mishima Apr 2007 B2
7207978 Takino Apr 2007 B2
7219403 Miyamoto et al. May 2007 B2
7220251 Otsubo et al. May 2007 B2
7241280 Christen et al. Jul 2007 B2
7250481 Jaworek et al. Jul 2007 B2
7252657 Mishima Aug 2007 B2
7265258 Hamilton Sep 2007 B2
7270651 Adams et al. Sep 2007 B2
7285178 Mischler et al. Oct 2007 B2
7306582 Adams et al. Dec 2007 B2
7311696 Christen et al. Dec 2007 B2
7311968 Ehrnsperger et al. Dec 2007 B2
7312372 Miyama Dec 2007 B2
7318820 LaVon et al. Jan 2008 B2
7329244 Otsubo Feb 2008 B2
7329246 Kinoshita Feb 2008 B2
7335810 Yoshimasa et al. Feb 2008 B2
7377914 LaVon May 2008 B2
7429689 Chen Sep 2008 B2
7435244 Schroer et al. Oct 2008 B2
7465373 Graef Dec 2008 B2
7500969 Mishima Mar 2009 B2
7504552 Tamura Mar 2009 B2
7504553 Nagahara et al. Mar 2009 B2
7521109 Suzuki et al. Apr 2009 B2
7521587 Busam et al. Apr 2009 B2
7537832 Carlucci et al. May 2009 B2
7547815 Ohashi Jun 2009 B2
7550646 Tamura Jun 2009 B2
7563257 Nakajima Jul 2009 B2
7588561 Kenmochi Sep 2009 B2
7594904 Rosenfeld Sep 2009 B2
7598428 Gustavsson et al. Oct 2009 B2
7625363 Yoshimasa Dec 2009 B2
7641642 Murai et al. Jan 2010 B2
7648490 Kuroda Jan 2010 B2
7652111 Hermeling et al. Jan 2010 B2
7666173 Mishima Feb 2010 B2
7666174 Kawakami et al. Feb 2010 B2
7686790 Rasmussen et al. Mar 2010 B2
7687596 Hermeling et al. Mar 2010 B2
7695461 Rosenfeld Apr 2010 B2
7696402 Nishikawa Apr 2010 B2
7708725 Tamagawa May 2010 B2
7717150 Manabe May 2010 B2
7718249 Russell et al. May 2010 B2
7718844 Olson May 2010 B2
7722587 Suzuki et al. May 2010 B2
7722590 Tsuji May 2010 B2
7727217 Hancock-Cooke Jun 2010 B2
7736351 Nigam Jun 2010 B2
7737324 LaVon et al. Jun 2010 B2
7744576 Busam et al. Jun 2010 B2
7744578 Tanio et al. Jun 2010 B2
7750203 Busam et al. Jul 2010 B2
7754822 Daniel et al. Jul 2010 B2
7754940 Brisebois Jul 2010 B2
7759540 Litvay et al. Jul 2010 B2
7763004 Beck Jul 2010 B2
7767875 Olson Aug 2010 B2
7767876 Davis et al. Aug 2010 B2
7767878 Suzuki Aug 2010 B2
7772420 Hermeling et al. Aug 2010 B2
7786341 Schneider et al. Aug 2010 B2
7795492 Vartiainen Sep 2010 B2
7803145 Rosenfeld Sep 2010 B2
7825291 Elfsberg et al. Nov 2010 B2
7838722 Blessing et al. Nov 2010 B2
7850672 Guidotti et al. Dec 2010 B2
7851667 Becker et al. Dec 2010 B2
7855314 Hanao Dec 2010 B2
7857797 Kudo Dec 2010 B2
7858842 Komatsu Dec 2010 B2
7884259 Hanao Feb 2011 B2
7888549 Jansson et al. Feb 2011 B2
7910797 Nandrea Mar 2011 B2
7931636 LaVon et al. Apr 2011 B2
7935207 Zhao May 2011 B2
7935861 Suzuki May 2011 B2
7938813 Wang et al. May 2011 B2
7942858 Francoeur May 2011 B2
7951126 Nanjyo May 2011 B2
7956236 Ponomarenko et al. Jun 2011 B2
7959620 Miura et al. Jun 2011 B2
7982091 Konawa Jul 2011 B2
7993319 Sperl Aug 2011 B2
8017827 Hundorf et al. Sep 2011 B2
8029486 Nakajima Oct 2011 B2
8030536 Ponomarenko et al. Oct 2011 B2
8034991 Bruzadin et al. Oct 2011 B2
8039684 Guidotti et al. Oct 2011 B2
8052454 Polnyi Nov 2011 B2
8057620 Perego et al. Nov 2011 B2
8109915 Shimoe Feb 2012 B2
8124828 Kline et al. Feb 2012 B2
8133212 Takada Mar 2012 B2
8148598 Tsang et al. Apr 2012 B2
8163124 Moriura et al. Apr 2012 B2
8167862 Digiacomantonio et al. May 2012 B2
8173858 Kuroda May 2012 B2
8178747 Venturino et al. May 2012 B2
8183430 Hakansson et al. May 2012 B2
8186296 Brown et al. May 2012 B2
8187239 LaVon et al. May 2012 B2
8187240 Busam et al. May 2012 B2
8198506 Venturino et al. Jun 2012 B2
8211815 Baker Jul 2012 B2
8236715 Schmidt et al. Aug 2012 B2
8237012 Miyama Aug 2012 B2
8246594 Sperl Aug 2012 B2
8258367 Lawson et al. Sep 2012 B2
8268424 Suzuki Sep 2012 B1
8273943 Noda Sep 2012 B2
8282617 Kaneda Oct 2012 B2
8283516 Litvay Oct 2012 B2
8317766 Naoto Nov 2012 B2
8317768 Larsson Nov 2012 B2
8319005 Becker et al. Nov 2012 B2
8343123 Noda Jan 2013 B2
8343296 Blessing et al. Jan 2013 B2
8360977 Marttila Jan 2013 B2
8361047 Mukai Jan 2013 B2
8377025 Nakajima Feb 2013 B2
8450555 Nahn et al. May 2013 B2
8496637 Hundorf et al. Jul 2013 B2
8519213 Venturino et al. Aug 2013 B2
8524355 Nakaoka Sep 2013 B2
8552252 Hundorf et al. Oct 2013 B2
8568380 Brownlee Oct 2013 B2
8568566 Jackels et al. Oct 2013 B2
8569571 Kline et al. Oct 2013 B2
8581019 Carlucci et al. Nov 2013 B2
8603058 Sprerl et al. Dec 2013 B2
8604270 Venturino et al. Dec 2013 B2
8633347 Bianco et al. Jan 2014 B2
8664468 Lawson et al. Mar 2014 B2
8674170 Busam et al. Mar 2014 B2
8734417 LaVon et al. May 2014 B2
8766031 Becker et al. Jul 2014 B2
8772570 Kawakami et al. Jul 2014 B2
8784594 Blessing et al. Jul 2014 B2
8785715 Wright et al. Jul 2014 B2
8791318 Becker et al. Jul 2014 B2
8936584 Zander et al. Jan 2015 B2
9056034 Akiyama Jun 2015 B2
9066831 Moriya et al. Jun 2015 B2
9326896 Schaefer et al. May 2016 B2
20010007065 Blanchard Jul 2001 A1
20010008964 Kurata et al. Jul 2001 A1
20010016548 Kugler et al. Aug 2001 A1
20010020157 Mizutani Sep 2001 A1
20010037101 Allan et al. Nov 2001 A1
20010044610 Kim Nov 2001 A1
20020007167 Dan Jan 2002 A1
20020007169 Graef et al. Jan 2002 A1
20020016122 Curro et al. Feb 2002 A1
20020016579 Stenberg Feb 2002 A1
20020045881 Kusibojoska et al. Apr 2002 A1
20020056516 Ochi May 2002 A1
20020058919 Hamilton et al. May 2002 A1
20020062112 Mizutani May 2002 A1
20020062115 Wada et al. May 2002 A1
20020062116 Mizutani May 2002 A1
20020065498 Ohash May 2002 A1
20020072471 Ikeuchi et al. Jun 2002 A1
20020082575 Dan Jun 2002 A1
20020087139 Popp et al. Jul 2002 A1
20020095126 Inoue et al. Jul 2002 A1
20020095127 Fish et al. Jul 2002 A1
20020102392 Fish et al. Aug 2002 A1
20020115969 Maeda et al. Aug 2002 A1
20020115972 Dabi et al. Aug 2002 A1
20020123728 Graef et al. Sep 2002 A1
20020123848 Schneiderman et al. Sep 2002 A1
20020151634 Rohrbaugh et al. Oct 2002 A1
20020151861 Klemp et al. Oct 2002 A1
20020173767 Popp et al. Nov 2002 A1
20020192366 Cramer et al. Dec 2002 A1
20020197695 Glucksmann et al. Dec 2002 A1
20030036741 Abba et al. Feb 2003 A1
20030078553 Wada Apr 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030088223 Vogt et al. May 2003 A1
20030105190 Diehl et al. Jun 2003 A1
20030109839 Costea et al. Jun 2003 A1
20030114811 Christen et al. Jun 2003 A1
20030114816 Underhill Jun 2003 A1
20030114818 Benecke et al. Jun 2003 A1
20030115969 Koyano et al. Jun 2003 A1
20030120235 Boulanger Jun 2003 A1
20030120249 Wulz et al. Jun 2003 A1
20030135176 Delzer et al. Jul 2003 A1
20030135181 Chen et al. Jul 2003 A1
20030135182 Woon et al. Jul 2003 A1
20030139712 Dodge Jul 2003 A1
20030139715 Dodge Jul 2003 A1
20030139718 Graef Jul 2003 A1
20030144642 Dopps Jul 2003 A1
20030144644 Murai et al. Jul 2003 A1
20030148684 Cramer et al. Aug 2003 A1
20030148694 Ghiam Aug 2003 A1
20030158530 Diehl et al. Aug 2003 A1
20030158531 Chmielewski Aug 2003 A1
20030158532 Magee et al. Aug 2003 A1
20030167045 Graef Sep 2003 A1
20030171727 Graef Sep 2003 A1
20030208175 Gross Nov 2003 A1
20030225385 Glaug Dec 2003 A1
20030233082 Kline et al. Dec 2003 A1
20030236512 Baker Dec 2003 A1
20040019338 Litvay et al. Jan 2004 A1
20040022998 Miyamoto et al. Feb 2004 A1
20040033750 Everett Feb 2004 A1
20040063367 Dodge Apr 2004 A1
20040064113 Erdman Apr 2004 A1
20040064115 Arora Apr 2004 A1
20040064116 Arora Apr 2004 A1
20040064125 Justmann et al. Apr 2004 A1
20040065420 Graef Apr 2004 A1
20040082928 Pesce et al. Apr 2004 A1
20040097895 Busam et al. May 2004 A1
20040122411 Hancock-Cooke Jun 2004 A1
20040127131 Potnis Jul 2004 A1
20040127871 Odorzynski Jul 2004 A1
20040127872 Petryk Jul 2004 A1
20040134596 Rosati et al. Jul 2004 A1
20040138633 Mishima et al. Jul 2004 A1
20040147890 Nakahata et al. Jul 2004 A1
20040158212 Ponomarenko et al. Aug 2004 A1
20040162536 Becker et al. Aug 2004 A1
20040167486 Busam et al. Aug 2004 A1
20040167489 Kellenberger et al. Aug 2004 A1
20040170813 Digiacomantonio et al. Sep 2004 A1
20040193127 Hansson Sep 2004 A1
20040214499 Qin et al. Oct 2004 A1
20040215160 Chmielewski Oct 2004 A1
20040220541 Suzuki et al. Nov 2004 A1
20040225271 Datta et al. Nov 2004 A1
20040231065 Daniel et al. Nov 2004 A1
20040236299 Tsang et al. Nov 2004 A1
20040236455 Woltman et al. Nov 2004 A1
20040249355 Tanio et al. Dec 2004 A1
20040260259 Baker Dec 2004 A1
20050001929 Ochial et al. Jan 2005 A1
20050004543 Schroer et al. Jan 2005 A1
20050004548 Otsubo et al. Jan 2005 A1
20050008839 Cramer et al. Jan 2005 A1
20050018258 Miyagi Jan 2005 A1
20050027267 Van Dyke Feb 2005 A1
20050038401 Suzuki et al. Feb 2005 A1
20050070867 Beruda et al. Mar 2005 A1
20050085784 LeMinh et al. Apr 2005 A1
20050090789 Graef Apr 2005 A1
20050101929 Waksmundzki et al. May 2005 A1
20050137543 Underhill et al. Jun 2005 A1
20050148258 Chakravarty Jul 2005 A1
20050148961 Sosalla et al. Jul 2005 A1
20050148990 Shimoe Jul 2005 A1
20050154363 Minato Jul 2005 A1
20050159720 Gentilcore Jul 2005 A1
20050165208 Popp et al. Jul 2005 A1
20050171499 Nigam Aug 2005 A1
20050176910 Jaworek et al. Aug 2005 A1
20050203475 LaVon et al. Sep 2005 A1
20050215752 Popp et al. Sep 2005 A1
20050217791 Costello et al. Oct 2005 A1
20050229543 Tippey Oct 2005 A1
20050234414 Liu et al. Oct 2005 A1
20050245684 Daniel et al. Nov 2005 A1
20050288645 LaVon Dec 2005 A1
20050288646 LaVon Dec 2005 A1
20060004334 Schlinz et al. Jan 2006 A1
20060021695 Blessing et al. Feb 2006 A1
20060024433 Blessing et al. Feb 2006 A1
20060069367 Waksmundzki et al. Mar 2006 A1
20060069371 Ohashi et al. Mar 2006 A1
20060073969 Torii et al. Apr 2006 A1
20060081348 Graef Apr 2006 A1
20060129114 Mason et al. Jun 2006 A1
20060142724 Watanabe Jun 2006 A1
20060155057 Hermeling et al. Jul 2006 A1
20060155254 Sanz et al. Jul 2006 A1
20060167215 Hermeling et al. Jul 2006 A1
20060177647 Schmidt et al. Aug 2006 A1
20060178071 Schmidt et al. Aug 2006 A1
20060184146 Suzuki Aug 2006 A1
20060184149 Kasai et al. Aug 2006 A1
20060189954 Kudo Aug 2006 A1
20060202380 Bentley Sep 2006 A1
20060206091 Cole Sep 2006 A1
20060211828 Daniel et al. Sep 2006 A1
20060240229 Ehrnsperger et al. Oct 2006 A1
20060264860 Beck et al. Nov 2006 A1
20060264861 Lavon et al. Nov 2006 A1
20060271010 LaVon et al. Nov 2006 A1
20070027436 Nakagawa et al. Feb 2007 A1
20070032770 Lavon et al. Feb 2007 A1
20070043191 Hermeling et al. Feb 2007 A1
20070043330 Lankhof et al. Feb 2007 A1
20070044903 Wisneski et al. Mar 2007 A1
20070049892 Lord et al. Mar 2007 A1
20070049897 LaVon et al. Mar 2007 A1
20070073253 Miyama Mar 2007 A1
20070078422 Glaug Apr 2007 A1
20070083175 VanHimbergen et al. Apr 2007 A1
20070088308 Ehrnsperger et al. Apr 2007 A1
20070093164 Nakaoka Apr 2007 A1
20070093767 Carlucci et al. Apr 2007 A1
20070100307 Nomoto May 2007 A1
20070106013 Adachi et al. May 2007 A1
20070118087 Flohr et al. May 2007 A1
20070123834 McDowall et al. May 2007 A1
20070156108 Becker et al. Jul 2007 A1
20070156110 Thyfault Jul 2007 A1
20070167928 Becker et al. Jul 2007 A1
20070179464 Becker et al. Aug 2007 A1
20070179469 Takahashi et al. Aug 2007 A1
20070191798 Glaug Aug 2007 A1
20070219521 Hird et al. Sep 2007 A1
20070219523 Bruun Sep 2007 A1
20070239125 Erdman et al. Oct 2007 A9
20070244455 Hansson et al. Oct 2007 A1
20070246147 Venturino et al. Oct 2007 A1
20070255245 Asp et al. Nov 2007 A1
20070282288 Noda Dec 2007 A1
20070282290 Cole Dec 2007 A1
20070282291 Cole Dec 2007 A1
20070287971 Roe et al. Dec 2007 A1
20080027402 Schmidt et al. Jan 2008 A1
20080032035 Schmidt et al. Feb 2008 A1
20080091159 Carlucci et al. Apr 2008 A1
20080119810 Kuroda May 2008 A1
20080125735 Busam et al. May 2008 A1
20080132864 Lawson et al. Jun 2008 A1
20080208154 Oetjen et al. Aug 2008 A1
20080221538 Zhao Sep 2008 A1
20080221539 Zhao Sep 2008 A1
20080228158 Sue et al. Sep 2008 A1
20080262459 Kamoto Oct 2008 A1
20080268194 Kim et al. Oct 2008 A1
20080274227 Boatman et al. Nov 2008 A1
20080281287 Marcelo Nov 2008 A1
20080294140 Ecker et al. Nov 2008 A1
20080312617 Hundorf et al. Dec 2008 A1
20080312618 Hundorf et al. Dec 2008 A1
20080312619 Hundorf et al. Dec 2008 A1
20080312620 Ashton et al. Dec 2008 A1
20080312621 Hundorf et al. Dec 2008 A1
20080312622 Hundorf et al. Dec 2008 A1
20080312623 Hundorf et al. Dec 2008 A1
20080312624 Hundorf et al. Dec 2008 A1
20080312625 Hundorf et al. Dec 2008 A1
20080312627 Takeuchi Dec 2008 A1
20080312628 Hundorf et al. Dec 2008 A1
20090023848 Ahmed et al. Jan 2009 A1
20090056867 Moriura et al. Mar 2009 A1
20090062760 Wright et al. Mar 2009 A1
20090112173 Bissah Apr 2009 A1
20090112175 Bissah et al. Apr 2009 A1
20090157022 Macdonald Jun 2009 A1
20090192035 Stueven et al. Jul 2009 A1
20090240220 Macdonald Sep 2009 A1
20090247977 Takeuchi Oct 2009 A1
20090258994 Stueven et al. Oct 2009 A1
20090270825 Wciorka et al. Oct 2009 A1
20090298963 Matsumoto et al. Dec 2009 A1
20090299312 Macdonald Dec 2009 A1
20090306618 Kudo Dec 2009 A1
20090318884 Meyer et al. Dec 2009 A1
20090326494 Uchida et al. Dec 2009 A1
20090326497 Schmidt Dec 2009 A1
20100051166 Hundorf et al. Mar 2010 A1
20100062165 Suzuki Mar 2010 A1
20100062934 Suzuki Mar 2010 A1
20100063470 Suzuki Mar 2010 A1
20100068520 Stueven et al. Mar 2010 A1
20100100065 Bianco Apr 2010 A1
20100115237 Brewer et al. May 2010 A1
20100121296 Noda May 2010 A1
20100137773 Gross Jun 2010 A1
20100137823 Corneliusson Jun 2010 A1
20100198179 Noda Aug 2010 A1
20100228210 Busam et al. Sep 2010 A1
20100241096 LaVon et al. Sep 2010 A1
20100241097 Nigam et al. Sep 2010 A1
20100262099 Klofta Oct 2010 A1
20100262104 Carlucci et al. Oct 2010 A1
20100274208 Gabrielii Oct 2010 A1
20100274210 Noda Oct 2010 A1
20100305537 Ashton et al. Dec 2010 A1
20100312208 Bond et al. Dec 2010 A1
20100324521 Mukai Dec 2010 A1
20100324523 Mukai Dec 2010 A1
20110034603 Fujino et al. Feb 2011 A1
20110041999 Hundorf et al. Feb 2011 A1
20110046592 Nishikawa et al. Feb 2011 A1
20110060301 Nishikawa et al. Mar 2011 A1
20110060303 Bissah Mar 2011 A1
20110066127 Kuwano Mar 2011 A1
20110071486 Harada Mar 2011 A1
20110092944 Sagisaka Apr 2011 A1
20110112498 Nhan et al. May 2011 A1
20110125120 Nishitani et al. May 2011 A1
20110130732 Jackels et al. Jun 2011 A1
20110130737 Sagisaka Jun 2011 A1
20110137276 Yoshikawa Jun 2011 A1
20110144602 Long Jun 2011 A1
20110144604 Noda Jun 2011 A1
20110144606 Nandrea Jun 2011 A1
20110152813 Ellingson Jun 2011 A1
20110166540 Yang et al. Jul 2011 A1
20110172630 Nomoto et al. Jul 2011 A1
20110174430 Zhao Jul 2011 A1
20110196330 Hammons et al. Aug 2011 A1
20110208147 Kawakami et al. Aug 2011 A1
20110250413 Lu et al. Oct 2011 A1
20110268932 Catalan et al. Nov 2011 A1
20110274834 Brown et al. Nov 2011 A1
20110288513 Hundorf et al. Nov 2011 A1
20110288514 Kuroda Nov 2011 A1
20110295222 Becker et al. Dec 2011 A1
20110319846 Rinnert et al. Dec 2011 A1
20110319848 McKiernan et al. Dec 2011 A1
20110319851 Kudo Dec 2011 A1
20120004633 Marcelo Jan 2012 A1
20120016326 Brennan et al. Jan 2012 A1
20120022479 Cotton Jan 2012 A1
20120035566 Sagisaka Feb 2012 A1
20120035576 Ichikawa Feb 2012 A1
20120041405 Alkmin et al. Feb 2012 A1
20120064792 Bauduin Mar 2012 A1
20120071848 Zhang Mar 2012 A1
20120165771 Ruman et al. Jun 2012 A1
20120165776 McGregor et al. Jun 2012 A1
20120175056 Tsang Jul 2012 A1
20120184934 Venturino Jul 2012 A1
20120220972 Kawamura et al. Aug 2012 A1
20120232514 Baker Sep 2012 A1
20120238977 Oku Sep 2012 A1
20120253306 Otsubo Oct 2012 A1
20120256750 Novak Oct 2012 A1
20120271262 Venturino Oct 2012 A1
20120312491 Jackels et al. Dec 2012 A1
20120316046 Jackels et al. Dec 2012 A1
20120316523 Hippe et al. Dec 2012 A1
20120316526 Rosati et al. Dec 2012 A1
20120316527 Rosati et al. Dec 2012 A1
20120316528 Kreuzer et al. Dec 2012 A1
20120316529 Kreuzer et al. Dec 2012 A1
20120316530 Hundorf et al. Dec 2012 A1
20120323195 Ehrnsperger et al. Dec 2012 A1
20120323201 Bissah Dec 2012 A1
20120323202 Bissah Dec 2012 A1
20130035656 Moriya et al. Feb 2013 A1
20130041334 Prioleau Feb 2013 A1
20130066290 Kawakami Mar 2013 A1
20130178811 Kikuchi et al. Jul 2013 A1
20130211354 Tsuji et al. Aug 2013 A1
20130211358 Kikkawa et al. Aug 2013 A1
20130218115 Katsuragawa et al. Aug 2013 A1
20130226119 Katsuragawa et al. Aug 2013 A1
20130226120 Van De Maele Aug 2013 A1
20130240125 Nelson et al. Sep 2013 A1
20130310784 Bryant et al. Nov 2013 A1
20130331806 Rosati et al. Dec 2013 A1
20140005622 Wirtz et al. Jan 2014 A1
20140005623 Wirtz et al. Jan 2014 A1
20140005625 Wirtz et al. Jan 2014 A1
20140027066 Jackels et al. Jan 2014 A1
20140039437 Van De Maele Feb 2014 A1
20140045683 Loick et al. Feb 2014 A1
20140102183 Agami et al. Apr 2014 A1
20140121623 Kirby et al. May 2014 A1
20140121625 Kirby et al. May 2014 A1
20140135726 Busam et al. May 2014 A1
20140142531 Sasayama et al. May 2014 A1
20140163500 Roe et al. Jun 2014 A1
20140163501 Ehrnsperger et al. Jun 2014 A1
20140163502 Arizti et al. Jun 2014 A1
20140163503 Arizti et al. Jun 2014 A1
20140163506 Roe et al. Jun 2014 A1
20140163511 Roe et al. Jun 2014 A1
20140171893 Lawson et al. Jun 2014 A1
20140299815 Ueda et al. Oct 2014 A1
20140318694 Blessing et al. Oct 2014 A1
20140324007 Hundorf et al. Oct 2014 A1
20140324008 Hundorf et al. Oct 2014 A1
20140371701 Bianchi et al. Dec 2014 A1
20150065975 Roe et al. Mar 2015 A1
20150065981 Roe et al. Mar 2015 A1
20150065986 Blessing et al. Mar 2015 A1
20150080821 Peri et al. Mar 2015 A1
20150080837 Rosati et al. Mar 2015 A1
20150080839 Trapp et al. Mar 2015 A1
20150173967 Kreuzer et al. Jun 2015 A1
20150173968 Joseph Jun 2015 A1
20150250662 Isele et al. Sep 2015 A1
20150250663 Wagner et al. Sep 2015 A1
20150273433 Nakatsuru et al. Oct 2015 A1
Foreign Referenced Citations (587)
Number Date Country
2001370 Apr 1990 CA
2291997 Jun 2000 CA
2308961 Nov 2000 CA
2487027 Dec 2003 CA
2561521 Mar 2007 CA
2630713 Nov 2008 CA
2636673 Jan 2009 CA
2712563 Aug 2010 CA
2702001 Oct 2010 CA
1238171 Dec 1999 CN
2362468 Feb 2000 CN
1371671 Feb 2001 CN
2527254 Dec 2002 CN
2535020 Feb 2003 CN
2548609 May 2003 CN
1539391 Oct 2004 CN
1939242 Apr 2007 CN
101292930 Oct 2008 CN
201263750 Jul 2009 CN
201591689 Sep 2010 CN
201855366 Jun 2011 CN
3205931 Sep 1983 DE
3608114 Sep 1987 DE
19732499 Feb 1999 DE
10204937 Aug 2003 DE
083022 Jul 1983 EP
149880 Jul 1985 EP
0149880 Jul 1985 EP
203289 Dec 1986 EP
0203289 Dec 1986 EP
0206208 Dec 1986 EP
209561 Jan 1987 EP
297411 Jan 1989 EP
304957 Mar 1989 EP
374542 Jun 1990 EP
394274 Oct 1990 EP
0403832 Dec 1990 EP
481322 Apr 1992 EP
530438 Mar 1993 EP
547847 Jun 1993 EP
555346 Aug 1993 EP
559476 Sep 1993 EP
591647 Apr 1994 EP
597273 May 1994 EP
601610 Jun 1994 EP
632068 Jan 1995 EP
0640330 Mar 1995 EP
0668066 Sep 1995 EP
685214 Dec 1995 EP
687453 Dec 1995 EP
0689817 Jan 1996 EP
0691133 Jan 1996 EP
0700673 Mar 1996 EP
0394274 Jul 1996 EP
724418 Aug 1996 EP
725613 Aug 1996 EP
725615 Aug 1996 EP
725616 Aug 1996 EP
758543 Feb 1997 EP
0761194 Mar 1997 EP
769284 Apr 1997 EP
0781537 Jul 1997 EP
783877 Jul 1997 EP
787472 Aug 1997 EP
788874 Aug 1997 EP
796068 Sep 1997 EP
799004 Oct 1997 EP
822794 Feb 1998 EP
826351 Mar 1998 EP
844861 Jun 1998 EP
0737055 Aug 1998 EP
863733 Sep 1998 EP
971751 Sep 1998 EP
0875224 Nov 1998 EP
875224 Nov 1998 EP
880955 Dec 1998 EP
891758 Jan 1999 EP
0893115 Jan 1999 EP
0724418 Mar 1999 EP
0725613 Mar 1999 EP
0725616 Mar 1999 EP
904755 Mar 1999 EP
0916327 May 1999 EP
925769 Jun 1999 EP
933074 Aug 1999 EP
937736 Aug 1999 EP
941157 Sep 1999 EP
947549 Oct 1999 EP
951887 Oct 1999 EP
0951890 Oct 1999 EP
2295493 Oct 1999 EP
2305749 Oct 1999 EP
2330152 Oct 1999 EP
953326 Nov 1999 EP
0978263 Feb 2000 EP
985397 Mar 2000 EP
0988846 Mar 2000 EP
0778762 Apr 2000 EP
1005847 Jun 2000 EP
1008333 Jun 2000 EP
1013252 Jun 2000 EP
1018999 Jul 2000 EP
1019002 Jul 2000 EP
1019003 Jul 2000 EP
1022008 Jul 2000 EP
1023884 Aug 2000 EP
1053729 Nov 2000 EP
1059072 Dec 2000 EP
1063954 Jan 2001 EP
1071388 Jan 2001 EP
1078618 Feb 2001 EP
1088537 Apr 2001 EP
0796068 May 2001 EP
752892 Jul 2001 EP
1116479 Jul 2001 EP
0790839 Aug 2001 EP
1132069 Sep 2001 EP
1173128 Jan 2002 EP
1175194 Jan 2002 EP
1184018 Mar 2002 EP
1192312 Apr 2002 EP
1196122 Apr 2002 EP
1199059 Apr 2002 EP
1199327 Apr 2002 EP
1208824 May 2002 EP
0793469 Jun 2002 EP
1210925 Jun 2002 EP
1224922 Jul 2002 EP
1225857 Jul 2002 EP
1253231 Oct 2002 EP
1262531 Dec 2002 EP
1263374 Dec 2002 EP
0737056 Jan 2003 EP
1275358 Jan 2003 EP
1275361 Jan 2003 EP
1293187 Mar 2003 EP
1304986 May 2003 EP
1332742 Aug 2003 EP
1339368 Sep 2003 EP
1374817 Jan 2004 EP
1388334 Feb 2004 EP
1402863 Mar 2004 EP
962208 Aug 2004 EP
1447066 Aug 2004 EP
1447067 Aug 2004 EP
1460987 Sep 2004 EP
963749 Nov 2004 EP
1495739 Jan 2005 EP
1524955 Apr 2005 EP
1920743 Apr 2005 EP
1541103 Jun 2005 EP
1551344 Jul 2005 EP
1586289 Oct 2005 EP
1588723 Oct 2005 EP
1605882 Dec 2005 EP
1609448 Dec 2005 EP
1621166 Feb 2006 EP
1621167 Feb 2006 EP
1632206 Mar 2006 EP
1642556 Apr 2006 EP
1403419 May 2006 EP
1656162 May 2006 EP
1669046 Jun 2006 EP
1688114 Aug 2006 EP
2314265 Aug 2006 EP
1723939 Nov 2006 EP
1738727 Jan 2007 EP
1754461 Feb 2007 EP
1787611 May 2007 EP
1813238 Aug 2007 EP
2008626 Dec 2008 EP
2055279 May 2009 EP
2093049 Aug 2009 EP
2130522 Dec 2009 EP
1621165 Apr 2010 EP
2444046 Apr 2012 EP
2486905 Aug 2012 EP
2532328 Dec 2012 EP
2532329 Dec 2012 EP
2532332 Dec 2012 EP
2656826 Oct 2013 EP
2679210 Jan 2014 EP
2740450 Jun 2014 EP
2740452 Jun 2014 EP
2786731 Oct 2014 EP
2213491 Aug 2004 ES
2566631 Jan 1986 FR
2583377 Dec 1986 FR
2612770 Sep 1988 FR
2699813 Jul 1994 FR
2810234 Dec 2001 FR
1333081 Aug 1971 GB
1307441 Feb 1973 GB
1513055 Jun 1978 GB
2101468 Jan 1983 GB
2170108 Jul 1986 GB
2262873 Jul 1993 GB
2288540 Jun 1994 GB
2354449 Mar 2001 GB
2452260 Oct 2007 GB
851769 Nov 1985 GR
0984KOL1999 Oct 2005 IN
212479 Mar 2007 IN
208543 Aug 2007 IN
0980MUM2009 Jun 2009 IN
5572928 May 1980 JP
598322 Jan 1984 JP
630148323 Sep 1988 JP
2107250 Apr 1990 JP
03224481 Oct 1991 JP
04122256 Apr 1992 JP
04341368 Nov 1992 JP
06191505 Jul 1994 JP
06269475 Sep 1994 JP
07124193 May 1995 JP
08215629 Aug 1996 JP
H10295728 Nov 1998 JP
10328232 Dec 1998 JP
11033056 Feb 1999 JP
11318980 Nov 1999 JP
11320742 Nov 1999 JP
2000232985 Aug 2000 JP
2000238161 Sep 2000 JP
2001037810 Feb 2001 JP
2001046435 Feb 2001 JP
2001120597 May 2001 JP
2001158074 Jun 2001 JP
2001178768 Jul 2001 JP
2001198157 Jul 2001 JP
2001224626 Aug 2001 JP
2001258935 Sep 2001 JP
2001277394 Oct 2001 JP
2001301857 Oct 2001 JP
03420481 Nov 2001 JP
2001321397 Nov 2001 JP
2001353174 Dec 2001 JP
2002052042 Feb 2002 JP
2002065718 Mar 2002 JP
2002113800 Apr 2002 JP
2002165832 Jun 2002 JP
2002165836 Jun 2002 JP
2002178429 Jun 2002 JP
2002272769 Sep 2002 JP
2002320641 Nov 2002 JP
2002325792 Nov 2002 JP
2002325799 Nov 2002 JP
2002369841 Dec 2002 JP
2003126140 May 2003 JP
2003153955 May 2003 JP
2003265523 Sep 2003 JP
2003265524 Sep 2003 JP
2003275237 Sep 2003 JP
2003325563 Nov 2003 JP
2004089269 Mar 2004 JP
03566012 Jun 2004 JP
03568146 Jun 2004 JP
2004222868 Aug 2004 JP
03616077 Nov 2004 JP
2004337314 Dec 2004 JP
2004337385 Dec 2004 JP
2004350864 Dec 2004 JP
03640475 Jan 2005 JP
2005000312 Jan 2005 JP
03660816 Mar 2005 JP
03676219 May 2005 JP
2005118339 May 2005 JP
03688403 Jun 2005 JP
03705943 Aug 2005 JP
03719819 Sep 2005 JP
03724963 Sep 2005 JP
03725008 Sep 2005 JP
03737376 Nov 2005 JP
2006014792 Jan 2006 JP
03781617 Mar 2006 JP
2006110329 Apr 2006 JP
2006513824 Apr 2006 JP
03801449 May 2006 JP
2006116036 May 2006 JP
03850102 Sep 2006 JP
03850207 Sep 2006 JP
03856941 Sep 2006 JP
03868628 Oct 2006 JP
03874499 Nov 2006 JP
03877702 Nov 2006 JP
2006325639 Dec 2006 JP
2006346021 Dec 2006 JP
03904356 Jan 2007 JP
2007007455 Jan 2007 JP
2007007456 Jan 2007 JP
03926042 Mar 2007 JP
03934855 Mar 2007 JP
2007089906 Apr 2007 JP
2007105198 Apr 2007 JP
2007130504 May 2007 JP
2007152033 Jun 2007 JP
03986210 Jul 2007 JP
03986222 Jul 2007 JP
2007167453 Jul 2007 JP
2007175515 Jul 2007 JP
2007195665 Aug 2007 JP
2007267763 Oct 2007 JP
2007275491 Oct 2007 JP
04035341 Nov 2007 JP
04058281 Dec 2007 JP
04061086 Dec 2007 JP
04092319 Mar 2008 JP
2008080150 Apr 2008 JP
2008093289 Apr 2008 JP
04124322 May 2008 JP
2008119081 May 2008 JP
2008136739 Jun 2008 JP
2008136877 Jun 2008 JP
04148594 Jul 2008 JP
04148620 Jul 2008 JP
2008154606 Jul 2008 JP
04162609 Aug 2008 JP
04162637 Aug 2008 JP
04166923 Aug 2008 JP
04167406 Aug 2008 JP
04173723 Aug 2008 JP
04190675 Sep 2008 JP
04190693 Sep 2008 JP
04208338 Oct 2008 JP
2008246089 Oct 2008 JP
4177770 Nov 2008 JP
04230971 Dec 2008 JP
2008295475 Dec 2008 JP
2008295713 Dec 2008 JP
04261593 Feb 2009 JP
2009028186 Feb 2009 JP
2009082481 Apr 2009 JP
2009112590 May 2009 JP
04322228 Jun 2009 JP
2009136601 Jun 2009 JP
2009142401 Jul 2009 JP
2009201878 Sep 2009 JP
04392936 Oct 2009 JP
2009232987 Oct 2009 JP
2009261777 Nov 2009 JP
2009291473 Dec 2009 JP
2009297048 Dec 2009 JP
2010017342 Jan 2010 JP
04458702 Feb 2010 JP
04459013 Feb 2010 JP
2010022560 Feb 2010 JP
04481325 Mar 2010 JP
2010046155 Mar 2010 JP
2010051654 Mar 2010 JP
2010063814 Mar 2010 JP
2010063944 Mar 2010 JP
04492957 Apr 2010 JP
2010068954 Apr 2010 JP
2010075462 Apr 2010 JP
2010082059 Apr 2010 JP
2010099531 May 2010 JP
2010104545 May 2010 JP
2010104547 May 2010 JP
2010110535 May 2010 JP
2010119454 Jun 2010 JP
2010119605 Jun 2010 JP
2010119743 Jun 2010 JP
2010131131 Jun 2010 JP
2010131132 Jun 2010 JP
2010131206 Jun 2010 JP
2010131297 Jun 2010 JP
2010136917 Jun 2010 JP
2010136973 Jun 2010 JP
04540563 Jul 2010 JP
04587947 Sep 2010 JP
2010194124 Sep 2010 JP
2010194218 Sep 2010 JP
2010201093 Sep 2010 JP
2010221067 Oct 2010 JP
4577766 Nov 2010 JP
04620299 Nov 2010 JP
04627472 Nov 2010 JP
04627473 Nov 2010 JP
04638087 Dec 2010 JP
04652626 Dec 2010 JP
2010273842 Dec 2010 JP
2010284418 Dec 2010 JP
2011000480 Jan 2011 JP
2011030700 Feb 2011 JP
04693574 Mar 2011 JP
2011067484 Apr 2011 JP
2011072451 Apr 2011 JP
2011072720 Apr 2011 JP
2011104014 Jun 2011 JP
2011104122 Jun 2011 JP
2011120661 Jun 2011 JP
2011125360 Jun 2011 JP
2011125537 Jun 2011 JP
04776516 Jul 2011 JP
2011130797 Jul 2011 JP
2011130799 Jul 2011 JP
2011156031 Aug 2011 JP
2011156032 Aug 2011 JP
2011156032 Aug 2011 JP
2011156070 Aug 2011 JP
2011156254 Aug 2011 JP
04824882 Sep 2011 JP
4850272 Oct 2011 JP
04855533 Nov 2011 JP
2011239858 Dec 2011 JP
2011240050 Dec 2011 JP
04931572 Feb 2012 JP
04937225 Mar 2012 JP
04953618 Mar 2012 JP
04969437 Apr 2012 JP
04969640 Apr 2012 JP
4971491 Apr 2012 JP
04974524 Apr 2012 JP
04979780 Apr 2012 JP
2012100886 May 2012 JP
05016020 Jun 2012 JP
05027364 Jun 2012 JP
2012115378 Jun 2012 JP
05031082 Jul 2012 JP
05042351 Jul 2012 JP
05043569 Jul 2012 JP
05043591 Jul 2012 JP
05046488 Jul 2012 JP
2012125452 Jul 2012 JP
2012125625 Jul 2012 JP
2012130736 Jul 2012 JP
05053765 Aug 2012 JP
05070275 Aug 2012 JP
2012152482 Aug 2012 JP
05079931 Sep 2012 JP
05080189 Sep 2012 JP
05084442 Sep 2012 JP
05084476 Sep 2012 JP
5085770 Sep 2012 JP
05089269 Sep 2012 JP
2012179286 Sep 2012 JP
05113146 Oct 2012 JP
2012205924 Oct 2012 JP
05129536 Nov 2012 JP
2012223230 Nov 2012 JP
2012223231 Nov 2012 JP
05105884 Dec 2012 JP
5291238 Sep 2013 JP
5715806 May 2015 JP
20010005620 Jan 2001 KR
20020035634 May 2002 KR
20080028771 Apr 2008 KR
9400916 Mar 1994 SE
9704893 Dec 1997 SE
WO 9015830 Dec 1990 WO
WO9219198 Nov 1992 WO
WO 9321237 Oct 1993 WO
WO9321879 Nov 1993 WO
WO9510996 Apr 1995 WO
WO9511652 May 1995 WO
WO 9516746 Jun 1995 WO
WO9514453 Jun 1995 WO
WO9515139 Jun 1995 WO
WO9516424 Jun 1995 WO
WO9519753 Jul 1995 WO
WO 9521596 Aug 1995 WO
WO 9524173 Sep 1995 WO
WO9526209 Oct 1995 WO
WO9529657 Nov 1995 WO
WO 9534329 Dec 1995 WO
WO9532698 Dec 1995 WO
WO9616624 Jun 1996 WO
WO9619173 Jun 1996 WO
WO96029967 Oct 1996 WO
WO9711659 Apr 1997 WO
WO9717922 May 1997 WO
WO 9724096 Jul 1997 WO
WO9816179 Apr 1998 WO
WO9816180 Apr 1998 WO
WO9843684 Oct 1998 WO
WO9913813 Mar 1999 WO
WO 9934841 Jul 1999 WO
WO9934841 Jul 1999 WO
WO200000235 Jan 2000 WO
WO200032145 Jun 2000 WO
WO200059430 Oct 2000 WO
WO200115647 Mar 2001 WO
WO200126596 Apr 2001 WO
WO 0135886 May 2001 WO
WO200207663 Jan 2002 WO
WO200232962 Apr 2002 WO
WO2002064877 Aug 2002 WO
WO2002067809 Sep 2002 WO
WO2003009794 Feb 2003 WO
WO2003039402 May 2003 WO
WO2003053297 Jul 2003 WO
WO03079946 Oct 2003 WO
WO03101622 Dec 2003 WO
WO2003105738 Dec 2003 WO
WO2004021946 Mar 2004 WO
WO2004049995 Jun 2004 WO
WO2004071539 Aug 2004 WO
WO2004084784 Oct 2004 WO
WO2004105664 Dec 2004 WO
WO2005018694 Mar 2005 WO
WO2005087164 Sep 2005 WO
WO 2005102237 Nov 2005 WO
WO2006104024 May 2006 WO
WO2006059922 Jun 2006 WO
WO2006062258 Jun 2006 WO
WO2006066029 Jun 2006 WO
WO2006083584 Aug 2006 WO
WO2006134904 Dec 2006 WO
WO2006134906 Dec 2006 WO
WO2007000315 Jan 2007 WO
WO2007046052 Apr 2007 WO
WO2007047598 Apr 2007 WO
WO2007049725 May 2007 WO
WO2007061035 May 2007 WO
WO 2007141744 Dec 2007 WO
WO2007142145 Dec 2007 WO
WO2007148502 Dec 2007 WO
WO2008018922 Feb 2008 WO
WO2008065945 Jun 2008 WO
WO2008146749 Dec 2008 WO
WO2008155699 Dec 2008 WO
WO2009004941 Jan 2009 WO
WO2009005114 Jan 2009 WO
WO2009005431 Jan 2009 WO
WO2009139248 Jan 2009 WO
WO2009139255 Jan 2009 WO
WO2009041223 Apr 2009 WO
WO2009096108 Aug 2009 WO
WO2009107435 Sep 2009 WO
WO2009122830 Oct 2009 WO
WO 2009155265 Dec 2009 WO
WO2009152018 Dec 2009 WO
WO2009155264 Dec 2009 WO
WO2009155265 Dec 2009 WO
WO2010071508 Jun 2010 WO
WO2010074319 Jul 2010 WO
WO2010107096 Sep 2010 WO
WO2010114052 Oct 2010 WO
WO2010117015 Oct 2010 WO
WO2010118272 Oct 2010 WO
WO201153044 May 2011 WO
WO2011118725 Sep 2011 WO
WO2011118842 Sep 2011 WO
WO2011145653 Nov 2011 WO
WO2011150955 Dec 2011 WO
WO2011163582 Dec 2011 WO
WO2012002252 Jan 2012 WO
WO2012014436 Feb 2012 WO
WO2012035787 Mar 2012 WO
WO 2012052172 Apr 2012 WO
WO2012042908 Apr 2012 WO
WO2012043077 Apr 2012 WO
WO2012043078 Apr 2012 WO
WO2012043082 May 2012 WO
WO2012067216 May 2012 WO
WO2012073499 Jun 2012 WO
WO2012074466 Jun 2012 WO
WO201291016 Jul 2012 WO
WO2012090508 Jul 2012 WO
WO2012101934 Aug 2012 WO
WO2012102034 Aug 2012 WO
WO 2012117764 Sep 2012 WO
WO2012117824 Sep 2012 WO
WO2012132460 Oct 2012 WO
WO 2012177400 Dec 2012 WO
WO2012165327 Dec 2012 WO
WO2012170778 Dec 2012 WO
WO2012170779 Dec 2012 WO
WO2012170781 Dec 2012 WO
WO2012170783 Dec 2012 WO
WO2012170808 Dec 2012 WO
WO2012174026 Dec 2012 WO
WO2013001788 Jan 2013 WO
WO2013021651 Feb 2013 WO
WO2013046701 Apr 2013 WO
WO2013047268 Apr 2013 WO
WO2013056978 Apr 2013 WO
WO2013060733 May 2013 WO
WO2013061867 May 2013 WO
WO2013077074 May 2013 WO
WO2014073636 May 2014 WO
WO2014078247 May 2014 WO
WO2014093310 Jun 2014 WO
WO2014170859 Oct 2014 WO
WO20140203751 Dec 2014 WO
WO2015005502 Jan 2015 WO
WO2015095514 Jun 2015 WO
WO2016040091 Mar 2016 WO
Non-Patent Literature Citations (4)
Entry
US 8,293,969, 10/2012, Uchimoto et al. (withdrawn)
International Search Report, PCT/US2013/074065, dated Mar. 17, 2014, 17 pgs.
European Search Report, Appl. No. 12196341.7, dated Apr. 3, 2013, 11 pgs.
Tonjours Product, photos of packaging and product, 5 pages.
Related Publications (1)
Number Date Country
20140163501 A1 Jun 2014 US