Absorbent article with improved core-to-backsheet adhesive

Information

  • Patent Grant
  • 11918445
  • Patent Number
    11,918,445
  • Date Filed
    Tuesday, July 7, 2020
    4 years ago
  • Date Issued
    Tuesday, March 5, 2024
    8 months ago
Abstract
An absorbent article for personal hygiene comprising: a topsheet, a backsheet, an absorbent core, the backsheet comprising a plastic film having a longitudinal tear strength measured in N/cm; the absorbent core being partially attached to the plastic film of the backsheet by a first glue wherein at least a continuous area of 10 mm in longitudinal direction and 25 mm in transversal direction of the bottom side of the core is unattached to the backsheet by the first glue or by any other means of attachment. In the first glue application area, the absorbent article has a core-to-backsheet peel strength measured in N/cm, such that the core-to-backsheet peel strength ranges from 10% to 40% of the longitudinal tear strength of the plastic film.
Description
FIELD OF THE INVENTION

The invention relates to personal hygiene absorbent articles of the type worn in the crotch region of an individual to absorb body exudates. The absorbent articles may in particular be baby and toddler diapers (including training pants), feminine sanitary pads and/or adult incontinence articles. The present invention relates more particularly to the attachment of the absorbent core to the backsheet of these articles.


BACKGROUND OF THE INVENTION

Absorbent articles for personal hygiene of the type indicated above are designed to absorb and contain body exudates, in particular large quantity of urine. These absorbent articles comprise several layers providing different functions, for example a wearer-facing liquid permeable topsheet, a garment-facing liquid impermeable backsheet and in-between an absorbent core, among other layers. The function of the absorbent core is typically to absorb and retain the exudates for a prolonged amount of time, minimize re-wet to keep the wearer dry and avoid soiling of clothes or bed sheets.


The majority of currently marketed absorbent articles comprise as absorbent material a blend of comminuted wood pulp with superabsorbent polymers (SAP) in particulate form, also called absorbent gelling materials (AGM), see for example U.S. Pat. No. 5,151,092 (Buell). Cores having an absorbent material consisting essentially of SAP (so called “airfelt-free” cores) have also been proposed, see for example WO95/11652 (Tanzer), U.S. Pat. No. 6,790,798 (Suzuki), WO2008/155699 (Hundorf), or WO2012/052172 (Van Malderen). Absorbent cores with slits or grooves have also been proposed, typically to increase the fluid acquisition properties of the core or to act as a folding guide. WO2012/170778 (Rosati et al., see also WO2012/170779, WO2012/170781 and WO2012/170808) discloses absorbent structures that comprise superabsorbent polymers, optionally a cellulosic material, and at least a pair of substantially longitudinally extending channels.


The various components of an article are typically attached to another so that they stay in place before and during usage. Typical attachment means are gluing, heat and/or pressure bonding, ultrasonic bonding. The attachment means will be chosen by the manufacturer to balance costs of the equipment, cost of the glue material and performance required. Absorbent cores are typically attached to the backsheet by gluing, in particular by spraying the whole or most of the area between the core and the backsheet with a melt blow type adhesive. In presence of absorbent cores with slits or grooves, it may be beneficial to leave unglued areas between the absorbent core and backsheet components.


Alternative core-to-backsheet gluing methods have been proposed. WO2012/170341A1 (Hippe) discloses a diaper having a reduced core-to-backsheet gluing area. In Hippe, the absorbent core is attached to the backsheet only in certain, limited, areas to reduce the formation of buckles and wrinkles in the backsheet during usage, as well as the see-through of urine stains from the absorbent core through the backsheet. In particular, these unglued areas between absorbent core and backsheet are beneficial especially when the absorbent core comprises channels, which are areas substantially free of super absorbent material, and the core to backsheet attachment is provided only outside of the channels areas. This further improves the conformity of the absorbent article especially in loaded state.


However, when glued and unglued areas are present side to side between core and backsheet, boundary lines are inevitably created between the glued areas and the non-glued areas. The inventors observed that these boundary lines are the object of stress during the manufacturing of absorbent articles and can be at the origin of failures in the backsheet film. In particular when the boundary line is created by a discontinuous pattern of application of the glue (within the glue application area) like spirals or swirls this phenomenon is even more evident.


The backsheet materials for absorbent articles such as diapers are normally formed by a laminate of a very thin plastic film with a nonwoven where the nonwoven is oriented outside of the article (on the garment facing side) so to provide fluid barrier properties together with a soft touch. The two materials are called backsheet film and backsheet nonwoven respectively.


Thin plastic films are preferred as backsheet film because this reduces the environmental impact of the absorbent articles and increases the softness of the film, which is a very important feature for the consumers, however, in general, the thinner the backsheet film the lower its tensile strength. A low tensile strength increases the likelihood of failures during production or wear of the absorbent article. Moreover additional additives like Calcium Carbonate can be added to the backsheet film composition to produce porous backsheet films which enable water vapor transfer (also known as “breathable films”), and improve dryness of the skin during wear. Breathable backsheet films tend to have lower tensile strength and are in general more fragile than non-porous films of the same thickness. The lamination of the backsheet film with backsheet nonwoven enables to have a total tensile strength higher than the one of each individual layer. This lamination can be done for example with glue patterns like slots, spirals, or the like. Areas without glue between the backsheet film and backsheet nonwoven are desired to improve softness of the laminate, and the inventors have found that in those areas the backsheet film is more susceptible to fail and tear during manufacturing or wear of the absorbent article. Therefore a balance must be found between the film properties, the glue patterns used on the backsheet laminate between backsheet film and backsheet nonwoven, the glue distribution between the backsheet film and the core, each material tensile properties and the glue bonding strength to help withstand the stresses, especially on the boundary lines of the core to backsheet glue application area in high speed manufacturing.


Absorbent articles such as diapers are typically built on high speed lines which travel at speed that can be higher than 30 km/h, and at the end of the process, they are decelerated for folding and packaging from 30 km/h to 0 in a fraction of a second. This deceleration of the absorbent article is normally accomplished by nonmoving or low speed mechanical parts of the line, like plates, belts or fingers that holds the absorbent article by the outer layers, in particular the garment side of the backsheet. In the areas where core and backsheet are fully attached, the two components travel together and the kinetic energy of the product is dissipated along the full area in contact with the low speed or static parts of the production line. However the inventors observed that in areas where the core and backsheet are decoupled (i.e. not glued together), the absorbent core, which has a much higher mass and kinetic energy than the backsheet substrate, while decelerating releases a part of this energy on the boundary lines between glued and non-glued areas, so that backsheet film can tear along the attachment boundary lines. The inventors have also observed that in the areas where the backsheet is not fully glued to the nonwoven, small folds or pleats can be formed on the backsheet laminate.


The formation of folds or pleats on the backsheet negatively impact the quality appearance of the product, and, especially on the boundary lines separating glued and non glued areas between core and backsheet, can create “spot bonds” where the film stick to itself or to the absorbent core while folded. When the user of the absorbent article, e.g. of a diaper, picks it up from the package the article is normally folded. Before use the article is typically unfolded and stretched longitudinally, and stress can be concentrated on these spot bonds, and can originate tears on the backsheet, or the backsheet film.


Glues having a reduced bonding strength can of course reduce the occurrence of backsheet tearing, however the glue must ensure enough bonding strength between core and backsheet so to prevent collapse of the core once loaded with fluids. Also backsheet tearing could be reduced by increasing the thickness of the film or decreasing the manufacturing line speed, but both these solution are in general not acceptable as they reduce the efficiency of manufacturing and the environmental impact of the articles, also impacting manufacturing costs.


The present invention is directed to an improved core to backsheet gluing method and absorbent articles employing this improved gluing method. In the present invention the applicant has surprisingly identified a parameter range which provides a sufficient bonding strength while preventing the occurrence of backsheet rupture especially for absorbent articles with unglued areas between backsheet and core.


SUMMARY OF THE INVENTION

The present invention is directed to an absorbent article for personal hygiene having a wearer-facing side, a garment-facing side and a longitudinal axis, the article comprising:

    • a topsheet on the wearer-facing side;
    • a backsheet on the garment-facing side, said backsheet having a wearer facing surface and a garment facing surface,
    • an absorbent core between the topsheet and the backsheet, the absorbent core having a wearer facing surface and a garment facing surface, said absorbent core comprising an absorbent material said absorbent material comprising a superabsorbent polymer;
    • said backsheet comprising a plastic film on said wearer facing surface, said plastic film having a longitudinal tear strength measured in N/cm;
    • said absorbent core being attached to said backsheet by a first glue having a first glue application area and a first glue application pattern, such that at least a continuous area of 10 mm in longitudinal direction and 25 mm in transversal direction of the core surface is unattached to said backsheet by said first glue or by any other means of attachment,
    • said absorbent article having, in said first glue application area, a core-to-backsheet peel strength measured in N/cm,
    • said article being characterized by having a core-to-backsheet peel strength in the range between 10 and 40% of said longitudinal tear strength of said plastic film.


The present invention is also directed to a process for making an absorbent article according to the invention. In particular, such process comprises the following steps for attaching the absorbent core to the backsheet:

    • applying a first glue on the surface of the backsheet or of the absorbent core on a first glue application area such that at least at least a continuous area of 10 mm in longitudinal direction and 25 mm in transversal direction of the core surface is unattached to said backsheet by said first glue or by any other means of attachment,
    • bringing the core of the absorbent article and the backsheet in contact so that core-to-backsheet peel strength in the range between 10 and 40% of said longitudinal tear strength of said plastic film.


For “unattached” it is meant not only that there is no glue applied between core and backsheet but also that in these areas there are no other bonding means such as mechanical bindings, stitches, fusion bonding, ultrasound bonding or any other bonding means. As a result in the unattached areas core and backsheet are free to move one with respect to the other.


In absorbent articles according to the present invention at least 20% of the core surface may be unattached to the backsheet.


The inventors have found that in an absorbent article wherein the core and the backsheet are not entirely attached to each other, and especially wherein the first glue is applied with a discontinuous pattern within the first glue application area, the occurrence of backsheet ruptures during manufacturing and usage can be prevented by controlling the core-to-backsheet peel strength (i.e. the peak of the force required to separate core and backsheet) at a level between 10 and 40%, preferably 10 to 30% of the longitudinal tear strength of the backsheet film (i.e. the tensile strength of the backsheet film measured along the longitudinal direction of the absorbent article). This can be achieved for example by selecting the pattern of application of the first glue within the first glue application area so to deliver more numerous but less strong bonding points between the core and the backsheet (e.g. increasing the density of the pattern while maintaining the same average amount of glue within the application area). This solution in particular also allows maximizing the shear bonding strength between the core and backsheet substrate to prevent the core from collapsing when loaded with fluids.


In general a skilled person can modify peel strength and tear strength acting on known variables such as selecting glues and film materials, optimizing the glue basis weight and modifying the glue application pattern within the glued areas.


In particular when the absorbent core of the absorbent article includes core channels, an additional second glue having a second glue application area, different from the first glue application area can be advantageously used. Preferably the first glue application area and the second glue application area do not overlap.


When used in the presence of channels the second glue application area is at least partially present between the channels whereas the first glue application area described above is at least partially outside the area between the channels. The first channel and the second channel are at least partially not attached by the first glue and second glue, or otherwise, to the backsheet. Advantageously, the absorbent core and the backsheet may only be attached by the first glue and the second glue.


As mentioned the inventors have surprisingly found that during the article making process, shearing forces on the backsheet or the core can concentrate along the boundary of the first glue application area and rupture the backsheet substrate. The inventors have found that in presence of the first and second glue, the forces over the backsheet substrate are better distributed, improving not only the anchoring of the core but also reducing failures or fatigue on the backsheet during the making or wear of the absorbent article, however backsheet failures have still been observed even in the presence of a second glue unless the first glue is selected according to the present invention.


The gluing method of the present invention may be particularly useful for absorbent articles comprising relatively high amount of SAP.


The channels may be in particular areas substantially free of absorbent material and which are surrounded by absorbent material. If the absorbent core has a core wrap, the top layer of the core wrap can be bonded to the bottom layer of the core wrap through the channel areas. The first channel and the second channel may be longitudinally extending and have a length as projected on the longitudinal axis which is at least 25% of the length of the absorbent core.


The second glue, which is at least partially applied between the channels, may preferably have, within the second glue application area, a second glue application pattern which is continuous. By “continuous” it is meant that the glue forms a uniform layer or coating that covers substantially the whole surface of the area on which it is applied. A continuous pattern can be typically obtained by direct application of the glue on the substrate, such as by slot coating or printing of the glue. A continuous pattern in general allows a good distribution of stress over the glue boundary line and therefore the boundaries of the second glue application area, if applied in a continuous pattern, will not be the object of stresses which can cause backsheet tears.


The first glue application pattern may be advantageously discontinuous. “Discontinuous” refers to a glue pattern which does not form a continuous layer on the application area. A discontinuous pattern may for example comprise glue filaments, swirls, miniswirls, glue fibers or the like creating a more or less regular glue web with relatively large spaces, at a microscopic level, which are not covered by the glue between the glue filaments or fibers. Discontinuous glue patterns are typically obtained by non-contact application method such as spraying or spiral glue applications. For example a discontinuous glue pattern may comprise one and typically a plurality of large swirls, mini swirls or random patterns. If a second glue is present, the first glue application area may thus be larger than the second glue application area; in particular the first glue application area may be over 3 times larger, or over 5 times larger, than the second glue application area. A discontinuous first glue application pattern may advantageously be used to cover large areas of the core-to-backsheet interface as it typically requires less glue material per unit of surface. The inventors have however observed that discontinuous glue patterns increases the stress on the glue boundary area during manufacturing being at the origin of potential material failure.


The first glue application area may, at least portion-wise, extend substantially along the full length of the absorbent core. In particular there may be a first longitudinally extending portion on one side of the longitudinal axis and a second longitudinally extending portion on the other side of the longitudinal axis. This provides for a secure attachment of the absorbent core along its full length. The first glue application area may further more extend at least portion-wise along the full length of the backsheet, thus beyond the front and back edges of the core. This may be desirable for providing further attachment of the backsheet with other components of the article in particular the topsheet. The first glue application area may be also relatively large in the region of the front edge and the back edge of the core to provide for a stronger core-backsheet attachment in these areas, in particular to attach securely the corners of the core to the backsheet.


The first glue may be advantageously applied by a non-contact applicator, typically a glue spray nozzle providing at least one and typically a plurality of large swirls, mini swirls or random glue patterns. In particular it can applied by a plurality of nozzles disposed in parallel, wherein for each article, at least some of the nozzles are turned on and off to provide a first glue application areas comprising longitudinally extending glue application areas of different lengths (intermittent applications of the glue). This can allow reducing the consumption of the first glue by applying the glue only in the desired areas, in particular wherein the first glue application area generally defines a roman II numeral shape.


In the case where a second glue is present, the first glue can be applied as described above while the second glue, applied between the channels, can be applied in a continuous pattern for example by a contact applicator, such as a slot-coater.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1a shows a backsheet with a glue distribution according to the invention, with the outline of the absorbent core and its channels shown in dotted lines, the rest of the article being omitted for readability;



FIG. 1b shows a backsheet with a glue distribution according to the invention, with the outline of the absorbent core and its channels shown in dotted lines, and a strip of second glue between the channels, the rest of the article being omitted for readability.



FIG. 2 shows a schematic exploded view of some of the main components of an absorbent article, including the backsheet of FIG. 1b;



FIG. 3 shows a schematic cross-section of an absorbent article as in FIG. 2 in the center of the article;



FIG. 4 shows a schematic cross-section of the absorbent article as in FIG. 2 towards the front edge of the article;



FIG. 5 shows an alternative core-to-backsheet glue distribution;



FIG. 6 shows another alternative core-to-backsheet glue distribution;



FIG. 7 shows another alternative core-to-backsheet glue distribution;



FIG. 8 shows another alternative core-to-backsheet glue distribution;



FIG. 9 is a top side view of an exemplary absorbent core in isolation;



FIG. 10 is a transversal cross-section of the core of FIG. 9;



FIG. 11 is a schematic sketch of a process for applying the core to backsheet glue distribution;



FIG. 11
a,b,c schematically illustrate three different applicators that may be used to apply a glue;



FIG. 12
a,b,c illustrate three different discontinuous glue application pattern;



FIG. 12d illustrates a backsheet pleat or fold where a spot bonding of the film is formed;



FIG. 13 shows a backsheet with a glue distribution according to the invention, with the outline of the absorbent core, the rest of the article being omitted for readability.





DETAILED DESCRIPTION OF THE INVENTION
Introduction

As used herein, the terms “comprise(s)” and “comprising” are open-ended; each specifies the presence of the feature that follows, e.g. a component, but does not preclude the presence of other features, e.g. elements, steps, components known in the art or disclosed herein. These terms based on the verb “comprise” should be read as encompassing the narrower terms “consisting essentially of” which excludes any element, step or ingredient not mentioned which materially affect the way the feature performs its function, and the term “consisting of” which excludes any element, step, or ingredient not specified. Any preferred or exemplary embodiments described below are not limiting the scope of the claims, unless specifically indicated to do so. The words “typically”, “normally”, “preferably”, “advantageously”, “in particular” and the likes also qualify features which are not intended to limit the scope of the claims unless specifically indicated to do so.


Unless indicated otherwise, the description and claims refer to the absorbent core and article before use (i.e. dry, and not loaded with a fluid) and conditioned at least 24 hours at 21° C.+/−2° C. and 50+/−20% Relative Humidity (RH).


The invention will now be further illustrated with reference to the embodiments as described in the Figures. For ease of discussion, the absorbent article and its components will be discussed with reference to the numerals referred to in these Figures. However it should be understood that these exemplary embodiments and the numerals are not intended to limit the scope of the claims, unless specifically indicated. Dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”.


When the term “basis weight” is used with reference to a glue application, this indicates the amount of glue present in a unit area, and in general (unless differently specified) is referenced to the area of application of the glue only (and not to the entire area of the article).


General Description of FIGS. 1a and 1b



FIG. 1a shows an exemplary core-to-backsheet gluing distribution usable in the present invention. The term “glue distribution” meaning the combination of glue application areas, not to be confused with the “glue application pattern” which is the pattern by which a glue is applied within a glue application area. For readability, the backsheet 26 is represented in continuous line and the contour of the absorbent core 28 and of the channels 26a, 26b in broken lines, with other layers of the articles such as the topsheet not displayed. The article represented is a so-called taped diaper, which comprise back ears 40 with releasable tapes 42 which can affixed to a so-called landing zone (not represented) on the front waist of the garment-facing side of the article. The article represented also comprises front ears 46 which provide a better coverage of the diaper along the front waist of the user. Of course, the same core-to-backsheet gluing distribution may also be used in so-called pant diapers which have pre-sealed side edges, in diapers where the core has no channels, or combined with a second glue pattern as exemplified by the article shown in FIG. 1b. Some additional layers and components of the article are shown in FIG. 2, as will be discussed further below.


The absorbent article 20 comprises a front edge 10, a back edge 12, and two longitudinally extending side (lateral) edges 13, 14. The front edge 10 is the edge of the article which is intended to be placed towards the front of the user when worn, and the back edge 12 is the opposite edge. The absorbent article is notionally (i.e. virtually) divided by a longitudinal axis 80 extending from the front edge to the back edge of the article and dividing the article in two substantially symmetrical halves relative to this axis, when viewing the core in the plane formed by the longitudinal direction (y) and the transversal direction (x) and by a transversal axis 90 dividing the article in two halves along the transverse direction. The longitudinal direction extends along the length of the article, and the transversal direction is perpendicular to the longitudinal direction.


For ease of discussion, the exemplary absorbent article is represented in a flat state extending in a transversal direction and a longitudinal direction. If some part of the article is under tension due to elasticized components, the article may be typically flattened using clamps along the periphery of the article and/or a sticky surface, so that the topsheet and backsheet can be pulled taut so as to be substantially flat. Closed articles such as training pant may be cut open along the side seams to apply them on a flat surface. Unless otherwise indicated, dimensions and areas disclosed herein apply to the article in this flat-out configuration. The article has a length L″ as measured along the axis 80 from the back edge to the front edge.


The backsheet 26 may be generally rectangular as shown in the Figures. Shaped backsheets having a narrower waist thus forming an hour-glass shape are also known. The backsheet may then form front and back ears thus eliminating the need for additional material for these components. However this construction has other disadvantages such as having to cut-out materials resulting in waste and making it more difficult to elasticize the back ears for example.


The absorbent core 28 of this exemplary absorbent article includes channels 26a, 26b (which as mentioned above are an optional feature) shown in broken lines on FIG. 1a and FIG. 1b, and in isolation on FIG. 9. The channels 26a, 26b when present are generally longitudinally extending and may be mirror image of each other relative to the longitudinal axis. The channels may be curved, as shown in FIG. 1a and FIG. 1b, but the channels may be also straight, in particular straight and orientated in the longitudinal direction. The same gluing method for core to backsheet attachment can clearly also be applied to absorbent articles having no channels in the absorbent core. The core-to-backsheet gluing distribution will now be described in details in the following paragraphs.


First Glue Application Area 110


This first glue application area is mainly required to provide the structural support of the loaded core while wearing and prevent the absorbent core from collapsing. The first glue application area is at least partially outside the area between the channels 26a,b, in particular, the first glue may be completely absent from the area between the channels. In presence of a second glue 100, the first glue 110 can have a different application area than the first glue 100. This allows providing the second glue area with different properties than the first glue area. As indicated previously, the second glue is entirely optional and can be excluded as shown by the example in FIG. 1a. When present, as in FIG. 1b, the second glue has an application area 100. The second glue may require a precise deposition on a relatively narrow area at a higher basis weight of glue. The first glue application area 110 covers a relatively large area, several times larger than the second glue application area (when present). By providing a large area of attachment the between the core and the backsheet, the first glue ensures the overall stability of the core within the chassis of the article when dry or loaded.


The first glue may be advantageously applied at a low basis weight within the application. For example, the first glue may be applied at a basis weight of between 0.5 to 9 gsm (grams per square meter), in particular 2 to 4 gsm in the application area.


Various designs for the first glue area 110 are possible to maximize the stability of the dry and wet core. The first glue area may be unitary, as illustrated on FIGS. 1a and 1b, 5-7 and 13, but it is not excluded that it comprises discrete macroscopic sub-areas or portions separated from another, as for example shown on FIG. 8 with two longitudinally extending discrete portions 1113, 1114.


The first glue area may advantageously extend, at least portion-wise, across the full length of the core and furthermore along the full length of the backsheet. These longitudinally-extending portions are indicated by reference 1113, 1114 in the Figures. This provides for full length attachment of the core to the backsheet. When the first glue area extends longitudinally beyond the front and back edges of the core (10, 12), it can further provide for attachment of the topsheet to the backsheet in the areas beyond said front and back edges of the core. The first glue application area 110 may also comprise front and back portions 1110, 1112 which are relatively large in the transversal direction, in particular that overlap or cover the entire front edge 10 and back edge 12 of the core and backsheet to provide for a stronger attachment of the core in these areas 1110, 1112. These transversally extending sub-areas may provide that the absorbent core has no free corners which may be more easily subject to delamination. In summary, the first glue area as a whole may generally have a roman II numeral shape when seen from above, as shown in FIGS. 1a, 1b and 13, but other shapes are possible, see for example FIGS. 6 and 8.


As indicated previously, if channels are present in the absorbent core, the first channel and the second channel are at least partially not attached to the backsheet by the first or second glue, or otherwise. The channels may be advantageously not substantially attached by the first and second glue, or otherwise, to the backsheet. By “not substantially attached”, it is meant that less than 25% of the surface of each channel is attached to the backsheet. For example, only the ends of the channels may be attached by the first glue as shown on FIGS. 1a and 1b.


Whereas the first and second glues may have the same or different compositions, the first glue application pattern is different from the second glue application pattern. The first glue application pattern may in particular be discontinuous. By discontinuous, it is meant that the second glue does not form a continuous layer on the application area (or each sub-areas if several sub-areas are present). The first glue application pattern may for example comprise filaments, fibers or the like creating a more or less regular web with relatively large areas between the glue filaments (or fibers) which are not covered by glue. Examples of these patterns are illustrated in FIG. 12a-c for example (spiral, mini swirls, and random pattern respectively).


The application pattern of the first glue will be typically determined by the application device used. A non-contact application method such as glue spraying is advantageous. Non-contact methods allow the coverage of relatively large areas for an economical use of glue material. The Nordson company published on Nonwovens report a good overview of usual non-contact glue applicators known in the art for gluing components of a diaper with an adhesive. The publication is available on the Nordson website at this web address: http://www.nordson.com/en-us/divisions/adhesive-dispensing/Literature/White_Paper/HoldingItTogetherBylinefromNonwovensReport.pdf.


The first glue application pattern may in particular comprise a plurality of spray nozzles that spray large swirls (also called “spiral” glue pattern, and illustrated on FIG. 12a), mini swirls (illustrated in FIG. 12b) or random fibrous glue patterns (illustrated in FIG. 12c). The different application devices will be further illustrated below with reference to FIG. 11, which illustrates a process for applying the first and second glue between the backsheet and the core.


In general when the first glue is applied in a discontinuous pattern comprising glue filaments, such as swirls, miniswirls or randomly arranged fibers, it is preferred that each glue filament have a width of 0.05 to 0.3 mm wide or in particular 0.10 to 0.20 mm wide.


The basis weight of the first glue in said first glue application area may be between 0.5 and 9 gsm (grams per square meter), in particular 2 to 4 gsm.


The core-to-backsheet peel strength in the first glue application area can be comprised between 0.3 and 4 N/cm, or in particular 0.5 to 2N/cm.


Second Glue Application Area 100


The FIG. 1b represents a core-to-backsheet gluing distribution of an exemplary absorbent article having core channels and two different glues: a first glue on a first glue application area 110 (herein abbreviated as “first glue area”) and a second glue, which is applied on a second glue application area 100 (herein abbreviated as “second glue area”).


When channels are present the second glue area 100 can be at least partially present between the channels 26a, 26b. In the absence of channels is preferably applied along the longitudinal direction in the center of the absorbent core. Although there may be some overlap between the channels and the second glue area, it may be advantageous that the second glue area does not overlap with the channels. During use, the absorbent materials around the channels may swell as they absorb a fluid and the channels will become more tridimensional. If the second glue area overlaps the channels, there is a risk that the backsheet will follow the formation of these more pronounced three-dimensional channels. This may create stress in the backsheet and lead to rupture in the backsheet. Thus it may be advantageous that the width of the second glue area is smaller than or equal to the smallest distance separating the channels areas 26a,b. The second glue area 100 may be generally aligned with and may overlap the longitudinal axis 80 of the article, for example as a slot-coated glue stripe 100 as represented in the Figures.


The dimensions of the second glue area may generally vary and depend of the type of article considered, as well as the dimensions of the channels. The channels may generally extend more in the longitudinal direction than in the transversal direction. Thus the second glue area may also extend more in the longitudinal direction. For example, the second glue area may have a length which is at least 3 times, or at least 5 times longer than its width (as projected on the y and x axis respectively). The length of the second glue area 100 may for example range from 10% to 500% of the length L′ of the channels 26a,b, for example from 5 cm to 30 cm for a diaper. The width of the second glue area may also vary, for example ranging from 0.5 mm to 10 mm for a diaper.


Although not illustrated in the Figures, it is also not excluded that the second glue area may comprise a plurality of macroscopic sub-areas separated from each other. This may be the case for example if the second glue is intermittently applied to provide a series of longitudinally aligned succeeding stripes, similar to intermittent road markings. It is also possible to print the second glue with sub-areas having diverse shapes including recreational shapes such as small characters or toys, in particular if the second glue comprises a pigment so that the second glue areas is visible through the backsheet on the garment-facing side of the article. More generally, one of the glues, in particular the second glue, may comprise a pigment or other colored substance so that it is visible through the backsheet. The second glue may also not comprise a pigment or another colored substance, so that the second glue is not particularly visible through the backsheet. The second glue may be also applied in a plurality (two or more) of parallel longitudinally extending stripes. In these other examples, the dimensions of the first area as indicated above apply to the sub-areas and the spaces between these sub-areas, taken as a whole.


The second glue has a second glue application pattern within the second glue application area 100. The application pattern is dependent of the method used to apply the second glue on the substrate. The second glue may be in particular applied continuously, meaning that the glue forms a two dimensional continuous layer within the glue application area. Typically the second glue may be applied by a contact method, where the applicator directly applies the glue on top of the substrate. Advantages of direct glue application and example are listed in the publication by the Nordson company mentioned above.


Because there is no distance or only a small distance between the nozzle and the substrate, contact deposition allows better control of the adhesive application. A typical contact applicator is a slot-coater. In slot coating, the adhesive exits the applicator through a thin, wide passageway—see FIG. 11a. Another well-known contact application technology is glue printing. These contact methods will be detailed in the process section below.


Using a contact method may typically provide the advantage of providing an accurate second glue application area 100. This may be advantageous because the distance between the channels may be relatively small, especially when the channels are curved at their closest positions relative to another. Since it may be advantageous to have no or a limited amount of glue in the areas of the channels, a contact method has the advantage of a more precise application than a non-contact method, such as adhesive spraying. A contact method also allows applying the glue continuously in the area of application. This may provide for a higher basis weight glue attachment per unit of surface, which may be an advantage as the second glue area may typically be smaller than the first glue area. The second glue area is generally limited on its side edges by the channels.


The second glue may be applied at a basis weight of between 5 to 100 gsm, in particular 10-50 gsm.


Alternative Designs (FIGS. 5-8)



FIG. 1b discloses a core-to-backsheet gluing distribution having a second glue application area in the form of a stripe between the channels and a first glue application area generally resembling a roman II numeral outline. Alternative gluing areas distribution are of course possible, some of which are disclosed in FIGS. 5 to 8. FIG. 5 for example show an alternative glue distribution wherein the glue stripe of the second glue area is longer than in FIG. 1 and overlap towards its extremities with the first glue area. FIG. 6 shows another alternative design wherein the front and back portions 1110, 1112 of the first glue area are not unitary but comprise a separate central sub-area. This design allows reducing the amount of first glue used while still providing the benefits of gluing all four corners of the absorbent core to the backsheet.


The longitudinally extending portions 1113, 1114 of the absorbent core may be typically present inwardly of the longitudinal side edges 284, 286 of the core as shown in FIGS. 1a and 1b, but it is not excluded that these portions 1113, 1114 overlap with the side edges 284,286 of the core, as illustrated in FIG. 7.


In a simplified design as illustrated on FIG. 8, the first glue area may be comprised of only two separate portions 1113, 1114 extending along the full length of the core and the backsheet. These portions may be placed inwardly of the side edges of the core (as shown in FIG. 8) or may be placed further outwardly transversally to also cover the side edges of the cores along their whole length, including the four corners of the core (not represented).


To note, in absorbent articles without core channels, the second glue might be absent and only the first glue might be present as shown in the example of FIG. 13. In addition, the first and second glue application areas may fully or partially overlap between the channel 26a and 26b or in absence of channels, although it is preferred that the application areas of the first and second glue do not overlap.


In general as explained above, the presence of a second glue is an advantageous feature but not a necessary one. So that absorbent articles with or without core channels and only featuring a “first glue” or, in other words, a single glue are within the scope of the invention.


An exemplary article featuring a single glue is depicted in FIGS. 1a and 13.


Process for Applying the First Glue and the Second Glue


The first glue and the second glue may be applied as schematically represented on FIG. 11, although other processes and variations thereof may of course be used. The process for making and assembling the rest of the absorbent article may be according any known processes in the art and will not be further detailed herein. The exemplary process of FIG. 11 shows the backsheet coming as a first continuous web feed 26 from the left side of the Figure and passing successively through two glue applicators. The second glue applicator 102 applies the second glue on the second glue application area 100. As indicated previously, this second glue applicator is advantageously a contact glue applicator, in particular for simplicity and cost a slot-coater 102 comprising a slot coating nozzle 104 (FIG. 11a) through which the slot glue is applied directly onto the backsheet. In slot coating, the adhesive exits the applicator through a thin, wide passageway—the nozzle laying the adhesive directly down on top of the substrate. The glue stripe can vary in width and pattern, depending on the application needs.


Other contact methods exist, for example as disclosed in US2011/0274834 (Brown). This document discloses a method and apparatus for the application of viscous fluids, such as adhesives, in pre-determined patterns to an advancing substrate. The fluid application apparatus may include a slot die applicator and a substrate carrier. The substrate carrier may include one or more pattern elements and may be adapted to advance the substrate past the slot die applicator as the slot die applicator discharges adhesive onto the substrate. In operation, the substrate is disposed on the substrate carrier; the substrate carrier advances the substrate past the slot opening of the slot die applicator. In turn, the substrate is intermittently compressed between the slot die applicator and the pattern surface of the pattern element. As the substrate is intermittently compressed, adhesive discharged from the slot die applicator is applied onto the substrate in an area having a shape substantially the same as a shape defined by the pattern surface. US2008/221543 (Wilkes) discloses another contact method for applying a colored hot-melt adhesive which may be used as a graphic. U.S. Pat. No. 6,033,513 (Nakamura) discloses an improved roll transfer coating method for hot melt adhesive as well as some roll transfer process of the prior art, all of which may also be used herein.


Directly after this second glue application, a first glue applicator 112 applies the first glue on the desired first glue application area 110 according to the first glue application pattern. The first glue applicator may be in particular a non-contact applicator. The first glue applicator 112 may comprise a plurality of nozzles 114b, 114c installed in parallel as represented on FIGS. 11b and 11c. In the example described, the second applicator 112 comprises 6 nozzles which can be independently controlled and turned on and off to form the desired first glue area such as the roman numeral II of FIGS. 1a, 1b, 5,7 and 13. In another example, the second applicator device may comprise 5 such nozzles, with the third nozzles separated by a gap from the two neighboring nozzles, to provide for a first glue application are as shown on FIG. 6. In another example, the second applicator 102 may for example comprise only two nozzles on each side of the longitudinal axis to provide a first glue application area as shown on FIG. 8.


The individual spray nozzles of the first glue applicator may be of any type known in the art. In a first applicator example 112b, the nozzles may be for example as available from Nordson under the designation “CF applicator”. These nozzles each deliver a single large swirl (also called spiral) from each nozzle 114b, as illustrated on FIG. 12a. The width of such large spiral may for example range from 10 mm to 30 mm. In the case of 6 such nozzles 114b installed in parallel, by intermittently turning on and off some of the nozzles (for example nozzles 1, 3, 4 and 6) and leaving two nozzles (2 and 5) continuously on, a roman II pattern can be repeatedly applied on an substrate such as the backsheet web feed. The same principle, placing in parallel a plurality of nozzles, can be used to apply the desired pattern for other applicators. The first glue may be in particular applied by an applicator 114c comprising several nozzle units 114c with a plurality of so-called mini-swirl nozzles, for example available from Nordson under the “Summit” designation. Each of these nozzle units 114c has a plurality, in particular three as represented for nozzle 114c, of sub-nozzles that together distribute several small swirls of adhesive (as illustrated on FIG. 12b). Each unit may apply a plurality of swirls having together the same width as indicated previously for one large swirl/spiral pattern. These nozzle units may also be independently turned on and off to provide the desired area of coverage and glue pattern. Mini-swirls can be used at a faster speed than large swirl/spiral and have a better edge definition of the boundary of the glue pattern, while not being as precise as slot application. Large and mini swirls may appear macroscopically as defining a boundary which is linear and longitudinally aligned, however, this pattern creates gaps between the tips of the loops where pleats or folds on the backsheet created during the deceleration on manufacturing can bond forming a “spot bond” 220 (see illustration of FIG. 12d). These spot bonds 220 can create tears or slit on the backsheet when the product is open and extended during application or usage. By increasing the number of loops per linear meter or overlapping the swirl or spiral glue pattern, it is possible to obtain better definition of the boundary edge of the glue pattern thus decreasing the concentration of stress on the most external areas of the loops and reducing spot bonds.


Of course any other known spraying nozzle type may be used, for example nozzle spraying a random pattern of glue, such as those supplied by Nordson under the “Signature” spray nozzle designation. These nozzles may produce random pattern of glue in fibrous form with relatively low peel forces for each individual glue fiber but high shear forces due to the plurality of bonding points. Although randomly sprayed, the adhesive filaments may appear as being generally longitudinally aligned (see illustration of FIG. 12c) due to the movement of the web at high speed, helping better distribute the stress along the boundary of the glue pattern and prevent spot bonding of the film between the gaps of the glue filament. An air flow may be used in conjunction with a spray nozzle to direct or disperse the glue filaments.


In addition, the first glue application area may advantageously extend forwards and backwards of the absorbent core to provide for extended areas of gluing of the backsheet with the topsheet for example. The front and back glue portions 1110, 1112 which may be relatively large to cover the front and back edges of the core may be separated by an intermediate area with a lesser amount of first glue coverage. The intermittently functioning nozzles (numbers 1, 3, 4 and 6 in this example) may be turned off for the intermediate area between the areas 1110, 1112. This allows material savings, as well as giving more freedom of movement of the core relative to the backsheet in this intermediate area. The intermittently functioning nozzles may be switched on and off only once for each individual core-to-backsheet gluing distribution. For example, the intermittent nozzles are switched on to form the larger back first glue portion 1112, and remain on to form the front larger first glue portion 1110 of the following gluing distribution, before being switched off for the intermediate middle region of this following gluing distribution.


It may be advantageous, as represented, to apply the second glue before the first glue, in particular when the second glue is applied with a contact applicator and first glue is applied with a non-contact applicator. Otherwise, there could be a risk of smearing the first glue on the contact applicator of the second glue. Similarly, it may be advantageous to apply the first and first glue onto the backsheet rather than the absorbent core, as the backsheet is a continuous web of material that will be typically easier to handle and can provide for a continuous application of the first glue over two succeeding core-to-backsheet gluing distributions.


After the glues have been applied, the feed of absorbent cores, as shown coming from the right, is then synchronized with the glue application patterns of the backsheet so that when the backsheet and absorbent core are brought in face-to-face contact with some pressure, they are attached by the first glue and, if present, by the second glue. The feed of absorbent cores may be supported on a continuous substrate which may be a component of the article. The supporting substrate for the absorbent cores may be in particular the remaining components of the article which have been pre-assembled on the line, with the topsheet 24 being the largest of these components on which the other have been assembled. The articles are then individualized for example by die cutting. Of course, other glues or attachment means, such as a chassis side slots on each of the longitudinal edges 13, 14 may be added to form the longitudinal seals between the backsheet and the topsheet and/or barrier leg cuffs of the final articles. These additional glues or other attachment means are not represented in the Figures for simplicity but may be as is known from any conventional absorbent articles.


Composition of the First Glue and the Second Glue


The first glue and second glue may be any type of glue known in the art and suitable to be applied according to the desired application pattern. The first glue and the second glue composition may be the same or different. In particular, any kind of thermoplastic hot-melt adhesives used in the field of absorbent article making may be suitable. Such an adhesive generally includes one or more polymers to provide cohesive strength (e.g., aliphatic polyolefins such as ethylene-propylene copolymers, polyetheramides, polyetheresters, and combinations thereof; ethylene vinyl acetate copolymers; styrene-butadiene or styrene-isoprene block copolymers; etc.), a resin or analogous material (sometimes called a tackifier) to provide adhesive strength (e.g., hydrocarbons distilled from petroleum distillates; rosins and/or rosin esters; terpenes derived, for example, from wood or citrus, etc.); and optional waxes, plasticizers or other materials to modify viscosity (e.g., mineral oil, polybutene, paraffin oils, ester oils, and the like), and/or other additives including, but not limited to, antioxidants or other stabilizers. Further information about hotmelt adhesive chemistry is discussed below for the fibrous thermoplastic adhesive layer that may be used in the absorbent core.


Exemplary suitable commercial adhesives for the first and/or second glue are available from Fuller under reference number 1286 or 1358, or from National Starch & Chemical under reference number DM 526, DM538 or DM3800.


The first glue can be applied e.g. using a swirl applicator delivering 50 to 300 loops per linear meter, in particular 80 to 150 loops per meter.


Loaded absorbent articles typically weight between of 100 and 210 g, but can be as heavy as 500 g or more. To support the weight of the absorbent core during wear, it is desired to have a core to backsheet laminate shear Strength in the range of 3 to 20N/cm, in particular 5 to 10N/cm.


General Description of the Absorbent Core 28


As used herein, the term “absorbent core” refers to a component of the absorbent article which comprises an absorbent material enclosed in a core wrap. As used herein, the term “absorbent core” does not include the topsheet, the backsheet and (if present) an acquisition-distribution layer or multilayer system, which is not integral part of the absorbent core, in particular which is not placed within the core wrap. The absorbent core is typically the component of an absorbent article that has the most absorbent capacity of all the components of the absorbent article and which comprises all, or at least the majority of, superabsorbent polymer (SAP). The core may consist essentially of, or consist of, the core wrap, the absorbent material and adhesives. The terms “absorbent core” and “core” are herein used interchangeably.


An exemplary core 28 that can be used in the invention is represented in FIGS. 9-10. The absorbent cores can typically be laid flat on a surface as shown on FIG. 9. The absorbent cores may also be typically thin and conformable, so that they can also be laid on a non-flat surface for example a drum during their making process or stored as a continuous roll of stock material before being converted into an absorbent article. For ease of discussion, the exemplarily absorbent core of FIG. 9 is represented in a flat state and extending in a transversal direction and a longitudinal direction. Unless otherwise indicated, dimensions and areas disclosed herein apply to the core in this flat-out configuration. The same applies to the absorbent article in which the core is integrated.


The absorbent core can typically be generally rectangular with a width W in the transversal direction and a length L in the longitudinal direction as measured from edge to edge, including the region of the core wrap which does not enclose the absorbent material, in particular at the front and back ends 280, 282, which may be sealed. In case the core is not rectangular, the maximum dimension measured along the transversal and longitudinal direction can be used to report the length and width of the core. The width and length of the core may vary depending on the intended usage. For baby and infant diapers, the width L may for example in the range from 40 mm to 200 mm and the length from 100 mm to 500 mm, as measured along the longitudinal axis 80′ of the core. The longitudinal axis 80′ of the core may be contiguous with the longitudinal axis 80 of the article. The article further comprises a liquid permeable topsheet 24 and a liquid impermeable backsheet 25 with the absorbent core 28 positioned between the topsheet and the backsheet.


The absorbent core comprises a front edge 280, a back edge 282 and two longitudinally extending side edges 284, 286 joining the front edge and the back edge. The front edge of the core is the edge of the core intended to be placed towards the front edge of the absorbent article. Typically the absorbent material 60 of the core may be advantageously distributed in somewhat higher amount towards the front edge than towards the back edge as more absorbency is typically required towards the front half of the article. Typically the front and back edges 280, 282 of the core may be shorter than the side edges 284, 286 of the core. The absorbent core may also comprise a top side 288 and a bottom side 290. The top side of the core is the side placed or intended to be placed towards the topsheet 24 of the article and the bottom side is the side placed or intended to be placed towards the backsheet 25 in the finished article. The top side of the core wrap is typically more hydrophilic than the bottom side.


The transversal axis of the core (herein also referred to as “crotch line”), is defined as the virtual line perpendicular to the longitudinal axis and passing through the crotch point C of the core. The crotch point C is defined as the point of the absorbent core placed at a distance of 0.45 of L from the front edge of the absorbent core, L being the length of the core as measured from the front edge 280 in direction of the back edge 282, as shown on FIG. 9.


The following will provide an exemplary description of possible core components. Further details are described for example in WO2012/170778 (Rosati et al.), WO2014/93311A1 (Arizti et al), WO2014/093310 (Ehrnsperger et al.), which disclose absorbent structures that comprise superabsorbent polymers, optionally a cellulosic material, and at least a pair of substantially longitudinally extending channels.


Core Wrap 16, 16


The core wrap may comprise a first substrate 16 generally forming the top side of the core and a second substrate 16′ generally forming the bottom side of the core wrap. The first and second substrates may be formed by two different materials, as shown in FIG. 10, but any other known core wrap constructions may also be used, for example wherein the core wrap is formed of a single material with one single longitudinal seal. The first and second substrates can be attached by gluing or otherwise to form at least one C-wrap seal 72 along each of the side edges 284, 286 of the core. The first and second substrates may be a nonwoven web, such as a laminate comprising spunbond (“S”) or meltblown (“M”) layer. For example spunmelt polypropylene nonwovens are suitable, in particular those having a laminate web SMS, or SMMS, or SSMMS, structure, and having a basis weight range of about 5 gsm to 15 gsm. Suitable materials are for example disclosed in U.S. Pat. No. 7,744,576, US 2011/0268932 A1, US 2011/0319848 A1 and US 2011/0250413 A1. The bottom substrate 16′ may be inherently hydrophobic but air-permeable, and the top substrate 16 may be hydrophillically treated. There may be a seal along the front edge 282 and back edge 280 of the core wrap.


Combining the auxiliary glue layer with a C-wrap seal along at least one and preferably two longitudinal edges of the core, and optionally a further fibrous adhesive web (not represented), can provide an immobilization of the absorbent material in dry and wet state. The absorbent core may in general advantageously achieve an SAP loss of no more than about 70%, 60%, 50%, 40%, 30%, 20%, or 10% according to the Wet Immobilization Test described in US2010/0051166A1.


Absorbent Material 60


The absorbent material in the core can comprise a relatively high proportion of superabsorbent polymer (herein abbreviated as “SAP”) enclosed within the core wrap. The SAP content may represent in particular at least 85%, 90%, 95% and up to 100%, of superabsorbent polymer by weight of the absorbent material. The absorbent material may in particular comprise no or only small amount of cellulose fibers, such as less than 20%, in particular less than 10%, 5% or even 0% of cellulose fibers by weight of the absorbent material. The absorbent material may thus advantageously consist or consist essentially of SAP. The SAP may be typically in particulate forms (superabsorbent polymer particles), but it not excluded that other form of SAP may be used such as a superabsorbent polymer foam for example. The absorbent core may thus be relatively thin, in particular thinner than conventional cores comprising cellulosic fibers. In particular, the caliper of the core (before use) as measured at the crotch point (C) or at any other points of the surface of the core according to the Core Caliper Test as described herein may be from 0.25 mm to 5.0 mm, in particular from 0.5 mm to 4.0 mm.


The term “superabsorbent polymer” refers herein to absorbent materials, which may be cross-linked polymer, and that can typically absorb at least 10 times their weight of an aqueous 0.9% saline solution as measured using the Centrifuge Retention Capacity (CRC) test (EDANA method WSP 241.2-05E). The SAP may in particular have a CRC value of more than 20 g/g, or more than 24 g/g, or of from 20 to 50 g/g, or from 20 to 40 g/g, or 24 to 30 g/g. The fluid permeability of a superabsorbent polymer can be quantified using its Urine Permeability Measurement (UPM) value, as measured in the test disclosed European patent application EP2,679,209. The UPM of the SAP may for example be of at least 10×10−7 cm3·sec/g, or at least 30×10−7 cm3·sec/g, or at least 50×10−7 cm3·sec/g, or more, e.g. at least 80 or 100×10−7 cm3·sec/g.


Absorbent Material Deposition Area 8


The absorbent material 60 defines an absorbent material deposition area 8, as seen from above within the plane of the core. The absorbent material deposition area 8 is defined by the periphery of the layer of absorbent material 60 within the core wrap, as seen from the top side of the absorbent core as shown on FIG. 9, and comprises the channel areas 26a,b encompassed within. The absorbent material deposition area 8 can be generally rectangular, for example as shown in FIG. 9, but other shapes can also be used such as a “T” or “Y” or “sand-hour” or “dog-bone” shape. In particular the deposition area may show a tapering along its width at the crotch region of the core. In this way, the absorbent material deposition area may have a relatively narrow width in an area of the core intended to be placed in the crotch region of the absorbent article. This may provide for example better wearing comfort.


Channels 26a,b


The absorbent cores can comprise one or more channels, typically at least two channels 26a,b (also referred to herein as “channel areas”). The term “channel” designates a longitudinally extending area of the core comprising less absorbent material than the surrounding areas so that an insulting fluid can be quickly distributed along the channel towards the front and back of the core. The channels may be in particular substantially free of absorbent material. By “substantially free” it is meant that in each of these areas the basis weight of the absorbent material is at least less than 25%, in particular less than 20%, less than 10%, of the average basis weight of the absorbent material in the rest of the absorbent material deposition area of the core. In particular there can be no absorbent material in these areas 26a,b. Minimal amount such as involuntary contaminations with absorbent material particles that may occur during the making process are not considered as absorbent material. The channels 26 are advantageously surrounded by the absorbent material, when considering the plane of the core, which means that the areas 26 do not extend to any of the edges of the deposition area 8 of the absorbent material 60.


The top layer 16 and the bottom layer 16′ of the core wrap may be bonded to each other through these channel 26a,b. The bond 27 between the substrates in these area may be at least partially formed by an auxiliary glue 71 applied directly to the inner surface of at least one of the substrate, but other bonding methods are not excluded. This bonding allows the channels 26 to form more pronounced three-dimensional channels 26′ as the absorbent material swells when it absorbs a liquid such as urine. Examples of channels according to the invention are described in details for example in WO2012/170778 (Rosati et al.), WO2014/93311A1 (Arizti et al), WO2014/093310 (Ehrnsperger et al.) which disclose absorbent structures that comprise superabsorbent polymers, optionally a cellulosic material, and at least a pair of substantially longitudinally extending channels.


When the absorbent material 60 swells upon absorbing a liquid, the core wrap bonds 27 remain at least initially attached in the channel areas 26. The absorbent material 60 swells in the rest of the core when it absorbs a liquid, so that the core wrap forms one or more pronounced channels along the core wrap bond 27. These channels are three dimensional and can serve to distribute an insulting fluid along their length to a wider area of the core. They may provide a quicker fluid acquisition speed and a better utilization of the absorbent capacity of the core.


The absorbent core 28 shown in figure comprise a first and second channels 26a,b disposed on each side of the longitudinal axis 80′. It is not excluded that the core may also comprise more than two channels. Shorter channel areas substantially free of absorbent material may also be present, for example in the back region or the front region of the core, as seen for example in the Figures of WO2012/170778.


The channels may extend substantially longitudinally, which means typically that each area extends at least as much in the longitudinal direction (y) than in the transversal direction (x), and typically at least twice as much in the longitudinal direction than in the transverse direction (as measured after projection on the respective axis). The channels 26 may have a length L′ projected on the longitudinal axis 80 of the core that is at least 10% of the length L of the absorbent core, in particular from 20% to 80%. The channels may have an area substantially free of absorbent material having a width Wc along at least part of their length which is at least 2 mm, or at least 3 mm or at least 4 mm, up to for example 20 mm, or 16 mm or 12 mm. The width Wc may be constant through substantially the whole length or may vary along the length of the channels.


The channels 26 may be curved as shown in the Figures but they may be also straight and parallel to the longitudinal axis. It may be advantageous that there is no channels that coincide with the longitudinal axis 80′ of the core. When present as a pair of channels 26a,b, these may be spaced apart from one another over their whole longitudinal dimension. The smallest spacing distance may be for example at least 5 mm, or at least 10 mm, or at least 16 mm.


Process for Making the Core


The absorbent material 60 may be deposited on any of the substrates 16, 16′ using known techniques. In particular the SAP printing technology as disclosed for example in US2006/024433 (Blessing), US2008/0312617 and US2010/0051166A1 (both to Hundorf et al.), which allow relatively precise deposition of SAP at relatively high speed may be used. This technique uses a transfer device such as a printing roll to deposit SAP onto a substrate disposed on a grid of a support which may include a plurality of cross bars extending substantially parallel to and spaced from one another. Channel areas 26 substantially free of absorbent material can be formed for example by modifying the pattern of the grid and receiving drums so that no SAP is applied in the selected areas, as exemplary disclosed in US2012/0312491 (Jackels). This technology allows high-speed and precise deposition of SAP on a substrate in particular to provide one or more area(s) 26 substantially free of absorbent material surrounded by absorbent material. US2014/027066 (Jackels) further discloses specific raised strips and mating strips on the equipment for bonding the core substrates through the channel areas.


The absorbent material may be substantially continuously distributed in the deposition area 8. By “substantially continuous” it is meant that at least 50%, or at least to 70% and up to 100% of the deposition area comprises a continuous layer of absorbent material as seen from the top side of the core. The absorbent material may be for example applied as a single continuous layer on one of the substrate, the layer thus directly forming the material deposition area 8. A continuous layer of absorbent material, in particular of SAP, may also be obtained by combining two absorbent layers having matching discontinuous absorbent material application pattern wherein the resulting layer is substantially continuously distributed across the absorbent material deposition area, as exemplarily taught in US2008/0312622A1 (Hundorf).


Microfiber Glue


The absorbent core 28 may also comprise a fibrous thermoplastic adhesive material, to further immobilize the absorbent material 60 during the making process of the core and usage of the article. The fibrous thermoplastic adhesive material may be in particular useful to immobilize a dual layers of absorbent material to their respective substrate 16, 16′. Each of these absorbent layers may comprise land areas separated by junction areas and the fibrous thermoplastic adhesive material may then be at least partially in contact with the absorbent material in the land areas and at least partially in contact with the substrate layer 16, 16′ in the junction areas. This imparts an essentially three-dimensional net-like structure to the fibrous layer of thermoplastic adhesive material, which in itself is essentially a two-dimensional structure of relatively small thickness, as compared to the dimension in length and width directions. Thereby, the fibrous thermoplastic adhesive material may provide cavities to cover the absorbent material in the land areas, and thereby immobilizes this absorbent material. The fibrous adhesive may be for example sprayed on an absorbent layer after it has been deposited on its substrate during the core making process.


The fibrous thermoplastic adhesive material may typically have a molecular weight (Mw) of more than 10,000 and a glass transition temperature (Tg) usually below room temperature or −6° C.<Tg<16° C. Typical concentrations of the polymer in a hotmelt are in the range of about 20% to about 40% by weight. The thermoplastic polymers may be water insensitive. Exemplary polymers are (styrenic) block copolymers including A-B-A triblock structures, A-B diblock structures and (A-B)n radial block copolymer structures wherein the A blocks are non-elastomeric polymer blocks, typically comprising polystyrene, and the B blocks are unsaturated conjugated diene or (partly) hydrogenated versions of such. The B block is typically isoprene, butadiene, ethylene/butylene (hydrogenated butadiene), ethylene/propylene (hydrogenated isoprene), and mixtures thereof. Other suitable thermoplastic polymers that may be employed are metallocene polyolefins, which are ethylene polymers prepared using single-site or metallocene catalysts. Therein, at least one comonomer can be polymerized with ethylene to make a copolymer, terpolymer or higher order polymer. Also applicable are amorphous polyolefins or amorphous polyalphaolefins (APAO) which are homopolymers, copolymers or terpolymers of C2 to C8 alpha olefins.


The tackifying resin may exemplarily have a Mw below 5,000 and a Tg usually above room temperature, typical concentrations of the resin in a hotmelt are in the range of about 30 to about 60%, and the plasticizer has a low Mw of typically less than 1,000 and a Tg below room temperature, with a typical concentration of about 0 to about 15%.


The thermoplastic adhesive used for the fibrous layer preferably has elastomeric properties, such that the web formed by the fibers on the SAP layer is able to be stretched as the SAP swell. Exemplary elastomeric, hotmelt adhesives include thermoplastic elastomers such as ethylene vinyl acetates, polyurethanes, polyolefin blends of a hard component (generally a crystalline polyolefin such as polypropylene or polyethylene) and a Soft component (such as ethylene-propylene rubber); copolyesters such as poly (ethylene terephthalate-co-ethylene azelate); and thermoplastic elastomeric block copolymers having thermoplastic end blocks and rubbery mid blocks designated as A-B-A block copolymers: mixtures of structurally different homopolymers or copolymers, e.g., a mixture of polyethylene or polystyrene with an A-B-A block copolymer; mixtures of a thermoplastic elastomer and a low molecular weight resin modifier, e.g., a mixture of a styrene-isoprenestyrene block copolymer with polystyrene; and the elastomeric, hot-melt, pressure-sensitive adhesives described herein. Elastomeric, hot-melt adhesives of these types are described in more detail in U.S. Pat. No. 4,731,066 (Korpman).


The thermoplastic adhesive material fibers may exemplarily have an average thickness of about 1 to about 50 micrometers or about 1 to about 35 micrometers and an average length of about 5 mm to about 50 mm or about 5 mm to about 30 mm. The auxiliary glue may improve the adhesion of the thermoplastic adhesive material to the substrate. The fibers adhere to each other to form a fibrous layer, which can also be described as a mesh. This is further detailed in the Rosati and Jackels references previously indicated.


General Description of the Absorbent Article 20


The absorbent article 20 comprises a liquid permeable topsheet 24, a liquid impermeable backsheet 25 and an absorbent core 28 according to the invention between the topsheet 24 and the backsheet 25. Some typical components of a baby taped diaper 20 are further represented in FIG. 2 in exploded view, and in cross-section view in FIGS. 3-4. Typically all components will be attached to the other neighboring components by glue, heat and pressure bonding, or otherwise, but only the core-to-backsheet gluing distribution is represented in these Figures for readability. The absorbent article may also comprise further typical components such as an acquisition layer 52 and/or a distribution layer 54, elasticized gasketing cuffs 32 within the chassis and partially upstanding barrier leg cuffs 34. The Figures also show other typical taped diaper components such as a fastening system comprising fastening tabs 42 attached towards the back edge 12 of the article and cooperating with a landing zone towards the front edge 10 of the article. The absorbent article may also comprise other typical components, which are not represented in the Figures, such as a back elastic waist feature, a front elastic waist feature, transverse barrier cuffs, a lotion application, a wetness indicator that reacts with urine such as a pH indicator which may be incorporated in the first or second glues, in particular the second glue, etc.


The topsheet 24, the backsheet 25, the absorbent core 28 and the other article components may be assembled in a variety of well-known configurations, in particular by gluing and/or heat embossing. Exemplary diaper assemblies are for example generally described in U.S. Pat. Nos. 3,860,003, 5,221,274, 5,554,145, 5,569,234, 5,580,411, and 6,004,306. The absorbent article is preferably thin. The article may be advantageously thin at the intersection of the longitudinal and transversal axes, for example with a caliper of from 1.0 mm to 8.0 mm, in particular from 1.5 mm to 6.0 mm, as measured using the Absorbent Article Caliper Test described below.


These and other components of the article will now be discussed in more detail.


Topsheet 24


The topsheet 24 forms at least a part of wearer-facing side of the absorbent article and is directly in contact with the wearer's skin. The topsheet 24 can be joined to the backsheet 25, the absorbent core 28 and/or any other layers as is known in the art (as used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element). Usually, the topsheet 24 and the backsheet 25 are joined directly to each other in some locations (e.g. on or close to the periphery of the article) and are indirectly joined together in other locations by directly joining them to one or more other elements of the article 20.


The topsheet 24 is preferably compliant, soft-feeling, and non-irritating to the wearer's skin. Further, at least a portion of the topsheet 24 is liquid permeable, permitting liquids to readily penetrate through its thickness. A suitable topsheet may be manufactured from a wide range of materials, such as porous foams, reticulated foams, apertured plastic films, or woven or nonwoven materials of natural fibers (e.g., wood or cotton fibers), synthetic fibers or filaments (e.g., polyester or polypropylene or bicomponent PE/PP fibers or mixtures thereof), or a combination of natural and synthetic fibers. Typical diaper topsheets have a basis weight of from about 10 to about 28 gsm, in particular between from about 12 to about 18 gsm but other basis weights are possible.


Suitable formed film topsheets are also described in U.S. Pat. Nos. 3,929,135, 4,324,246, 4,342,314, 4,463,045, and 5,006,394. Other suitable topsheets may be made in accordance with U.S. Pat. Nos. 4,609,518 and 4,629,643. Such formed films are available from The Procter & Gamble Company of Cincinnati, Ohio as “DRI-WEAVE” and from Tredegar Corporation, based in Richmond, VA, as “CLIFF-T”.


Any portion of the topsheet may be coated with a lotion as is known in the art. Examples of suitable lotions include those described in U.S. Pat. Nos. 5,607,760, 5,609,587, 5,643,588, 5,968,025 and 6,716,441. The topsheet 24 may also include or be treated with antibacterial agents, some examples of which are disclosed in WO 95/24173. Further, the topsheet, the backsheet or any portion of the topsheet or backsheet may be embossed and/or matte finished to provide a more cloth like appearance.


The topsheet 24 may comprise one or more apertures to ease penetration of exudates there-through, such as urine and/or feces (solid, semi-solid, or liquid). Examples of apertured topsheet are disclosed in U.S. Pat. No. 6,632,504. WO 2011/163582 also discloses suitable colored topsheet having a basis weight of from 12 to 18 gsm and comprising a plurality of bonded points. Each of the bonded points has a surface area of from 2 mm2 to 5 mm2 and the cumulated surface area of the plurality of bonded points is from 10 to 25% of the total surface area of the topsheet.


Backsheet 25


The backsheet 25 is generally that portion of the absorbent article 20 which forms the majority of the external surface of the article when worn by the user. The backsheet 25 is positioned towards the bottom side 290 of the absorbent core 28 and prevents the exudates absorbed and contained therein from soiling articles such as bed sheets and undergarments. The backsheet 25 is typically impermeable to liquids (e.g. urine). The backsheet 25 may for example be or comprise a thin plastic film, on the exterior surface of which a thin non-woven may be attached to improve the feel to the touch. Exemplary backsheet films include those manufactured by Tredegar Corporation, based in Richmond, VA, and sold under the trade name CPC2 film. Other suitable backsheet materials may include breathable materials which permit vapors to escape from the article 20 while still preventing exudates from passing through the backsheet 25. Exemplary breathable materials may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, microporous films such as manufactured by Mitsui Toatsu Co., of Japan under the designation ESPOIR NO and by Tredegar Corporation of Richmond, VA, and sold under the designation EXAIRE, and monolithic or Microporus films such as manufactured by Clopay Corporation, Cincinnati, OH under the name HYTREL blend P18-3097 or MicroPro. Some breathable composite materials are described in greater detail in WO 95/16746 (E. I. DuPont), U.S. Pat. No. 5,938,648 (LaVon et al.), U.S. Pat. No. 4,681,793 (Linman et al.), U.S. Pat. No. 5,865,823 (Curro), U.S. Pat. No. 5,571,096 (Dobrin et al.) and U.S. Pat. No. 6,946,585 (London Brown).


Typical films used for absorbent articles like diapers and pants are typically between 10 to 25 gsm and have longitudinal strength (also known as tensile strength) within 1 to 10N, specially between 2 and 6N. Preferred films for use in the backsheet of absorbent articles according to the invention have a basis weight between 10 and 20 gsm, because the improved glue pattern allows using thinner backsheet films which are preferred for reduced environmental impact, reduced cost and, and increased softness.


Acquisition and Distribution Layers 52, 54


The absorbent articles of the invention may comprise an acquisition layer 52, a distribution layer 54, both, or a single layer having both functions of acquiring and distributing the fluid. Typically, these layers do not comprise SAP as this may slow the acquisition and distribution of the fluid. The prior art discloses many type of acquisition-distribution system, see for example WO 2000/59430 (Daley), WO 95/10996 (Richards), U.S. Pat. No. 5,700,254 (McDowall), WO 02/067809 (Graef).


The function of an acquisition layer is to quickly acquire the fluid away from the topsheet so as to provide a good dryness for the wearer. The acquisition layer is typically placed directly under the topsheet. If present, the distribution layer may be at least partially disposed under the acquisition layer. The acquisition layer may typically be or comprise a non-woven material, for example a SMS or SMMS material, comprising a spunbonded, a melt-blown and a further spunbonded layer or alternatively a carded chemical-bonded nonwoven. The non-woven material may in particular be latex bonded. Exemplary upper acquisition layers 52 are disclosed in U.S. Pat. No. 7,786,341. Carded, resin-bonded nonwovens may be used, in particular where the fibers used are solid round or round and hollow PET staple fibers (50/50 or 40/60 mix of 6 denier and 9 denier fibers). An exemplary binder is a butadiene/styrene latex. Nonwovens have the advantage that they can be manufactured outside the converting line and stored and used as a roll of material. Further useful nonwovens are described in U.S. Pat. No. 6,645,569 (Cramer et al.), U.S. Pat. No. 6,863,933 (Cramer et al.), U.S. Pat. No. 7,112,621 (Rohrbaugh et al.), US 2003/148684 (Cramer et al.) and US 2005/008839 (Cramer et al.).


The acquisition layer may be stabilized by a latex binder, for example a styrene-butadiene latex binder (SB latex). Processes for obtaining such latices are known, for example, from EP 149880 (Kwok) and US 2003/0105190 (Diehl et al.). In certain embodiments, the binder may be present in the acquisition layer 52 in excess of about 12%, about 14% or about 16% by weight. SB latex is available under the trade name GENFLO™ 3160 (OMNOVA Solutions Inc.; Akron, Ohio).


A distribution layer 54 may also be present. The function of a distribution layer is to spread the insulting fluid liquid over a larger surface within the article so that the absorbent capacity of the core can be more efficiently used. Typically the distribution layer is made of a nonwoven material based on synthetic or cellulosic fibers and having a relatively low density. The density of the distribution layer may vary depending on the compression of the article, but may typically range from 0.03 to 0.25 g/cm3, in particular from 0.05 to 0.15 g/cm3 measured at 0.30 psi (2.07 kPa). The distribution layer 54 may also be a material having a water retention value of from 25 to 60, preferably from 30 to 45, measured as indicated in the procedure disclosed in U.S. Pat. No. 5,137,537. The distribution layer 54 may typically have an average basis weight of from 30 to 400 g/m2, in particular from 100 to 300 g/m2. As shown in FIG. 2, the distribution layer may be rounded towards the back of the article. The distribution layer may be also profiled so that its basis weight towards the back of the article is lower than towards the front.


The distribution layer may for example comprise at least 50% by weight of crosslinked cellulose fibers. The crosslinked cellulosic fibers may be crimped, twisted, or curled, or a combination thereof including crimped, twisted, and curled. This type of material has been used in the past in disposable diapers as part of an acquisition system, for example US 2008/0312622 A1 (Hundorf). The crosslinked cellulosic fibers provide higher resilience and therefore higher resistance against the compression in the product packaging or in use conditions, e.g. under baby weight.


Fastening System


The absorbent article may include a fastening system. The fastening system can be used to provide lateral tensions about the circumference of the absorbent article to hold the absorbent article on the wearer. This fastening system is not necessary for training pant article since the waist region of these articles is already bonded. The fastening system usually comprises a fastener 42 such as tape tabs, hook and loop fastening components, interlocking fasteners such as tabs & slots, buckles, buttons, snaps, and/or hermaphroditic fastening components, although any other known fastening means are generally acceptable. A landing zone is normally provided on the front waist region of the article for the fastener 42 to be releasably attached. Some exemplary surface fastening systems are disclosed in U.S. Pat. Nos. 3,848,594, 4,662,875, 4,846,815, 4,894,060, 4,946,527, 5,151,092 and 5,221,274 (Buell). An exemplary interlocking fastening system is disclosed in U.S. Pat. No. 6,432,098. The fastening system may also provide a means for holding the article in a disposal configuration as disclosed in U.S. Pat. No. 4,963,140 (Robertson et al.)


The fastening system may also include primary and secondary fastening systems, as disclosed in U.S. Pat. No. 4,699,622 to reduce shifting of overlapped portions or to improve fit as disclosed in U.S. Pat. Nos. 5,242,436, 5,499,978, 5,507,736, and 5,591,152.


Front and Back Ears 46, 40


The absorbent article may comprise front ears 46 and back ears 40 as is known in the art. The ears can be integral part of the chassis, for example formed from the topsheet and/or backsheet as side panel. Alternatively, as represented in FIG. 2, they may be separate elements attached by gluing and/or heat embossing. The back ears 40 are advantageously stretchable to facilitate the attachment of the tabs 42 on the landing zone 44 and maintain the taped diapers in place around the wearer's waist. The front ears 46 may also be elastic or extensible to provide a more comfortable and contouring fit by initially conformably fitting the absorbent article to the wearer and sustaining this fit throughout the time of wear well past when absorbent article has been loaded with exudates since the elasticized ears allow the sides of the absorbent article to expand and contract.


Barrier Leg Cuffs 34 and Gasketing Cuffs 32


Absorbent articles such as diapers or training pants may typically further comprise components that improve the fit of the article around the legs of the wearer, in particular barrier leg cuffs 34 and gasketing cuffs 32. The barrier leg cuffs 32 may be formed by a piece of material, typically a nonwoven, which is partially bonded to the rest of the article and can be partially raised away and thus stand up from the plane defined by the topsheet, when the article is pulled flat as shown for example in FIG. 3. The barrier leg cuffs 34 can provide improved containment of liquids and other body exudates approximately at the junction of the torso and legs of the wearer. The barrier leg cuffs 34 extend at least partially between the front edge and the back edge of the absorbent article on opposite sides of the longitudinal axis and are at least present adjacent to the crotch point (C) of the core.


The barrier leg cuffs 34 may be delimited by a proximal edge 64 joined to the rest of the article, typically the topsheet and/or the backsheet, and a free terminal edge 66 intended to contact and forms a seal with the wearer's skin. The barrier leg cuffs 34 may be joined at the proximal edge 64 with the chassis of the article by a bond 65 which may be made for example by adhesive bonding, fusion bonding or combination of known bonding means. The bond 65 at the proximal edge 64 may be continuous or intermittent.


The barrier leg cuffs 34 can be integral with (i.e. formed from) the topsheet or the backsheet, or more typically be formed from a separate material joined to the rest of the article. Typically the material of the barrier leg cuffs may extend through the whole length of the article but is “tack bonded” to the topsheet towards the front edge and back edge of the article so that in these sections the barrier leg cuff material remains flush with the topsheet. Each barrier leg cuff 34 may comprise one, two or more elastic strings 35 close to this free terminal edge 66 to provide a better seal.


In addition to the barrier leg cuffs 34, the article may comprise gasketing cuffs 32, which are formed in the same plane as the chassis of absorbent article, in particular may be at least partially enclosed between the topsheet and the backsheet, and may be placed laterally outwardly relative to the barrier leg cuffs 34. The gasketing cuffs 32 can provide a better seal around the thighs of the wearer. Usually each gasketing leg cuff 32 will comprise one or more elastic string or elastic element 33 comprised in the chassis of the diaper for example between the topsheet and backsheet in the area of the leg openings.


U.S. Pat. No. 3,860,003 describes a disposable diaper which provides a contractible leg opening having a side flap and one or more elastic members to provide an elasticized leg cuff (a gasketing cuff). U.S. Pat. No. 4,808,178 (Aziz) and U.S. Pat. No. 4,909,803 (Aziz) describe disposable diapers having “stand-up” elasticized flaps (barrier leg cuffs) which improve the containment of the leg regions. U.S. Pat. No. 4,695,278 (Lawson) and U.S. Pat. No. 4,795,454 (Dragoo) describe disposable diapers having dual cuffs, including gasketing cuffs and barrier leg cuffs. All or a portion of the barrier leg and/or gasketing cuffs may be treated with a lotion.


Elastic Waist Feature


The absorbent article may also comprise at least one elastic waist feature (not represented) that helps to provide improved fit and containment. The elastic waist feature is generally intended to elastically expand and contract to dynamically fit the wearer's waist. The elastic waist feature preferably extends at least longitudinally outwardly from at least one waist edge of the absorbent core 28 and generally forms at least a portion of the back side of the absorbent article. Disposable diapers can be constructed so as to have two elastic waist features, one positioned in the front waist region and one positioned in the back waist region. The elastic waist feature may be constructed in a number of different configurations including those described in U.S. Pat. Nos. 4,515,595, 4,710,189, 5,151,092 and 5,221,274.


Relations Between the Layers and Components


Apart from the core-to-backsheet gluing distribution described in details previously, adjacent layers may be joined together using conventional bonding method such as adhesive coating via slot coating or spraying on the whole or part of the surface of the layer, or thermo-bonding, or pressure bonding or combinations thereof. Most of the bonding between components is for clarity and readability not represented in the Figure. Bonding between the layers of the article should be considered to be present unless specifically excluded. Adhesives may be typically used to improve the adhesion of the different layers, for example between the backsheet and the core wrap. The adhesives used may be any standard hotmelt glue as known in the art.


Method of Making


Apart from the method for applying the gluing distribution described in details previously, the absorbent article may be made otherwise by any conventional methods known in the art. In particular the articles may be hand-made or industrially produced at high speed on a modern converting line.


EXAMPLES

The following products according to the invention were prepared:


Inventive Example 1

Diapers having an absorbent material deposition area and two pair of channels similar to the one represented in FIG. 1a were prepared with the following specification:


One pair of channel extending from the front 25% of the longitudinal length of the absorbent core to the back 25% of the absorbent core. The channels were essentially absorbent material free and the top and bottom sides of the core wrap were attached together through these channels by the mean of the core glues described below. The width of the channels was about 8 mm and the projected length on the longitudinal axis of the article was about 230 mm. The channels were curved concave towards the longitudinal centerline of the article as shown in FIG. 1a, with a minimum separation of 20 mm and curved to reach out to 22 to 25 mm from the lateral edge of the core at front and back respectively.


The absorbent core comprised in total 12.7 g of fast absorbing SAP (Nippon Shokubai NS CA 700) applied in an area of deposition having a length of 360 mm and a width of 110 mm. The SAP was distributed so that the basis weight of SAP was higher in the crotch region than at the front region and still lower towards the back region, in a ratio of about 0.25/0.40/0.3/0.1 of the total SAP along the longitudinal axis of the absorbent core (per quarter of the core length). SAP was distributed homogeneously in the transversal direction (no profiling in “cross-machine direction” or “CD”). The absorbent core was formed by SAP printing technology as disclosed in US2010/0051166A1, which combines two nonwoven substrates each supporting a SAP layer and microfiber elastic glue applied on each SAP layer which immobilizes the SAP layer on the substrate. These nonwoven substrates form the core wrap by C-wrapping the upper substrate onto the lower substrate as shown in FIG. 3. Auxiliary glue (from Henkel) was applied between the lower SAP layer and its respective lower substrate which was slot coated with 41 slots 1 mm wide with a distance of 1 mm between the slots along the whole length of the core wrap (390 mm), for a total Auxiliary glue application of 0.13 g. The microfiber glue (from H. B. Fuller) applied on each SAP layer was uniformly applied at width of 110 mm and length of 390 mm on each SAP layer, 0.17 g of microfiber glue was used on the core cover side and 0.13 g on the dusting layer side. The channels were formed by using a suitable printing drum delimiting the channels shape, further information on how to form channels can be found in EP application number EP12174117.7 using printed SAP technology.


The core wrap had a length of 390 mm with two end flaps free of absorbent material having a length of 15 mm at the back and at the front of the absorbent core. The front and back end seals of the core were slot glued together, the glue slots having a length of 30 mm from the front end seal and 20 mm from the back end seal using. The folded width of the core wrap was 120 mm. The core wrap comprised two nonwovens, the top substrate (16 in FIG. 3, referred further as “Core cover”) was a 8 gsm SMMS nonwoven treated by a surfactant to be hydrophilic. The lower substrate (16′ in FIG. 3, referred further as “Dusting layer”) was a 10 gsm SMMS nonwoven. The core cover was cut at a length of 390 mm and a cut width of 165 mm. The dusting layer had a cut length of 390 mm and a cut width of 130 mm. The core cover was C-wrapped around the dusting layer on the lateral sides of the core and the lateral edges of the dusting layer slightly formed upwards on the edge of the absorbent material of the core so that the overall width of the folded core wrap was about 120 mm.


The core cover and dusting layer were bonded together through the channels. The bond was formed by the auxiliary and microfiber glue discussed hereinabove. The folded core cover around the dusting layer was bonded by the means of one slot per side, measuring 3 mm wide and 390 mm long. Henkel glue was used to bond the core cover to core dusting layer, applied at 4 mm from the lateral edge of the folded core cover at a total amount of 0.024 g.


The acquisition-distribution (52) system was formed by an acquisition layer of 43 gsm latex bonded nonwoven having a length of 318 mm and a width of 90 mm, and a distribution layer of cross-linked cellulose fibers (54) having a length of 298 mm and a width of 80 mm with a uniform basis weight of 195 gsm and centered on the acquisition layer area. The acquisition layer placed at 18 mm from the front of the absorbent core material and glued to the distribution layer using a Henkel hot melt adhesive on a printing glue pattern covering 15% of the area and having a length of 308 mm by 72 mm wide. The glue pattern was centered on the acquisition layer and had a total application area of 0.027 g.


The distribution layer was glued to nonwoven core cover using 7 slot coating glue applications, 3 mm wide each and separated by 8 mm. This pattern was 296 mm long and centered on the distribution layer using a total amount of 0.03 g of hot melt adhesive.


The topsheet (24) was 478 mm long formed by a 12 gsm carded nonwoven and the backsheet (26) was 478 mm long by 208 mm wide formed by laminating a Clopay 16 gsm film with a 15 gsm spunbond nonwoven. The topsheet was bonded to the acquisition layer by the means of 23 slot glue applications, 1 mm wide, separated 5 to 6 mm and 478 mm long for a total glue application of 0.098 g.


The backsheet film was glued to the backsheet nonwoven using 89 slots, 1 mm wide and about 1 mm apart from each other. The backsheet film to backsheet nonwoven glue application area covered the totality of the length of the backsheet (26) and was centered in transversal direction. The backsheet film used was a PP/PE breathable 16 gsm film, from Clopay, 478 mm long and 206 mm wide. The backsheet nonwoven was a 15 gsm Spundbond, 478 mm long by 212 mm wide.


The absorbent core was glued to the backsheet film using a first glue (110) from Henkel (DM3800) with the following areas of application.

    • 1. A first center glue application area (1115), is formed by 8 summit spirals, 6 mm wide and equally spaced from each other to form an application area 50 mm wide by 45 mm long. The glue pattern was applied at the front edge of the product and centered in transversal direction. Two Nordson Summit applicators, 25 mm wide with 4 summits application per module were used to deliver this pattern. The front of the core was placed at 17 mm from the front edge of the absorbent article, and centered in transversal direction, overlapping the glue pattern by 28 mm in longitudinal direction. The same glue pattern was applied in the back of the absorbent article (second center glue application area 1116), covering an area 50 mm wide and 99 mm long (from the back edge of the absorbent article), and overlapping the core by 28 mm in longitudinal direction. The totality of the glue used for the first and second center glue application areas was 0.0177 g at the same glue basis weight in front and back of the product.
    • 2. A first (1113) and a second (1114) lateral glue application areas, each formed by 4 summit spirals, 6 mm wide, equally spaced from each other, to form an application areas width of 25 mm; were applied at each of the lateral edge of the center glue application areas 1115 and 1116. These lateral glue application areas are 478 mm long by 25 mm wide each and bond the full longitudinal length of the core to the backsheet to provide the right support for the loaded core during wearing. A Nordson summit nozzle, 25 mm wide with 4 summit application per module was used to deliver these lateral application areas. The total amount of glue used on both lateral glue applications was 0.0588 g.
    • 3. A first (1117), second (1118), third (1119) and fourth (1120) corner glue application areas are formed by 4 summit spirals, 6 mm wide, equally spaced from each other to form a pattern width of 25 mm and were applied at each lateral edge of the glues 1113 and 1114 so to cover the four corners of the core.


The combination of the center, lateral and corner glue application areas form the shape of a roman number “II” as shown in FIG. 1a.


The leg cuffs were commercial leg cuffs similar to those shown in FIG. 2, and comprised two 15 gsm, 478 mm long and 77 mm wide nonwovens on each side of the diaper. The leg cuffs were tackdown bonded to the topsheet with a 6 mm wide tool, for a distance of 100 mm from the front and 91 mm from the back of the edges of the diaper at a distance of 4 mm from the free edge. The nonwovens were fusion bonded along their length to the topsheet with a pair of continuous bond (65), 3 mm wide, along their bond line. Three, 1 mm wide with 2 mm spacing, slot glues were further applied along the continuous bond between the bonded leg cuff material and the topsheet, and the backsheet. The distance between the continuous bonds was 148 mm. The gasketing cuffs (the part of the cuffs not raised) were elasticized with three elastics in each side, attached to the diaper by adhesive glue (33 in the FIG. 3) on each side of the cuffs, starting at 85 mm from the front edge of the diaper and extending along a length of 281 mm. The raised barrier leg cuffs were elasticized with two elastics on each side (ref. 35 in the FIG. 3) each close to the terminal edge (ref 66 in the FIG. 3) of the barrier leg cuffs. The barrier cuff elastics were attached to the cuff material by the mean of glue, applied at 101 mm from the front of the absorbent article and a length of 302 mm. All elastics are formed by LYRCA® from DuPont and had a pre strain of 300%. The various components of the diapers were assembled in a conventional manner, typically by gluing or fusion bonding, unless indicated otherwise.


Inventive Example 2

The Inventive example 2 is made like Example 1 but using a different backsheet film: a 15 gsm PE/PP Breathable Backsheet film from Daedong.


Inventive Example 3

The Inventive Example 3 was made in the same way as example 2 but using National Starch (DM526) glue on the backsheet to core application maintaining the same pattern and glue amount, but increasing the backsheet to core bonding strength. The glue application and usage level remained unchanged.


COMPARATIVE EXAMPLE

The comparative example was made in the same way as example 1 with the following difference: National Starch (DM526) glue was used for the Backsheet to core applications. The absorbent core was bonded to the backsheet by the mean of 3 spiral summit glues per glue Nodson glue module versus 4 in the Inventive Examples. Each spiral summit was 7 mm wide equally spaced to form the total pattern (6 spirals on intermittent center application, 3 spirals per side on the lateral application, and 3 spirals per side on the most outer intermittent or corner glue application). In addition, the backsheet lamination glue pattern used was formed by 61 slots, 1 mm wide and about 2 mm spacing. The total amount of the backsheet film to backsheet nonwoven used was 0.072 g.


The total amount of glue per application on the backsheet to core glue was maintained the same across all Inventive Examples and the Comparative Example, while the glue design, usage and basis weights where adjusted to enable a reduction on Peel strength but not a large reduction on Shear force for the Inventive Examples versus the Comparative Example (see table below).















Examples
Comparative



1- 2- 3
Example















Center glue applications (1115-1116)









# Summit spirals per application
8
6


Individual width of each spiral (mm)
6
7


Length at front (mm)
45
45


Length at back (mm)
99
99


Total length (mm)
144
144


Total glue applied (g)
0.0177
0.0177







Lateral glue applications (1113-1114)









# Summit spirals per application
4
3


Individual width of each spiral (mm)
6
7


Total length
478
478


Total glue applied
0.0588
0.0588







Corner glue applications (1117-1120)









# Summit spirals per application
4
3


Individual width of each spiral (mm)
6
7


Length at front
45
45


Length at back
99
99


Total length
144
144


Total glue applied
0.0177
0.0177









Experimental Results

Measuring the comparative and Inventive examples described above, the following peel strengths, tear strengths were obtained (averaged on three replicates). The effectiveness of the reduction on the ratio peel strength/tear strength was proven to reduce backsheet failures or holes on standard manufacturing facilities.

















Comparative
Inventive
Inventive
Inventive



Example
Example 1
Example 2
Example 3







Backsheet film
Clopay
Clopay
Daedong
Daedong


material
16 gsm
16 gsm
15 gsm
15 gsm


Longitudinal Tear
3.38
3.38
4.77
4.77


Strength of the






Backsheet film (N/cm)






Core to backsheet peel
1.70
0.88
0.90
1.29


strength (N/cm)






Peel/Tear strength
50%
26%
19%
27%


Observed diapers
13
10
7
8


with holes
(4333
(3333
(2333
(2667


over 3000 diapers
ppm)*
ppm)
ppm)
ppm)





*Quality of the product reported in pad per million (number of observed defects/# total samples tested × 1.000.000)






Test Procedures


The values indicated herein are measured according to the methods indicated herein below, unless specified otherwise. All measurements are performed at 21° C.±2° C. and 50%±20% RH, unless specified otherwise. All samples should be kept at least 24 hours in these conditions to equilibrate before conducting the tests, unless indicated otherwise. All measurements should be reproduced on at least 4 samples and the average value obtained indicated, unless otherwise indicated.


Core to Backsheet Laminate Peel Strength


The “peel strength” method measures the peak amount of tensile force per unit of width required to pull a core to backsheet laminate apart during a 180° peel test using an tensile strength apparatus. The testing is conducted on samples of the laminate between the backsheet and the core in which the first glue (as defined above) is the only attachment means between core and backsheet. The laminate is prepared according to the definition provided in the present application respecting the intended orientation of the materials and of the glue applications within the absorbent article. The sample can be taken from an absorbent article following the instructions provided below.


The tensile tester must be calibrated according to the manufacturer's directions.


The sample to be tested must be a portion of core to backsheet laminate comprising a square area of 25.4 mm×20 mm which is part of the first glue application area. The sample must be oriented so that two edges of the square are oriented along the longitudinal direction of the backsheet film and of the application pattern.


In this area the first glue is applied according to the first glue application pattern. The “peel strength” measured by this method will depend on the core material, the backsheet film material, the type of glue and the pattern of application of the glue.


A sample of 25.4 mm wide by 200 mm long can be cut from the center front edge of a diaper as represented in the rectangle “S” in FIG. 1.


After the samples are cut, delaminate the backsheet from the core (starting from the un-bonded area if present) by hand for 50 mm in longitudinal direction, in order to create a portion of core and a portion of backsheet which can be securely clamped in the tensile instrument. In case the sample to be tested is smaller, the portions of material to be clamped can be created or made longer by attaching adhesive tape of appropriate size and strength to the core and backsheet in the sample so that the sample can be clamped in the tensile instrument and the adhesive tapes remain integral with core and backsheet respectively along the whole test. It must be ensured that the final sample when clamped at the start of the test has an area of at least 25.4×20 mm in transverse and longitudinal directions where the first glue (and only the first glue) connects core to backsheet. A freezing spray like IT Icer from Taerosol or the like or a solvent like dichloromethane can be used to facilitate manual delamination.


If a second glue or any other attachment means (other glues, mechanical bonding, fusion bonding etc.) are present in the 25.4×20 area to be measured the sample must be discarded.


Insert and clamp the backsheet material on the bottom jaw of the tensile equipment and the core on the upper jaw minimizing the slack on the sample and making sure the preload measured by the tensile instrument is not higher than 0.05N. Each jaw should have a suitable surface in contact with the sample to securely hold the backsheet and core without slipping as the laminate is pulled apart.


Test in a conditioned room maintained at 23° C.±2° C. and 50%±2% relative humidity. The jaws or clamps of the tensile tester are initially separated by 30 mm at the start of the test. Set the tensile tester to move the jaws apart at a speed of 305 mm/min. Start the test and record the maximum force (also called peak load) output starting when the jaw have moved a distance of 5 mm and continuing until the jaws has moved a distance of 200 mm apart from each other. The sample may be completely pulled apart at the end of the test.


The “peel strength” for each specimen is the maximum force measured for each sample during delamination reported to the nearest 0.01N and divided by the width of the first glue application on the sample, in cm (2.54 cm in the sample collected as directed). The final result is reported in N/cm to the nearest 0.01N/cm.


The results of the 3 samples are averaged; the average is reported in N/cm to the nearest 0.01N/cm.


Suitable tensile testers for use with this test, among others, include the Zwick Roell model BTC-FR2.5TH.D09 from Zwick GmbH & Co. KG. August-Nagel St 11, D89079 Ulm Germany, a Sintech tester, available from the Sintech Corporation, 1001 Sheldon Dr., Cary, N.C. 27513, an Instron tester available from the Instron Corporation, 2500 Washington St., Canton, Mass. 02021, or the alike.


Core to Backsheet Laminate Shear Strength


The “shear strength” method measures the peak amount of tensile force per unit of width required to pull a core to backsheet laminate apart in the plane of the laminate using a tensile strength apparatus. The testing is conducted on samples of the laminate between the backsheet and the core in which the first glue (as defined above) is the only attachment means between core and backsheet. The laminate is prepared according to the definition provided in the present application respecting the intended orientation of the materials and of the glue applications within the absorbent article. The sample can be taken from an absorbent article following the instructions provided below.


Calibrate the tensile tester according to the manufacturer's directions.


The sample to be tested must be a portion of core to backsheet laminate comprising a rectangular area of 25.4 mm in transversal direction×28 mm in longitudinal direction which is part of the first glue application area. The sample must be oriented so that two edges of the square are oriented along the longitudinal direction of the backsheet film and of the application pattern.


The sample needs to be provided with a portion of core and a portion of backsheet which can be clamped in the tensile instrument. To create these portions can be prepared like described for the peel strength measurement partially delaminating the sample or by using appropriate adhesive tape.


To note in this “shear strength” test the core and the backsheet will be clamped on opposite longitudinal ends of the sample so that the core to backsheet laminate is maintained in its plane (as opposed to the “peel strength” where the laminate is opened by pulling apart core and backsheet from the same longitudinal end of the sample.


A sample measuring 25.4 mm wide by at least 200 mm long can be cut from the center front edge of a diaper as represented in the rectangle “S” in FIG. 1a.


After the sample is cut, delaminate the backsheet from the core at both longitudinal edges to ensure that, after delamination, a 25.4 mm wide by a 28 mm long attached area is present where the first glue (and only the first glue) connects core to backsheet. If a second glue or any other attachment means (other glues, mechanical bonding, fusion bonding etc.) are present in the 20×20 area to be measured the sample must be discarded.


A freezing spray like IT Icer from Taerosol or the like or a solvent like dichloromethane can be used to facilitate manual delamination.


Insert and clamp the backsheet material from one longitudinal edge in the bottom jaw of the tensile equipment and the core (or rest of the diaper) from the opposite longitudinal edge in the upper jaw minimizing the slack on the sample but making sure the preload measured by the tensile instrument is not higher than 0.05N. Each jaw should have a suitable surface in contact with the sample to securely hold the backsheet and core without slipping as the laminate is pulled apart.


Test in a conditioned room maintained at 23° C.±2° C. and 50%±2% relative humidity. The jaws or clamps of the tensile tester are initially separated by 100 mm at the start of the test. Set the tensile tester to move the jaws apart at a speed of 305 mm/min. Start the test and record the maximum force (also called peak load) output starting when the jaw have moved a distance of 5 mm and continuing until the jaws has moved a distance of 200 mm apart from each other. The sample may be completely pulled apart, or the core or backsheet can completely be torn apart under strength at any time during the test. Even if this happens the measurement is considered valid.


The “shear strength” for each specimen is the maximum force measured for each sample during delamination reported to the nearest 0.01N and divided by the width of the first glue application on the sample, in cm (2.54 cm according to the instructions provided). The final result is reported in N/cm to the nearest 0.01N/cm.


The results of the 3 samples are averaged; the average is reported in N/cm to the nearest 0.01N/cm.


Suitable tensile testers for use with this test, among others, include the Zwick Roell model BTC-FR2.5TH.D09 from Zwick GmbH & Co. KG. August-Nagel St 11, D89079 Ulm Germany, a Sintech tester, available from the Sintech Corporation, 1001 Sheldon Dr., Cary, N.C. 27513, an Instron tester available from the Instron Corporation, 2500 Washington St., Canton, Mass. 02021, or the alike.


Backsheet Film “Longitudinal Tear Strength”


Cut a sample of backsheet film material of 25.4 mm across by 150 mm in the longitudinal direction of the winding direction of the raw material in the roll. Samples can be taken from an absorbent article at any point of the absorbent article which is free of a mechanical, fusion or similar bonding, elastics, stitches or other features which can alter the integrity and strength of the film. If the backsheet film sample is taken from the absorbent article, carefully delaminate the other components making sure the film is not damage. The orientation of the sample should be such that the longest dimension is along the longitudinal direction of the absorbent article. In case backsheet material is laminated to a nonwoven or to a core as typical in diapers, the nonwoven or core should be removed using dichloromethane or petroleum ether a solvent for the lamination glue or a Freezing spray as mentioned above.


Calibrate the tensile tester according to the manufacturer's directions.


Insert one end of the specimen into the upper jaw and close the jaw. Insert the other end into the lower jaw and close the jaw avoiding slack on the test sample but with the preload tension no larger than 0.05 N on the load cell.


Test in a conditioned room maintained at 23° C.±2° C. and 50%±2% relative humidity.


The jaws of the tensile tester are initially separated by 50.8 mm at the start of the test. Set the tensile tester to move the jaws apart at a speed of 508 mm/min, the break sensitivity at 50% (Break Sensitivity is the percent drop from peak where break is detected and the test stops).


Record the maximum peak load cell output starting when the jaws have moved a distance of 15 mm and continuing until the laws have moved a distance of 150 mm or the break sensitivity has been reached (sample tear). The sample may be completely pulled apart or torn apart at the end of the test.


Report the maximum peak load recorded for each sample and divide it by the width of the sample in cm. This number reported to the nearest 0.01 N/cm is the “longitudinal tear strength for that sample. The number is then averaged over 5 samples.


Suitable tensile testers for use with this test, among others, include the Zwick Roell model BTC-FR2.5TH.D09 from Zwick GmbH & Co. KG. August-Nagel St 11, D89079 Ulm Germany, a Sintech tester, available from the Sintech Corporation, 1001 Sheldon Dr., Cary, N.C. 27513, an Instron tester available from the Instron Corporation, 2500 Washington St., Canton, Mass. 02021, or the alike.


Centrifuge Retention Capacity (CRC)


The CRC measures the liquid absorbed by the superabsorbent polymer particles for free swelling in excess liquid. The CRC is measured according to EDANA method WSP 241.2-05.


Dry Absorbent Core Caliper Test


This test may be used to measure the caliper of the absorbent core (before use i.e. without fluid loading) in a standardized manner.


Equipment: Mitutoyo manual caliper gauge with a resolution of 0.01 mm, or equivalent instrument.


Contact Foot: Flat circular foot with a diameter of 17.0 mm (±0.2 mm). A circular weight may be applied to the foot (e.g., a weight with a slot to facilitate application around the instrument shaft) to achieve the target weight. The total weight of foot and added weight (including shaft) is selected to provide 2.07 kPa (0.30 psi) of pressure to the sample.


The caliper gauge is mounted with the lower surface of the contact foot in an horizontal plane so that the lower surface of the contact foot contacts the center of the flat horizontal upper surface of a base plate approximately 20×25 cm. The gauge is set to read zero with the contact foot resting on the base plate.


Ruler: Calibrated metal ruler graduated in mm.


Stopwatch: Accuracy 1 second.


Sample preparation: The core is conditioned at least 24 hours as indicated above.


Measurement procedure: The core is laid flat with the bottom side, i.e. the side intended to be placed towards the backsheet in the finished article facing down. The point of measurement (e.g. the crotch point C) is carefully drawn on the top side of the core taking care not to compress or deform the core.


The contact foot of the caliper gauge is raised and the core is placed flat on the base plate of the caliper gauge with the top side of the core up so that when lowered, the center of the foot is on the marked measuring point.


The foot is gently lowered onto the article and released (ensure calibration to “0” prior to the start of the measurement). The caliper value is read to the nearest 0.01 mm, 10 seconds after the foot is released.


The procedure is repeated for each measuring point. If there is a fold at the measuring point, the measurement is done in the closest area to this point but without any folds. Ten articles are measured in this manner for a given product and the average caliper is calculated and reported with an accuracy of one tenth mm.


Absorbent Article Caliper Test


The Absorbent Article Caliper Test can be performed as for the Dry Absorbent Core Caliper Test with the difference that the caliper of the finished absorbent article is measured instead of the caliper of the core. The point of measurement may correspond vertically with the crotch point of the core as defined earlier. If the absorbent articles were provided folded and/or in a package, the articles to be measured are unfolded and/or removed from the center area of the package. If the package contains more than 4 articles, the outer most two articles on each side of the package are not used in the testing. If the package contains more than 4 but fewer than 14 articles, then more than one package of articles is required to complete the testing. If the package contains 14 or more articles, then only one package of articles is required to perform the testing. If the package contains 4 or fewer articles then all articles in the package are measured and multiple packages are required to perform the measurement. Caliper readings should be taken 24±1 hours after the article is removed from the package, unfolded and conditioned. Physical manipulation of product should be minimal and restricted only to necessary sample preparation.


Any elastic components of the article that prevent the article from being laid flat under the caliper foot are cut or removed. These may include leg cuffs or waistbands. Pant-type articles are opened or cut along the side seams as necessary. Apply sufficient tension to flatten out any folds/wrinkles. Care is taken to avoid touching and/or compressing the area of measurement.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”


Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. An absorbent article for personal hygiene having a wearer-facing side, a garment-facing side and a longitudinal axis and transversal axis, the article comprising: a topsheet on the wearer-facing side;a backsheet on the garment-facing side;an absorbent core between the topsheet and the backsheet, the absorbent core having a top side and a bottom side, the absorbent core comprising an absorbent material comprising a superabsorbent polymer;the backsheet comprising a plastic film, the plastic film having a longitudinal tear strength measured in N/cm;the absorbent core being partially attached to the plastic film of the backsheet in at least two glue application areas, the at least two glue applications areas comprising a first glue application area; andwherein at least a continuous area of about 10 mm in longitudinal direction and about 25 mm in transversal direction of the bottom side of the core is unattached to the backsheet;wherein in the first glue application area, the absorbent article comprises a core-to-backsheet peel strength measured in N/cm, andwherein the core-to-backsheet peel strength ranges from about 10% to about 40% of the longitudinal tear strength of the plastic film.
  • 2. The absorbent article of claim 1, wherein the continuous area overlaps a lateral edge of the absorbent core.
  • 3. The absorbent article of claim 2, wherein the continuous area overlaps both lateral edges of the absorbent core.
  • 4. The absorbent article of claim 1, wherein the first glue application area comprises a pattern having glue filaments, swirls, miniswirls, and/or glue fibers.
  • 5. The absorbent article of claim 1, wherein the core-to-backsheet peel strength in the first glue application area is from about 0.3 N/cm to about 4 N/cm.
  • 6. The absorbent article of claim 1, wherein the continuous area is disposed between two of the at least two glue application areas.
  • 7. The absorbent article of claim 1, wherein the absorbent core comprises a first channel disposed on one side of the longitudinal axis and a second channel disposed on the other side of the longitudinal axis.
  • 8. The absorbent article of claim 7, wherein the first channel and second channel are at least partially unattached to the backsheet.
  • 9. The absorbent article of claim 7, wherein a second glue application area is at least partially present between the channels.
  • 10. The absorbent article of claim 1, wherein the core-to-backsheet peel strength is from about 3N/cm to about 20N/cm.
  • 11. The absorbent article of claim 1, wherein the absorbent material of the absorbent core comprises less than about 20% of cellulosic fibers, by weight of the absorbent material.
  • 12. The absorbent article of claim 1, wherein the continuous area overlaps a longitudinal edge of the absorbent core.
  • 13. The absorbent article of claim 12, wherein the first glue application area comprises at least a first portion on one side of longitudinal axis and at least a second portion on the other side of the longitudinal axis, and both portions extends along the full length of the absorbent core.
US Referenced Citations (1106)
Number Name Date Kind
1733997 Marr Oct 1929 A
1734499 Marinsky Nov 1929 A
1989283 Limacher Jan 1935 A
2058509 Rose Oct 1936 A
2271676 Bjornbak Feb 1942 A
2450789 Frieman Oct 1948 A
2508811 Best et al. May 1950 A
2568910 Condylis Sep 1951 A
2570796 Gross Oct 1951 A
2570963 Mesmer Oct 1951 A
2583553 Faure Jan 1952 A
2705957 Mauro Apr 1955 A
2788003 Morin Apr 1957 A
2788786 Dexter Apr 1957 A
2798489 Behrman Jul 1957 A
2807263 Newton Sep 1957 A
2830589 Doner Apr 1958 A
2890700 Lönberg-Holm Jun 1959 A
2890701 Weinman Jun 1959 A
2898912 Adams Aug 1959 A
2931361 Sostsrin Apr 1960 A
2977957 Clyne Apr 1961 A
3071138 Gustavo Jan 1963 A
3180335 Duncan et al. Apr 1965 A
3207158 Yoshitake et al. Sep 1965 A
3227160 Joy Jan 1966 A
3386442 Sabee Jun 1968 A
3561446 Jones Feb 1971 A
3572342 Lindquist et al. Mar 1971 A
3572432 Burton Mar 1971 A
3575174 Mogor Apr 1971 A
3578155 Small et al. May 1971 A
3606887 Roeder Sep 1971 A
3610244 Jones Oct 1971 A
3618608 Brink Nov 1971 A
3642001 Sabee Feb 1972 A
3653381 Warnken Apr 1972 A
3670731 Harmon Jun 1972 A
3688767 Goldstein Sep 1972 A
3710797 Marsan Jan 1973 A
3731688 Litt et al. May 1973 A
3756878 Willot Sep 1973 A
3774241 Zerkle Nov 1973 A
3776233 Schaar Dec 1973 A
3814100 Nystrand et al. Jun 1974 A
3828784 Sabee Oct 1974 A
3840418 Sabee Oct 1974 A
3847702 Jones Nov 1974 A
3848594 Buell Nov 1974 A
3848595 Endres Nov 1974 A
3848597 Endres Nov 1974 A
3860003 Buell Jan 1975 A
3863637 MacDonald et al. Feb 1975 A
3882870 Hathaway May 1975 A
3884234 Taylor May 1975 A
3900032 Heurlen Aug 1975 A
3911173 Sprague, Jr. Oct 1975 A
3920017 Karami Nov 1975 A
3924626 Lee et al. Dec 1975 A
3926189 Taylor Dec 1975 A
3929134 Karami Dec 1975 A
3929135 Thompson Dec 1975 A
3930501 Schaar Jan 1976 A
3938523 Gilliland et al. Feb 1976 A
3968799 Schrading Jul 1976 A
3978861 Schaar Sep 1976 A
3981306 Krusko Sep 1976 A
3987794 Schaar Oct 1976 A
3995637 Schaar Dec 1976 A
3995640 Schaar Dec 1976 A
3999547 Hernandez Dec 1976 A
4014338 Schaar Mar 1977 A
4034760 Amirsakis Jul 1977 A
4055180 Karami Oct 1977 A
4074508 Reid Feb 1978 A
4079739 Whitehead Mar 1978 A
4084592 Tritsch Apr 1978 A
4100922 Hernandez Jul 1978 A
4232674 Melican Nov 1980 A
4257418 Hessner Mar 1981 A
4259220 Bunnelle et al. Mar 1981 A
4296750 Woon et al. Oct 1981 A
4315508 Bolick Feb 1982 A
4324246 Mullane et al. Apr 1982 A
4340706 Obayashi et al. Jul 1982 A
4341216 Obenour Jul 1982 A
4342314 Radel et al. Aug 1982 A
4360021 Stima Nov 1982 A
4381783 Elias May 1983 A
4388075 Mesek et al. Jun 1983 A
4410571 Korpman Oct 1983 A
4461621 Karami et al. Jul 1984 A
4463045 Ahr et al. Jul 1984 A
4469710 Rielley et al. Sep 1984 A
4475912 Coates Oct 1984 A
4490148 Beckeström Dec 1984 A
4507438 Obayashi et al. Mar 1985 A
4515595 Kievet et al. May 1985 A
4527990 Sigl Jul 1985 A
4541871 Obayashi et al. Sep 1985 A
4551191 Kock et al. Nov 1985 A
4573986 Minetola et al. Mar 1986 A
4578072 Lancaster Mar 1986 A
4578702 Campbell Mar 1986 A
4585448 Enloe Apr 1986 A
4585450 Rosch et al. Apr 1986 A
4589878 Mitrani May 1986 A
4596568 Flug Jun 1986 A
4601717 Blevins Jul 1986 A
4606964 Wideman Aug 1986 A
4609518 Curro et al. Sep 1986 A
4610678 Weisman et al. Sep 1986 A
4623342 Ito et al. Nov 1986 A
4624666 Derossett Nov 1986 A
4629643 Curro et al. Dec 1986 A
4636207 Buell Jan 1987 A
4641381 Heran et al. Feb 1987 A
4646510 McIntyre Mar 1987 A
4662875 Hirotsu et al. May 1987 A
4666983 Tsubakimoto et al. May 1987 A
4670011 Mesek Jun 1987 A
4670012 Johnson Jun 1987 A
4680030 Coates et al. Jul 1987 A
4681579 Toussant et al. Jul 1987 A
4681581 Coates Jul 1987 A
4681793 Linman et al. Jul 1987 A
4690680 Higgins Sep 1987 A
4695278 Lawson Sep 1987 A
4699622 Toussant et al. Oct 1987 A
4704115 Buell Nov 1987 A
4704116 Enloe Nov 1987 A
4710189 Lash Dec 1987 A
4720321 Smith Jan 1988 A
4731066 Korpman Mar 1988 A
4731070 Koci Mar 1988 A
RE32649 Brandt et al. Apr 1988 E
4741941 Englebert et al. May 1988 A
4747846 Boland et al. May 1988 A
4753648 Jackson Jun 1988 A
4773905 Molee Sep 1988 A
4784892 Storey et al. Nov 1988 A
4785996 Ziecker et al. Nov 1988 A
4787896 Houghton et al. Nov 1988 A
4795454 Dragoo Jan 1989 A
4800102 Takada Jan 1989 A
4802884 Fröidh et al. Feb 1989 A
4806408 Pierre et al. Feb 1989 A
4806598 Morman Feb 1989 A
4808176 Kielpikowski Feb 1989 A
4808178 Aziz Feb 1989 A
4826880 Lesniak et al. May 1989 A
4834735 Alemany et al. May 1989 A
4834740 Suzuki et al. May 1989 A
4834742 Wilson et al. May 1989 A
4838886 Kent Jun 1989 A
4842666 Werenicz Jun 1989 A
4846815 Scripps Jul 1989 A
4846825 Enloe et al. Jul 1989 A
4848815 Molloy Jul 1989 A
4861652 Lippert et al. Aug 1989 A
4869724 Scripps Sep 1989 A
4886697 Perdelwitz, Jr. et al. Dec 1989 A
4888231 Angstadt Dec 1989 A
4892528 Suzuki et al. Jan 1990 A
4892535 Bjornberg Jan 1990 A
4892536 DesMarais et al. Jan 1990 A
4894060 Nestegard Jan 1990 A
4894277 Akasaki Jan 1990 A
4904251 Igaue et al. Feb 1990 A
4900317 Buell Mar 1990 A
4909802 Ahr et al. Mar 1990 A
4909803 Aziz et al. Mar 1990 A
4936839 Molee Jun 1990 A
4940463 Leathers et al. Jul 1990 A
4940464 Van Gompel et al. Jul 1990 A
4946527 Battrell Aug 1990 A
4950264 Osborn Aug 1990 A
4960477 Mesek Oct 1990 A
4963140 Robertson et al. Oct 1990 A
4966809 Tanaka et al. Oct 1990 A
4968313 Sabee Nov 1990 A
4990147 Freeland Feb 1991 A
4994053 Lang Feb 1991 A
5006394 Baird Apr 1991 A
5019063 Marsan et al. May 1991 A
5019072 Polski May 1991 A
5021051 Hiuke Jun 1991 A
5030314 Lang Jul 1991 A
5032120 Freeland et al. Jul 1991 A
5034008 Breitkopf Jul 1991 A
5037416 Allen et al. Aug 1991 A
5071414 Elliott Aug 1991 A
5072687 Mitchell Dec 1991 A
5085654 Buell Feb 1992 A
5087255 Sims et al. Feb 1992 A
5092861 Nomura et al. Mar 1992 A
5102597 Roe et al. Apr 1992 A
5114420 Igaue et al. May 1992 A
5124188 Roe et al. Jun 1992 A
5135522 Fahrenkrug et al. Aug 1992 A
5137537 Herron et al. Aug 1992 A
D329697 Fahrenkrug et al. Sep 1992 S
5143679 Weber et al. Sep 1992 A
5147343 Kellenberger Sep 1992 A
5147345 Young et al. Sep 1992 A
5149334 Roe et al. Sep 1992 A
5149335 Kellenberger et al. Sep 1992 A
5151091 Glaug Sep 1992 A
5151092 Buell et al. Sep 1992 A
5156793 Buell et al. Oct 1992 A
5167653 Igaue et al. Dec 1992 A
5167897 Weber et al. Dec 1992 A
5175046 Nguyen Dec 1992 A
5180622 Berg et al. Jan 1993 A
5190563 Herron et al. Mar 1993 A
5190606 Merkatoris et al. Mar 1993 A
5204997 Suzuki et al. Apr 1993 A
5213817 Pelley May 1993 A
5221274 Buell et al. Jun 1993 A
5235515 Ungpiyakul et al. Aug 1993 A
5242436 Weil et al. Sep 1993 A
5246431 Minetola et al. Sep 1993 A
5246432 Suzuki et al. Sep 1993 A
5246433 Hasse et al. Sep 1993 A
5248309 Serbiak et al. Sep 1993 A
5260345 Desmarais et al. Nov 1993 A
5269775 Freeland et al. Dec 1993 A
5281683 Yano et al. Jan 1994 A
H1298 Ahr Apr 1994 H
5300565 Berg et al. Apr 1994 A
5312386 Correa et al. May 1994 A
5331059 Engelhardt et al. Jul 1994 A
5336552 Strack et al. Aug 1994 A
5348547 Payne et al. Sep 1994 A
5358500 LaVon et al. Oct 1994 A
5366782 Curro et al. Nov 1994 A
5382610 Harada et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387208 Ashton et al. Feb 1995 A
5387209 Yamamoto et al. Feb 1995 A
5389095 Suzuki Feb 1995 A
5397316 Lavon et al. Mar 1995 A
5397317 Thomas Mar 1995 A
5399175 Glaug Mar 1995 A
5401792 Babu et al. Mar 1995 A
5409771 Dahmen et al. Apr 1995 A
H1440 New et al. May 1995 H
5411497 Tanzer et al. May 1995 A
5415644 Enloe May 1995 A
5425725 Tanzer et al. Jun 1995 A
5429630 Beal et al. Jul 1995 A
5433715 Tanzer et al. Jul 1995 A
5451219 Suzuki Sep 1995 A
5451442 Pieniak Sep 1995 A
5460622 Dragoo et al. Oct 1995 A
5460623 Emenaker et al. Oct 1995 A
5462541 Bruemmer et al. Oct 1995 A
5476458 Glaug et al. Dec 1995 A
5486166 Bishop et al. Jan 1996 A
5486167 Dragoo et al. Jan 1996 A
5490846 Ellis et al. Feb 1996 A
5492962 Lahrman et al. Feb 1996 A
5494622 Heath et al. Feb 1996 A
5499978 Buell et al. Mar 1996 A
5507736 Clear et al. Apr 1996 A
5507895 Suekane Apr 1996 A
5509915 Hanson et al. Apr 1996 A
5514104 Cole May 1996 A
5518801 Chappell et al. May 1996 A
5520674 Hines et al. May 1996 A
5522810 Allen, Jr. Jun 1996 A
5527300 Sauer Jun 1996 A
5531730 Dreier Jul 1996 A
5532323 Yano et al. Jul 1996 A
5542943 Sageser Aug 1996 A
5549592 Fries et al. Aug 1996 A
5549593 Ygge et al. Aug 1996 A
5549791 Herron et al. Aug 1996 A
5554145 Roe et al. Sep 1996 A
5559335 Zing et al. Sep 1996 A
5560878 Dragoo et al. Oct 1996 A
5562634 Flumene et al. Oct 1996 A
5562646 Goldman et al. Oct 1996 A
5569234 Buell et al. Oct 1996 A
5571096 Dobrin et al. Nov 1996 A
5574121 Irie et al. Nov 1996 A
5575783 Clear et al. Nov 1996 A
5580411 Nease et al. Dec 1996 A
5584829 Lavash et al. Dec 1996 A
5586979 Thomas Dec 1996 A
5591152 Buell et al. Jan 1997 A
5591155 Nishikawa et al. Jan 1997 A
5593399 Tanzer et al. Jan 1997 A
5599335 Goldman et al. Feb 1997 A
5601542 Melius et al. Feb 1997 A
5607414 Richards et al. Mar 1997 A
5607537 Johnson et al. Mar 1997 A
5607760 Roe Mar 1997 A
5609587 Roe Mar 1997 A
5609588 DiPalma et al. Mar 1997 A
5611879 Morman Mar 1997 A
5613959 Roessler et al. Mar 1997 A
5613960 Mizutani Mar 1997 A
5614283 Potnis et al. Mar 1997 A
5622589 Johnson et al. Apr 1997 A
5624423 Anjur Apr 1997 A
5624424 Saisaka et al. Apr 1997 A
5625222 Yoneda et al. Apr 1997 A
5607416 Yamamoto et al. May 1997 A
5626571 Young et al. May 1997 A
5628741 Buell et al. May 1997 A
5628845 Murray et al. May 1997 A
5635191 Roe et al. Jun 1997 A
5635271 Zafiroglu Jun 1997 A
5637106 Mitchell Jun 1997 A
5643238 Baker Jul 1997 A
5643243 Klemp Jul 1997 A
5643588 Roe et al. Jul 1997 A
5649914 Glaug Jul 1997 A
5650214 Anderson Jul 1997 A
H1674 Ames et al. Aug 1997 H
5658268 Johns et al. Aug 1997 A
5662634 Yamamoto et al. Sep 1997 A
5662638 Johnson et al. Sep 1997 A
5662758 Hamilton et al. Sep 1997 A
5669894 Goldman et al. Sep 1997 A
5674215 Ronnberg Oct 1997 A
5681300 Ahr Oct 1997 A
5683374 Yamamoto Nov 1997 A
5685874 Buell et al. Nov 1997 A
5690624 Sasaki et al. Nov 1997 A
5690627 Clear et al. Nov 1997 A
5691035 Chappell et al. Nov 1997 A
5691036 Chappell et al. Nov 1997 A
5695488 Sosalla Dec 1997 A
5700254 McDowall et al. Dec 1997 A
5702376 Glaug Dec 1997 A
5714156 Schmidt et al. Feb 1998 A
5723087 Chappell et al. Mar 1998 A
5733275 Davis et al. Mar 1998 A
5749866 Roe et al. May 1998 A
5752947 Awolin May 1998 A
5756039 Mcfall et al. May 1998 A
H1732 Johnson Jun 1998 H
5762641 Bewick et al. Jun 1998 A
5766388 Pelley Jun 1998 A
5766389 Brandon et al. Jun 1998 A
5772825 Schmitz Jun 1998 A
5776121 Roe et al. Jul 1998 A
5779831 Schmitz Jul 1998 A
5788684 Abuto et al. Aug 1998 A
5795345 Mizutani Aug 1998 A
5797892 Glaug Aug 1998 A
5797894 Cadieux et al. Aug 1998 A
5807365 Luceri Sep 1998 A
5810796 Kimura et al. Sep 1998 A
5810800 Hunter et al. Sep 1998 A
5814035 Gryskiewicz et al. Sep 1998 A
5820618 Roberts et al. Oct 1998 A
5827257 Fujioka Oct 1998 A
5830202 Bogdanski et al. Nov 1998 A
5833678 Ashton et al. Nov 1998 A
5837789 Stockhausen et al. Nov 1998 A
5840404 Graff Nov 1998 A
5843059 Niemeyer et al. Dec 1998 A
5846231 Fujioka et al. Dec 1998 A
5846232 Serbiak et al. Dec 1998 A
5849816 Suskind et al. Dec 1998 A
5851204 Mitzutani Dec 1998 A
5855572 Schmidt Jan 1999 A
5858013 Kling Jan 1999 A
5858515 Stokes et al. Jan 1999 A
5865823 Curro Feb 1999 A
5865824 Chen Feb 1999 A
5873868 Nakahata Feb 1999 A
5876391 Roe et al. Mar 1999 A
5879751 Bogdanski Mar 1999 A
5891118 Toyoshima Apr 1999 A
5891544 Chappell et al. Apr 1999 A
5897545 Kline et al. Apr 1999 A
5904673 Roe et al. May 1999 A
5925439 Haubach Jul 1999 A
5928184 Etheredge Jul 1999 A
5931825 Kuen et al. Aug 1999 A
5938648 Lavon et al. Aug 1999 A
5938650 Baer et al. Aug 1999 A
5941862 Haynes et al. Aug 1999 A
5944706 Palumbo et al. Aug 1999 A
5947949 Inoue et al. Sep 1999 A
5951536 Osborn, III et al. Sep 1999 A
5957908 Kline et al. Sep 1999 A
5968025 Roe et al. Oct 1999 A
5968029 Chappell et al. Oct 1999 A
5980500 Shimizu et al. Nov 1999 A
5981824 Luceri Nov 1999 A
5989236 Roe et al. Nov 1999 A
6004306 Robles et al. Dec 1999 A
6022430 Blenke et al. Feb 2000 A
6022431 Blenke et al. Feb 2000 A
6042673 Johnson et al. Mar 2000 A
6050984 Fujioka Apr 2000 A
6054631 Gent Apr 2000 A
6056732 Fujioka et al. May 2000 A
6060115 Borowski et al. May 2000 A
6068620 Chmielewski May 2000 A
6080909 Osterdahl et al. Jun 2000 A
6083210 Young et al. Jul 2000 A
6090994 Chen Jul 2000 A
6091336 Zand Jul 2000 A
6093474 Sironi Jul 2000 A
6099515 Sugito Aug 2000 A
6102892 Putzer et al. Aug 2000 A
6103814 Van Drongelen et al. Aug 2000 A
6107537 Elder et al. Aug 2000 A
6110157 Schmidt Aug 2000 A
6117121 Faulks et al. Sep 2000 A
6117803 Morman et al. Sep 2000 A
6120486 Toyoda et al. Sep 2000 A
6120487 Ashton Sep 2000 A
6120489 Johnson et al. Sep 2000 A
6120866 Arakawa et al. Sep 2000 A
6121509 Ashraf et al. Sep 2000 A
6129717 Fujioka et al. Oct 2000 A
6129720 Blenke et al. Oct 2000 A
6132411 Huber et al. Oct 2000 A
6139912 Onuschak Oct 2000 A
6143821 Houben Nov 2000 A
6152908 Widlund Nov 2000 A
6156023 Yoshioka Dec 2000 A
6156424 Taylor Dec 2000 A
6160197 Lassen Dec 2000 A
6165160 Suzuki et al. Dec 2000 A
6174302 Kumasaka Jan 2001 B1
6177606 Etheredge Jan 2001 B1
6177607 Blaney et al. Jan 2001 B1
6186996 Martin Feb 2001 B1
6210386 Inoue Apr 2001 B1
6210390 Karlsson Apr 2001 B1
6231556 Osborn, III May 2001 B1
6231566 Lai May 2001 B1
6238380 Sasaki May 2001 B1
6241716 Rönnberg Jun 2001 B1
6254294 Muhar Jul 2001 B1
6258996 Goldman Jul 2001 B1
6265488 Fujino et al. Jul 2001 B1
6290686 Tanzer et al. Sep 2001 B1
6302872 Teranishi Oct 2001 B1
6306122 Narawa et al. Oct 2001 B1
6315765 Datta Nov 2001 B1
6319239 Daniels et al. Nov 2001 B1
6322552 Blenke et al. Nov 2001 B1
6325787 Roe et al. Dec 2001 B1
6326525 Hamajima Dec 2001 B1
6330735 Hahn et al. Dec 2001 B1
6334858 Rönnberg et al. Jan 2002 B1
6336922 Van Gompel et al. Jan 2002 B1
6340611 Shimizu Jan 2002 B1
6342715 Shimizu Jan 2002 B1
6402731 Suprise et al. Jan 2002 B1
6350332 Thomas et al. Feb 2002 B1
6368687 Joseph et al. Apr 2002 B1
6371948 Mizutani Apr 2002 B1
6372952 Lash et al. Apr 2002 B1
6375644 Mizutani Apr 2002 B2
6376034 Brander Apr 2002 B1
6383431 Dobrin et al. May 2002 B1
6383960 Everett et al. May 2002 B1
6394989 Mizutani May 2002 B2
6403857 Gross et al. Jun 2002 B1
6406467 Dilnik et al. Jun 2002 B1
6409883 Makolin Jun 2002 B1
6410820 McFall et al. Jun 2002 B1
6410822 Mizutani Jun 2002 B1
6402729 Boberg et al. Jul 2002 B1
6413248 Mizutani Jul 2002 B1
6413249 Turi et al. Jul 2002 B1
6414214 Engelhardt et al. Jul 2002 B1
6416502 Connelly et al. Jul 2002 B1
6416697 Venturino et al. Jul 2002 B1
6419667 Avalon et al. Jul 2002 B1
6423046 Fujioka et al. Jul 2002 B1
6423048 Suzuki et al. Jul 2002 B1
6423884 Oehmen Jul 2002 B1
6429350 Tanzer et al. Aug 2002 B1
6432094 Fujioka et al. Aug 2002 B1
6432098 Kline et al. Aug 2002 B1
6432099 Rönnberg Aug 2002 B2
6437214 Everett et al. Aug 2002 B1
6441268 Edwardsson Aug 2002 B1
6443933 Suzuki et al. Sep 2002 B1
6444064 Henry et al. Sep 2002 B1
6447496 Mizutani Sep 2002 B1
6458111 Onishi et al. Oct 2002 B1
6458877 Ahmed et al. Oct 2002 B1
6459016 Rosenfeld et al. Oct 2002 B1
6461034 Schaefer et al. Oct 2002 B1
6461342 Tanji et al. Oct 2002 B2
6461343 Schaefer et al. Oct 2002 B1
6472478 Funk et al. Oct 2002 B1
6475201 Saito et al. Nov 2002 B2
6494872 Suzuki et al. Dec 2002 B1
6494873 Karlsson et al. Dec 2002 B2
6500159 Carvalho Dec 2002 B1
6503233 Chen Jan 2003 B1
6503979 Funk et al. Jan 2003 B1
6506186 Roessler Jan 2003 B1
6506961 Levy Jan 2003 B1
6515195 Lariviere Feb 2003 B1
6517525 Berthou Feb 2003 B1
6518479 Graef Feb 2003 B1
6520947 Tilly et al. Feb 2003 B1
6521811 Lassen Feb 2003 B1
6521812 Graef Feb 2003 B1
6524294 Hilston et al. Feb 2003 B1
6525240 Graef Feb 2003 B1
6528698 Mizutani et al. Mar 2003 B2
6529860 Strumolo et al. Mar 2003 B1
6531025 Lender et al. Mar 2003 B1
6531027 Lender et al. Mar 2003 B1
6534149 Daley et al. Mar 2003 B1
6559081 Erspamer May 2003 B1
6559239 Riegel et al. May 2003 B1
6562168 Schmitt et al. May 2003 B1
6562192 Hamilton May 2003 B1
6569137 Suzuki et al. May 2003 B2
6573422 Rosenfeld Jun 2003 B1
6585713 LaMahieu et al. Jul 2003 B1
6585858 Otto et al. Jul 2003 B1
6602234 Klemp et al. Aug 2003 B2
6605070 Ludwig et al. Aug 2003 B2
6605172 Anderson et al. Aug 2003 B1
6605752 Magnusson et al. Aug 2003 B2
6610900 Tanzer Aug 2003 B1
6630054 Graef Oct 2003 B1
6632209 Chmielewski Oct 2003 B1
6632504 Gillespie et al. Oct 2003 B1
6645569 Cramer et al. Nov 2003 B2
6646180 Chmielewski Nov 2003 B1
6648869 Gillies et al. Nov 2003 B1
6648870 Itoh et al. Nov 2003 B2
6648871 Kusibojoska et al. Nov 2003 B2
6649807 Mizutani Nov 2003 B2
6649810 Minato et al. Nov 2003 B1
6657015 Riegel et al. Dec 2003 B1
6657102 Furuya Dec 2003 B2
6667424 Hamilton Dec 2003 B1
6670522 Graef Dec 2003 B1
6673982 Chen Jan 2004 B1
6673983 Graef Jan 2004 B1
6673985 Mizutani Jan 2004 B2
6682515 Mizutani et al. Jan 2004 B1
6682516 Johnston Jan 2004 B2
6689115 Popp et al. Feb 2004 B1
6689934 Dodge, II et al. Feb 2004 B2
6695827 Chen Feb 2004 B2
6700034 Lindsay et al. Mar 2004 B1
6703538 Lassen Mar 2004 B2
6705465 Ling et al. Mar 2004 B2
6706129 Ando et al. Mar 2004 B2
6706943 Onishi Mar 2004 B2
6710224 Chmielewski et al. Mar 2004 B2
6710225 Everett et al. Mar 2004 B1
6716205 Popp et al. Apr 2004 B2
6716441 Roe et al. Apr 2004 B1
6717029 Baker Apr 2004 B2
6726668 Underhill et al. Apr 2004 B2
6726792 Johnson et al. Apr 2004 B1
6730387 Rezai et al. May 2004 B2
6734335 Graef May 2004 B1
6790798 Suzuki et al. Sep 2004 B1
6802834 Melius et al. Oct 2004 B2
6809158 Ikeuchi et al. Oct 2004 B2
6811642 Ochi Nov 2004 B2
6818083 Mcamish et al. Nov 2004 B2
6818166 Edwardson et al. Nov 2004 B2
6830800 Curro et al. Dec 2004 B2
6832905 Delzer et al. Dec 2004 B2
6840929 Kurata Jan 2005 B2
6846374 Popp Jan 2005 B2
6858771 Yoshimasa Feb 2005 B2
6863933 Cramer et al. Mar 2005 B2
6863960 Curro et al. Mar 2005 B2
6867345 Shimoe et al. Mar 2005 B2
6867346 Dopps Mar 2005 B1
6878433 Curro et al. Apr 2005 B2
6878647 Rezai Apr 2005 B1
6880211 Jackson et al. Apr 2005 B2
6891080 Minato May 2005 B2
6904865 Klofta Jun 2005 B2
6911574 Mizutani Jun 2005 B1
6923797 Shinohara et al. Aug 2005 B2
6923926 Walter et al. Aug 2005 B2
6926703 Sugito Aug 2005 B2
6929629 Drevik et al. Aug 2005 B2
6939914 Qin et al. Sep 2005 B2
6946585 Brown Sep 2005 B2
6953451 Berba Oct 2005 B2
6955733 Henry et al. Oct 2005 B2
6962578 Lavon Nov 2005 B1
6962645 Graef Nov 2005 B2
6965058 Raidel Nov 2005 B1
6969781 Graef Nov 2005 B2
6972010 Pesce et al. Dec 2005 B2
6972011 Maeda et al. Dec 2005 B2
6979564 Glucksmann et al. Dec 2005 B2
6982052 Daniels et al. Jan 2006 B2
7001167 Venturino Feb 2006 B2
7014632 Takino et al. Mar 2006 B2
7015370 Watanabe Mar 2006 B2
7037299 Turi et al. May 2006 B2
7037571 Fish et al. May 2006 B2
7048726 Kusagawa et al. May 2006 B2
7056311 Kinoshita Jun 2006 B2
7067711 Kinoshita et al. Jun 2006 B2
7073373 La Fortune Jul 2006 B2
7078583 Kudo Jul 2006 B2
7090665 Ohashi Aug 2006 B2
7108759 You Sep 2006 B2
7108916 Ehrnsperger et al. Sep 2006 B2
7112621 Rohrbaugh et al. Sep 2006 B2
7122713 Komatsu Oct 2006 B2
7125470 Graef Oct 2006 B2
7132585 Kudo Nov 2006 B2
7147628 Drevik Dec 2006 B2
7150729 Shimada Dec 2006 B2
7154019 Mishima et al. Dec 2006 B2
7160281 Leminh et al. Jan 2007 B2
7163528 Christon et al. Jan 2007 B2
7166190 Graef Jan 2007 B2
7169136 Otsubo Jan 2007 B2
7183360 Daniel et al. Feb 2007 B2
7189888 Wang et al. Mar 2007 B2
7196241 Kinoshita Mar 2007 B2
7199211 Popp et al. Apr 2007 B2
7204830 Mishima Apr 2007 B2
7207978 Takino Apr 2007 B2
7219403 Miyamoto et al. May 2007 B2
7220251 Otsubo et al. May 2007 B2
7241280 Christen et al. Jul 2007 B2
7250481 Jaworek et al. Jul 2007 B2
7252657 Mishima Aug 2007 B2
7265258 Hamilton Sep 2007 B2
7270651 Adams et al. Sep 2007 B2
7285178 Mischler et al. Oct 2007 B2
RE39919 Dodge, II et al. Nov 2007 E
7306582 Adams et al. Dec 2007 B2
7311696 Christen et al. Dec 2007 B2
7311968 Ehrnsperger et al. Dec 2007 B2
7312372 Miyama Dec 2007 B2
7318820 LaVon et al. Jan 2008 B2
7329244 Otsubo Feb 2008 B2
7329246 Kinoshita Feb 2008 B2
7335810 Yoshimasa et al. Feb 2008 B2
7377914 LaVon May 2008 B2
7429689 Chen Sep 2008 B2
7435244 Schroer et al. Oct 2008 B2
7465373 Graef Dec 2008 B2
7500969 Mishima Mar 2009 B2
7504552 Tamura Mar 2009 B2
7521109 Suzuki et al. Apr 2009 B2
7521587 Busam et al. Apr 2009 B2
7537832 Carlucci et al. May 2009 B2
7547815 Ohashi Jun 2009 B2
7550646 Tamura Jun 2009 B2
7563257 Nakajima Jul 2009 B2
7588561 Kenmochi Sep 2009 B2
7594904 Rosenfeld Sep 2009 B2
7598428 Gustavsson et al. Oct 2009 B2
7625363 Yoshimasa Dec 2009 B2
7641642 Murai et al. Jan 2010 B2
7648490 Kuroda Jan 2010 B2
7652111 Hermeling et al. Jan 2010 B2
7666173 Mishima Feb 2010 B2
7666174 Kawakami et al. Feb 2010 B2
7686790 Rasmussen et al. Mar 2010 B2
7687596 Hermeling et al. Mar 2010 B2
7695461 Rosenfeld Apr 2010 B2
7696402 Nishikawa Apr 2010 B2
7708725 Tamagawa May 2010 B2
7717150 Manabe May 2010 B2
7718844 Olson May 2010 B2
7722587 Suzuki et al. May 2010 B2
7722590 Tsuji May 2010 B2
7727217 Hancock-Cooke Jun 2010 B2
7736351 Nigam Jun 2010 B2
7737324 LaVon et al. Jun 2010 B2
7744576 Busam et al. Jun 2010 B2
7744578 Tanio et al. Jun 2010 B2
7750203 Busam et al. Jul 2010 B2
7754822 Daniel et al. Jul 2010 B2
7754940 Brisebois Jul 2010 B2
7759540 Litvay et al. Jul 2010 B2
7763004 Beck Jul 2010 B2
7767875 Olson Aug 2010 B2
7767876 Davis et al. Aug 2010 B2
7767878 Suzuki Aug 2010 B2
7772420 Hermeling et al. Aug 2010 B2
7786341 Schneider et al. Aug 2010 B2
7795492 Vartiainen Sep 2010 B2
7803145 Rosenfeld Sep 2010 B2
7825291 Elfsberg et al. Nov 2010 B2
7838722 Blessing et al. Nov 2010 B2
7850672 Guidotti et al. Dec 2010 B2
7851667 Becker et al. Dec 2010 B2
7855314 Hanao Dec 2010 B2
7857797 Kudo Dec 2010 B2
7858842 Komatsu Dec 2010 B2
7884259 Hanao Feb 2011 B2
7888549 Jansson et al. Feb 2011 B2
7910797 Nandrea Mar 2011 B2
7931636 LaVon et al. Apr 2011 B2
7935207 Zhao May 2011 B2
7935861 Suzuki May 2011 B2
7938813 Wang et al. May 2011 B2
7942858 Francoeur May 2011 B2
7951126 Nanjyo May 2011 B2
7959620 Miura et al. Jun 2011 B2
7982091 Konawa Jul 2011 B2
7993319 Sperl Aug 2011 B2
8017827 Hundorf et al. Sep 2011 B2
8029486 Nakajima Oct 2011 B2
8034991 Bruzadin et al. Oct 2011 B2
8039684 Guidotti et al. Oct 2011 B2
8052454 Polnyi Nov 2011 B2
8057620 Perego et al. Nov 2011 B2
8109915 Shimoe Feb 2012 B2
8124828 Kline et al. Feb 2012 B2
8133212 Takada Mar 2012 B2
8148598 Tsang et al. Apr 2012 B2
8163124 Moriura et al. Apr 2012 B2
8167862 Digiacomantonio et al. May 2012 B2
8173858 Kuroda May 2012 B2
8178747 Venturino et al. May 2012 B2
8183430 Hakansson et al. May 2012 B2
8186296 Brown et al. May 2012 B2
8187239 LaVon et al. May 2012 B2
8187240 Busam et al. May 2012 B2
8198506 Venturino et al. Jun 2012 B2
8211815 Baker Jul 2012 B2
8236715 Schmidt et al. Aug 2012 B2
8237012 Miyama Aug 2012 B2
8246594 Sperl Aug 2012 B2
8258367 Lawson et al. Sep 2012 B2
8268424 Suzuki Sep 2012 B1
8273943 Noda Sep 2012 B2
8282617 Kaneda Oct 2012 B2
8283516 Litvay Oct 2012 B2
8317766 Naoto Nov 2012 B2
8317768 Larsson Nov 2012 B2
8319005 Becker et al. Nov 2012 B2
8343123 Noda Jan 2013 B2
8343296 Blessing et al. Jan 2013 B2
8360977 Marttila Jan 2013 B2
8361047 Mukai Jan 2013 B2
8377025 Nakajima Feb 2013 B2
8450555 Nahn et al. May 2013 B2
8496637 Hundorf et al. Jul 2013 B2
8519213 Venturino et al. Aug 2013 B2
8524355 Nakaoka Sep 2013 B2
8552252 Hundorf et al. Oct 2013 B2
8568566 Jackels et al. Oct 2013 B2
8569571 Kline et al. Oct 2013 B2
8581019 Carlucci et al. Nov 2013 B2
8603058 Sprerl et al. Dec 2013 B2
8604270 Venturino et al. Dec 2013 B2
8633347 Bianco et al. Jan 2014 B2
8664468 Lawson et al. Mar 2014 B2
8674170 Busam et al. Mar 2014 B2
8734417 LaVon et al. May 2014 B2
8766031 Becker et al. Jul 2014 B2
8772570 Kawakami et al. Jul 2014 B2
8784594 Blessing et al. Jul 2014 B2
8785715 Wright et al. Jul 2014 B2
8791318 Becker et al. Jul 2014 B2
8936584 Zander et al. Jan 2015 B2
9056034 Akiyama Jun 2015 B2
9326896 Schaefer et al. May 2016 B2
20010007065 Blanchard Jul 2001 A1
20010008964 Kurata et al. Jul 2001 A1
20010016548 Kugler et al. Aug 2001 A1
20010020157 Mizutani Sep 2001 A1
20010037101 Allan et al. Nov 2001 A1
20010044610 Kim Nov 2001 A1
20020007167 Dan Jan 2002 A1
20020007169 Graef et al. Jan 2002 A1
20020016579 Stenberg Feb 2002 A1
20020045881 Kusibojoska et al. Apr 2002 A1
20020056516 Ochi May 2002 A1
20020058919 Hamilton et al. May 2002 A1
20020062112 Mizutani May 2002 A1
20020062115 Wada et al. May 2002 A1
20020062116 Mizutani et al. May 2002 A1
20020065498 Ohashi May 2002 A1
20020072471 Ikeuchi et al. Jun 2002 A1
20020082575 Dan Jun 2002 A1
20020087139 Popp et al. Jul 2002 A1
20020095127 Fish et al. Jul 2002 A1
20020102392 Fish et al. Aug 2002 A1
20020115969 Maeda et al. Aug 2002 A1
20020123728 Graef et al. Sep 2002 A1
20020123848 Schneiderman et al. Sep 2002 A1
20020151634 Rohrbaugh et al. Oct 2002 A1
20020151861 Klemp et al. Oct 2002 A1
20020173767 Popp et al. Nov 2002 A1
20020016122 Curro et al. Dec 2002 A1
20020192366 Cramer et al. Dec 2002 A1
20020197695 Glucksmann et al. Dec 2002 A1
20030036741 Abba et al. Feb 2003 A1
20030078553 Wada Apr 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030088223 Vogt et al. May 2003 A1
20030105190 Diehl et al. Jun 2003 A1
20030109839 Costae et al. Jun 2003 A1
20030114811 Christen et al. Jun 2003 A1
20030114816 Underhill Jun 2003 A1
20030114818 Benecke et al. Jun 2003 A1
20030115969 Koyano et al. Jun 2003 A1
20030120235 Boulanger Jun 2003 A1
20030120249 Wulz et al. Jun 2003 A1
20030233082 Kline et al. Jun 2003 A1
20030135176 Delzer et al. Jul 2003 A1
20030135181 Chen et al. Jul 2003 A1
20030135182 Woon et al. Jul 2003 A1
20030139712 Dodge Jul 2003 A1
20030139715 Dodge Jul 2003 A1
20030139718 Graef Jul 2003 A1
20030144642 Dopps Jul 2003 A1
20030144644 Murai et al. Jul 2003 A1
20030148684 Cramer et al. Aug 2003 A1
20030148694 Ghiam Aug 2003 A1
20030158530 Diehl et al. Aug 2003 A1
20030158531 Chmielewski Aug 2003 A1
20030158532 Magee et al. Aug 2003 A1
20030167045 Graef Sep 2003 A1
20030171727 Graef Sep 2003 A1
20030208175 Gross Nov 2003 A1
20030225385 Glaug Dec 2003 A1
20030236512 Baker Dec 2003 A1
20040019338 Litvay et al. Jan 2004 A1
20040022998 Miyamoto et al. Feb 2004 A1
20040033750 Everett Feb 2004 A1
20040063367 Dodge Apr 2004 A1
20040064113 Erdman Apr 2004 A1
20040064115 Arora Apr 2004 A1
20040064116 Arora Apr 2004 A1
20040064125 Justmann et al. Apr 2004 A1
20040065420 Graef Apr 2004 A1
20040082928 Pesce et al. Apr 2004 A1
20040097895 Busam et al. May 2004 A1
20040122411 Hancock-Cooke Jun 2004 A1
20040127131 Potnis Jul 2004 A1
20040127871 Odorzynski Jul 2004 A1
20040127872 Petryk Jul 2004 A1
20040134596 Rosati et al. Jul 2004 A1
20040138633 Mishima et al. Jul 2004 A1
20040147890 Nakahata et al. Jul 2004 A1
20040158212 Ponomarenko et al. Aug 2004 A1
20040162536 Becker et al. Aug 2004 A1
20040167486 Busam et al. Aug 2004 A1
20040167489 Kellenberger et al. Aug 2004 A1
20040170813 Digiacomantonio et al. Sep 2004 A1
20040193127 Hansson Sep 2004 A1
20040215160 Chmielewski Oct 2004 A1
20040220541 Suzuki et al. Nov 2004 A1
20040225271 Datta et al. Nov 2004 A1
20040231065 Daniel et al. Nov 2004 A1
20040236299 Tsang et al. Nov 2004 A1
20040236455 Woltman et al. Nov 2004 A1
20040249355 Tanio et al. Dec 2004 A1
20040260259 Baker Dec 2004 A1
20050001929 Waksmundzki et al. Jan 2005 A1
20050004543 Schroer et al. Jan 2005 A1
20050004548 Otsubo et al. Jan 2005 A1
20050008839 Cramer et al. Jan 2005 A1
20050018258 Miyagi Jan 2005 A1
20050038401 Suzuki et al. Feb 2005 A1
20050070867 Beruda et al. Mar 2005 A1
20050085784 LeMinh et al. Apr 2005 A1
20050090789 Graef Apr 2005 A1
20050101929 Waksmundzki et al. May 2005 A1
20050137543 Underhill et al. Jun 2005 A1
20050148258 Chakravarty Jul 2005 A1
20050148961 Sosalla et al. Jul 2005 A1
20050148990 Shimoe Jul 2005 A1
20050154363 Minato Jul 2005 A1
20050159720 Gentilcore Jul 2005 A1
20050165208 Popp et al. Jul 2005 A1
20050171499 Nigam et al. Aug 2005 A1
20050176910 Jaworek et al. Aug 2005 A1
20050203475 LaVon et al. Sep 2005 A1
20050215752 Popp et al. Sep 2005 A1
20050217791 Costello et al. Oct 2005 A1
20050229543 Tippey Oct 2005 A1
20050234414 Liu et al. Oct 2005 A1
20050245684 Daniel et al. Nov 2005 A1
20050288645 LaVon Dec 2005 A1
20050288646 LaVon Dec 2005 A1
20060004334 Schlinz et al. Jan 2006 A1
20060021695 Blessing et al. Feb 2006 A1
20060024433 Blessing et al. Feb 2006 A1
20060069367 Waksmundzki et al. Mar 2006 A1
20060069371 Ohashi et al. Mar 2006 A1
20060073969 Torli et al. Apr 2006 A1
20060081348 Graef Apr 2006 A1
20060129114 Mason et al. Jun 2006 A1
20060142724 Watanabe Jun 2006 A1
20060155057 Hermeling et al. Jul 2006 A1
20060155254 Sanz et al. Jul 2006 A1
20060167215 Hermeling et al. Jul 2006 A1
20060177647 Schmidt et al. Aug 2006 A1
20060178071 Schmidt et al. Aug 2006 A1
20060184146 Suzuki Aug 2006 A1
20060184149 Kasai et al. Aug 2006 A1
20060189954 Kudo Aug 2006 A1
20060202380 Bentley Sep 2006 A1
20060206091 Cole Sep 2006 A1
20060211828 Daniel et al. Sep 2006 A1
20060240229 Ehrnsperger et al. Oct 2006 A1
20060264860 Beck Nov 2006 A1
20060264861 Lavon et al. Nov 2006 A1
20060271010 LaVon et al. Nov 2006 A1
20070049892 Lord et al. Jan 2007 A1
20070027436 Nakagawa et al. Feb 2007 A1
20070032770 Lavon et al. Feb 2007 A1
20070043191 Hermeling et al. Feb 2007 A1
20070043330 Lankhof et al. Feb 2007 A1
20070044903 Wisneski et al. Mar 2007 A1
20070049897 LaVon et al. Mar 2007 A1
20070073253 Miyama Mar 2007 A1
20070078422 Glaug Apr 2007 A1
20070088308 Ehrnsperger et al. Apr 2007 A1
20070093164 Nakaoka Apr 2007 A1
20070093767 Carlucci et al. Apr 2007 A1
20070100307 Nomoto May 2007 A1
20070118087 Flohr et al. May 2007 A1
20070123834 McDowall et al. May 2007 A1
20070156108 Becker et al. Jul 2007 A1
20070156110 Thyfault Jul 2007 A1
20070167928 Becker et al. Jul 2007 A1
20070179464 Becker et al. Aug 2007 A1
20070179469 Takahashi et al. Aug 2007 A1
20070191798 Glaug Aug 2007 A1
20070219521 Hird et al. Sep 2007 A1
20070219523 Bruun Sep 2007 A1
20070244455 Hansson et al. Oct 2007 A1
20070246147 Venturino et al. Oct 2007 A1
20070255245 Asp et al. Nov 2007 A1
20070282288 Noda Dec 2007 A1
20070282290 Cole Dec 2007 A1
20070282291 Cole Dec 2007 A1
20080027402 Schmidt et al. Jan 2008 A1
20080091159 Carlucci et al. Apr 2008 A1
20080119810 Kuroda May 2008 A1
20080125735 Busam et al. May 2008 A1
20080132864 Lawson et al. Jun 2008 A1
20080208154 Oetjen et al. Aug 2008 A1
20080221538 Zhao Sep 2008 A1
20080221539 Zhao Sep 2008 A1
20080228158 Sue et al. Sep 2008 A1
20080262459 Kamoto Oct 2008 A1
20080268194 Kim et al. Oct 2008 A1
20080274227 Boatman et al. Nov 2008 A1
20080281287 Marcelo Nov 2008 A1
20080294140 Ecker et al. Nov 2008 A1
20080032035 Schmidt et al. Dec 2008 A1
20080312617 Hundorf et al. Dec 2008 A1
20080312618 Hundorf et al. Dec 2008 A1
20080312619 Hundorf et al. Dec 2008 A1
20080312620 Ashton et al. Dec 2008 A1
20080312621 Hundorf et al. Dec 2008 A1
20080312622 Hundorf et al. Dec 2008 A1
20080312623 Hundorf et al. Dec 2008 A1
20080312624 Hundorf et al. Dec 2008 A1
20080312625 Hundorf et al. Dec 2008 A1
20080312627 Takeuchi Dec 2008 A1
20080312628 Hundorf et al. Dec 2008 A1
20090023848 Ahmed et al. Jan 2009 A1
20090056867 Moriura et al. Mar 2009 A1
20090062760 Wright et al. Mar 2009 A1
20090112173 Bissah Apr 2009 A1
20090112175 Bissah et al. Apr 2009 A1
20090157022 Macdonald Jun 2009 A1
20090192035 Stueven et al. Jul 2009 A1
20090240220 Macdonald Sep 2009 A1
20090058994 Stueven et al. Oct 2009 A1
20090247977 Takeuchi Oct 2009 A1
20090258994 Stueven et al. Oct 2009 A1
20090270825 Wciorka et al. Oct 2009 A1
20090298963 Matsumoto et al. Dec 2009 A1
20090299312 Macdonald Dec 2009 A1
20090306618 Kudo Dec 2009 A1
20090318884 Meyer et al. Dec 2009 A1
20090326494 Uchida et al. Dec 2009 A1
20100051166 Hundorf et al. Mar 2010 A1
20100062165 Suzuki Mar 2010 A1
20100062934 Suzuki Mar 2010 A1
20100063470 Suzuki Mar 2010 A1
20100068520 Stueven et al. Mar 2010 A1
20100100065 Bianco Apr 2010 A1
20100115237 Brewer et al. May 2010 A1
20100121296 Noda May 2010 A1
20100137773 Gross Jun 2010 A1
20100137823 Corneliusson Jun 2010 A1
20100198179 Noda Aug 2010 A1
20100228210 Busam et al. Sep 2010 A1
20100241096 LaVon et al. Sep 2010 A1
20100241097 Nigam et al. Sep 2010 A1
20100262099 Klofta Oct 2010 A1
20100262104 Carlucci et al. Oct 2010 A1
20100274208 Gabrielii Oct 2010 A1
20100274210 Noda Oct 2010 A1
20100312208 Bond et al. Dec 2010 A1
20100324521 Mukai Dec 2010 A1
20100324523 Mukai Dec 2010 A1
20110041999 Hundorf et al. Feb 2011 A1
20110060301 Nishikawa et al. Mar 2011 A1
20110060303 Bissah Mar 2011 A1
20110066127 Kuwano Mar 2011 A1
20110071486 Harada Mar 2011 A1
20110092944 Sagisaka Apr 2011 A1
20110112498 Nhan et al. May 2011 A1
20110125120 Nishitani May 2011 A1
20110130732 Jackels et al. Jun 2011 A1
20110130737 Sagisaka Jun 2011 A1
20110137276 Yoshikawa Jun 2011 A1
20110144602 Long Jun 2011 A1
20110144604 Noda Jun 2011 A1
20110144606 Nandrea Jun 2011 A1
20110152813 Ellingson Jun 2011 A1
20110166540 Yang et al. Jul 2011 A1
20110172630 Nomoto Jul 2011 A1
20110174430 Zhao Jul 2011 A1
20110196330 Hammons et al. Aug 2011 A1
20110208147 Kawakami et al. Aug 2011 A1
20110250413 Lu et al. Oct 2011 A1
20110268932 Catalan et al. Nov 2011 A1
20110274834 Brown et al. Nov 2011 A1
20110288513 Hundorf et al. Nov 2011 A1
20110288514 Kuroda Nov 2011 A1
20110295222 Becker et al. Dec 2011 A1
20110319846 Rinnert et al. Dec 2011 A1
20110319848 McKiernan et al. Dec 2011 A1
20110319851 Kudo Dec 2011 A1
20120004633 R Marcelo Jan 2012 A1
20120016326 Brennan et al. Jan 2012 A1
20120022479 Cotton Jan 2012 A1
20120035566 Sagisaka Feb 2012 A1
20120035576 Ichikawa Feb 2012 A1
20120064792 Bauduin Mar 2012 A1
20120071848 Zhang Mar 2012 A1
20120165771 Ruman et al. Jun 2012 A1
20120165776 Rinnert et al. Jun 2012 A1
20120175056 Tsang Jul 2012 A1
20120184934 Venturino Jul 2012 A1
20120232514 Baker Sep 2012 A1
20120238977 Oku Sep 2012 A1
20120253306 Otsubo Oct 2012 A1
20120256750 Novak Oct 2012 A1
20120271262 Venturino Oct 2012 A1
20120170779 Rosati et al. Dec 2012 A1
20120312491 Jackels et al. Dec 2012 A1
20120316046 Jackels et al. Dec 2012 A1
20120316523 Hippe et al. Dec 2012 A1
20120316526 Rosati et al. Dec 2012 A1
20120316527 Rosati et al. Dec 2012 A1
20120316528 Kreuzer et al. Dec 2012 A1
20120316529 Kreuzer et al. Dec 2012 A1
20120323195 Ehrnsperger et al. Dec 2012 A1
20120323201 Bissah Dec 2012 A1
20120323202 Bissah Dec 2012 A1
20130035656 Moriya et al. Feb 2013 A1
20130041334 Prioleau Feb 2013 A1
20130178811 Kikuchi et al. Jul 2013 A1
20130211354 Tsuji et al. Aug 2013 A1
20130211358 Kikkawa et al. Aug 2013 A1
20130218115 Katsuragawa et al. Aug 2013 A1
20130226119 Katsuragawa et al. Aug 2013 A1
20130226120 Van De Maele Aug 2013 A1
20130310784 Bryant et al. Nov 2013 A1
20140005622 Wirtz et al. Jan 2014 A1
20140005623 Wirtz et al. Jan 2014 A1
20140027066 Jackels et al. Jan 2014 A1
20140039437 Van De Maele Feb 2014 A1
20140045683 Loick et al. Feb 2014 A1
20140102183 Agami et al. Apr 2014 A1
20140121623 Kirby et al. May 2014 A1
20140135726 Busam et al. May 2014 A1
20140142531 Sasayama et al. May 2014 A1
20140163500 Roe et al. Jun 2014 A1
20140163501 Ehrnsperger et al. Jun 2014 A1
20140163502 Arizti et al. Jun 2014 A1
20140163503 Arizti et al. Jun 2014 A1
20140163506 Roe et al. Jun 2014 A1
20140163511 Roe et al. Jun 2014 A1
20140171893 Lawson et al. Jun 2014 A1
20140318694 Blessing et al. Oct 2014 A1
20140324007 Hundorf et al. Oct 2014 A1
20140324008 Hundorf et al. Oct 2014 A1
20150065981 Roe et al. Mar 2015 A1
20150065986 Blessing et al. Mar 2015 A1
20150080837 Rosati et al. Mar 2015 A1
20150080839 Tapp et al. Mar 2015 A1
20150173967 Kreuzer et al. Jun 2015 A1
20150173968 Joseph Jun 2015 A1
20150250662 Isele et al. Sep 2015 A1
20160331602 Bianchi et al. Nov 2016 A1
Foreign Referenced Citations (546)
Number Date Country
2001370 Apr 1990 CA
2291997 Jun 2000 CA
2308961 Nov 2000 CA
2487027 Dec 2003 CA
2561521 Mar 2007 CA
2630713 Nov 2008 CA
2636673 Jan 2009 CA
2712563 Aug 2010 CA
2702001 Oct 2010 CA
1238171 Dec 1999 CN
2362468 Feb 2000 CN
1371671 Feb 2001 CN
2527254 Dec 2002 CN
2535020 Feb 2003 CN
2548609 May 2003 CN
1539391 Oct 2004 CN
1939242 Apr 2007 CN
101292930 Oct 2008 CN
201263750 Jul 2009 CN
201591689 Sep 2010 CN
201855366 Jun 2011 CN
3205931 Sep 1983 DE
3608114 Sep 1987 DE
19732499 Feb 1999 DE
10204937 Aug 2003 DE
083022 Jul 1983 EP
149880 Jul 1985 EP
0149880 Jul 1985 EP
203289 Dec 1986 EP
0203289 Dec 1986 EP
0206208 Dec 1986 EP
209561 Jan 1987 EP
297411 Jan 1989 EP
304957 Mar 1989 EP
374542 Jun 1990 EP
394274 Oct 1990 EP
0403832 Dec 1990 EP
481322 Apr 1992 EP
530438 Mar 1993 EP
547847 Jun 1993 EP
555346 Aug 1993 EP
559476 Sep 1993 EP
591647 Apr 1994 EP
597273 May 1994 EP
601610 Jun 1994 EP
632068 Jan 1995 EP
0640330 Mar 1995 EP
0668066 Sep 1995 EP
685214 Dec 1995 EP
687453 Dec 1995 EP
0689817 Jan 1996 EP
0691133 Jan 1996 EP
0700673 Mar 1996 EP
0394274 Jul 1996 EP
724418 Aug 1996 EP
725613 Aug 1996 EP
725615 Aug 1996 EP
725616 Aug 1996 EP
758543 Feb 1997 EP
0761194 Mar 1997 EP
769284 Apr 1997 EP
0781537 Jul 1997 EP
783877 Jul 1997 EP
787472 Aug 1997 EP
788874 Aug 1997 EP
796068 Sep 1997 EP
799004 Oct 1997 EP
822794 Feb 1998 EP
826351 Mar 1998 EP
844861 Jun 1998 EP
0737055 Aug 1998 EP
863733 Sep 1998 EP
971751 Sep 1998 EP
0875224 Nov 1998 EP
875224 Nov 1998 EP
880955 Dec 1998 EP
891758 Jan 1999 EP
0893115 Jan 1999 EP
0724418 Mar 1999 EP
0725613 Mar 1999 EP
0725616 Mar 1999 EP
904755 Mar 1999 EP
0916327 May 1999 EP
925769 Jun 1999 EP
933074 Aug 1999 EP
937736 Aug 1999 EP
941157 Sep 1999 EP
947549 Oct 1999 EP
951887 Oct 1999 EP
0951890 Oct 1999 EP
2295493 Oct 1999 EP
2305749 Oct 1999 EP
2330152 Oct 1999 EP
953326 Nov 1999 EP
0978263 Feb 2000 EP
985397 Mar 2000 EP
0778762 Apr 2000 EP
1005847 Jun 2000 EP
1008333 Jun 2000 EP
1013252 Jun 2000 EP
1018999 Jul 2000 EP
1019002 Jul 2000 EP
1019003 Jul 2000 EP
1022008 Jul 2000 EP
1023884 Aug 2000 EP
1053729 Nov 2000 EP
1059072 Dec 2000 EP
1063954 Jan 2001 EP
1071388 Jan 2001 EP
1078618 Feb 2001 EP
1088537 Apr 2001 EP
0796068 May 2001 EP
752892 Jul 2001 EP
1116479 Jul 2001 EP
0790839 Aug 2001 EP
1132069 Sep 2001 EP
1173128 Jan 2002 EP
1175194 Jan 2002 EP
1184018 Mar 2002 EP
1192312 Apr 2002 EP
1196122 Apr 2002 EP
1199059 Apr 2002 EP
1199327 Apr 2002 EP
1208824 May 2002 EP
0793469 Jun 2002 EP
1210925 Jun 2002 EP
1224922 Jul 2002 EP
1225857 Jul 2002 EP
1253231 Oct 2002 EP
1262531 Dec 2002 EP
1263374 Dec 2002 EP
0737056 Jan 2003 EP
1275358 Jan 2003 EP
1275361 Jan 2003 EP
1293187 Mar 2003 EP
1304986 May 2003 EP
1332742 Aug 2003 EP
1339368 Sep 2003 EP
1374817 Jan 2004 EP
1388334 Feb 2004 EP
1402863 Mar 2004 EP
962208 Aug 2004 EP
1447066 Aug 2004 EP
1447067 Aug 2004 EP
1460987 Sep 2004 EP
963749 Nov 2004 EP
1495739 Jan 2005 EP
1524955 Apr 2005 EP
1920743 Apr 2005 EP
1541103 Jun 2005 EP
1551344 Jul 2005 EP
1586289 Oct 2005 EP
1588723 Oct 2005 EP
1605882 Dec 2005 EP
1609448 Dec 2005 EP
1621166 Feb 2006 EP
1621167 Feb 2006 EP
1632206 Mar 2006 EP
1642556 Apr 2006 EP
1403419 May 2006 EP
1656162 May 2006 EP
1669046 Jun 2006 EP
1688114 Aug 2006 EP
2314265 Aug 2006 EP
1723939 Nov 2006 EP
1738727 Jan 2007 EP
1754461 Feb 2007 EP
1787611 May 2007 EP
1813238 Aug 2007 EP
2008626 Dec 2008 EP
2055279 May 2009 EP
2093049 Aug 2009 EP
2130522 Dec 2009 EP
1621165 Apr 2010 EP
2444046 Apr 2012 EP
2532328 Dec 2012 EP
2532329 Dec 2012 EP
2532332 Dec 2012 EP
2679210 Jan 2014 EP
2740449 Jun 2014 EP
2740450 Jun 2014 EP
2740452 Jun 2014 EP
2213491 Aug 2004 ES
2566631 Jan 1986 FR
2583377 Dec 1986 FR
2612770 Sep 1988 FR
2810234 Dec 2001 FR
1333081 Aug 1971 GB
1307441 Feb 1973 GB
1513055 Jun 1978 GB
2101468 Jan 1983 GB
2170108 Jul 1986 GB
2262873 Jul 1993 GB
2288540 Jun 1994 GB
2354449 Mar 2001 GB
2452260 Oct 2007 GB
851769 Nov 1985 GR
0984KOL1999 Oct 2005 IN
212479 Mar 2007 IN
208543 Aug 2007 IN
0980MUM2009 Jun 2009 IN
5572928 May 1980 JP
598322 Jan 1984 JP
630148323 Sep 1988 JP
2107250 Apr 1990 JP
03224481 Oct 1991 JP
04122256 Apr 1992 JP
04341368 Nov 1992 JP
06191505 Jul 1994 JP
06269475 Sep 1994 JP
07124193 May 1995 JP
08215629 Aug 1996 JP
H10295728 Nov 1998 JP
10328232 Dec 1998 JP
11033056 Feb 1999 JP
11318980 Nov 1999 JP
11320742 Nov 1999 JP
2000232985 Aug 2000 JP
2000238161 Sep 2000 JP
2001037810 Feb 2001 JP
2001046435 Feb 2001 JP
2001120597 May 2001 JP
2001158074 Jun 2001 JP
2001178768 Jul 2001 JP
2001198157 Jul 2001 JP
2001224626 Aug 2001 JP
2001277394 Oct 2001 JP
03420481 Nov 2001 JP
2001321397 Nov 2001 JP
2001353174 Dec 2001 JP
2002052042 Feb 2002 JP
2002065718 Mar 2002 JP
2002113800 Apr 2002 JP
2002165832 Jun 2002 JP
2002165836 Jun 2002 JP
2002178429 Jun 2002 JP
2002272769 Sep 2002 JP
2002320641 Nov 2002 JP
2002325792 Nov 2002 JP
2002325799 Nov 2002 JP
2002369841 Dec 2002 JP
2003126140 May 2003 JP
2003153955 May 2003 JP
2003265523 Sep 2003 JP
2003265524 Sep 2003 JP
2003275237 Sep 2003 JP
2003325563 Nov 2003 JP
2004089269 Mar 2004 JP
03566012 Jun 2004 JP
03568146 Jun 2004 JP
03616077 Nov 2004 JP
2004337314 Dec 2004 JP
2004337385 Dec 2004 JP
2004350864 Dec 2004 JP
03640475 Jan 2005 JP
2005000312 Jan 2005 JP
03660816 Mar 2005 JP
03676219 May 2005 JP
03688403 Jun 2005 JP
03705943 Aug 2005 JP
03719819 Sep 2005 JP
03724963 Sep 2005 JP
03725008 Sep 2005 JP
03737376 Nov 2005 JP
2006014792 Jan 2006 JP
03781617 Mar 2006 JP
2006110329 Apr 2006 JP
2006513824 Apr 2006 JP
03801449 May 2006 JP
2006116036 May 2006 JP
03850102 Sep 2006 JP
03850207 Sep 2006 JP
03856941 Sep 2006 JP
03868628 Oct 2006 JP
03874499 Nov 2006 JP
03877702 Nov 2006 JP
2006325639 Dec 2006 JP
2006346021 Dec 2006 JP
03904356 Jan 2007 JP
2007007455 Jan 2007 JP
2007007456 Jan 2007 JP
03926042 Mar 2007 JP
03934855 Mar 2007 JP
2007089906 Apr 2007 JP
2007105198 Apr 2007 JP
2007152033 Jun 2007 JP
03986210 Jul 2007 JP
03986222 Jul 2007 JP
2007167453 Jul 2007 JP
2007175515 Jul 2007 JP
2007195665 Aug 2007 JP
2007267763 Oct 2007 JP
2007275491 Oct 2007 JP
04035341 Nov 2007 JP
04058281 Dec 2007 JP
04061086 Dec 2007 JP
04092319 Mar 2008 JP
2008080150 Apr 2008 JP
2008093289 Apr 2008 JP
04124322 May 2008 JP
2008119081 May 2008 JP
2008136739 Jun 2008 JP
2008136877 Jun 2008 JP
04148594 Jul 2008 JP
04148620 Jul 2008 JP
2008154606 Jul 2008 JP
04162609 Aug 2008 JP
04162637 Aug 2008 JP
04166923 Aug 2008 JP
04167406 Aug 2008 JP
04173723 Aug 2008 JP
04190675 Sep 2008 JP
04190693 Sep 2008 JP
04208338 Oct 2008 JP
2008246089 Oct 2008 JP
4177770 Nov 2008 JP
04230971 Dec 2008 JP
2008295475 Dec 2008 JP
2008295713 Dec 2008 JP
04261593 Feb 2009 JP
2009112590 May 2009 JP
04322228 Jun 2009 JP
2009136601 Jun 2009 JP
2009142401 Jul 2009 JP
2009201878 Sep 2009 JP
04392936 Oct 2009 JP
2009232987 Oct 2009 JP
2009261777 Nov 2009 JP
2009291473 Dec 2009 JP
2009297048 Dec 2009 JP
2010017342 Jan 2010 JP
04458702 Feb 2010 JP
04459013 Feb 2010 JP
2010022560 Feb 2010 JP
04481325 Mar 2010 JP
2010051654 Mar 2010 JP
2010063814 Mar 2010 JP
2010063944 Mar 2010 JP
04492957 Apr 2010 JP
2010068954 Apr 2010 JP
2010075462 Apr 2010 JP
2010082059 Apr 2010 JP
2010104545 May 2010 JP
2010104547 May 2010 JP
2010110535 May 2010 JP
2010119454 Jun 2010 JP
2010119605 Jun 2010 JP
2010119743 Jun 2010 JP
2010131131 Jun 2010 JP
2010131132 Jun 2010 JP
2010131206 Jun 2010 JP
2010131297 Jun 2010 JP
2010136917 Jun 2010 JP
2010136973 Jun 2010 JP
04540563 Jul 2010 JP
04587947 Sep 2010 JP
2010194124 Sep 2010 JP
2010201093 Sep 2010 JP
2010221067 Oct 2010 JP
4577766 Nov 2010 JP
04620299 Nov 2010 JP
04627472 Nov 2010 JP
04627473 Nov 2010 JP
04638087 Dec 2010 JP
04652626 Dec 2010 JP
2010273842 Dec 2010 JP
2010284418 Dec 2010 JP
2011000480 Jan 2011 JP
2011030700 Feb 2011 JP
04693574 Mar 2011 JP
2011067484 Apr 2011 JP
2011072720 Apr 2011 JP
2011104014 Jun 2011 JP
2011104122 Jun 2011 JP
2011120661 Jun 2011 JP
2011125360 Jun 2011 JP
2011125537 Jun 2011 JP
04776516 Jul 2011 JP
2011130797 Jul 2011 JP
2011130799 Jul 2011 JP
2011156032 Aug 2011 JP
2011156070 Aug 2011 JP
2011156254 Aug 2011 JP
04824882 Sep 2011 JP
4850272 Oct 2011 JP
04855533 Nov 2011 JP
2011239858 Dec 2011 JP
04931572 Feb 2012 JP
04937225 Mar 2012 JP
04953618 Mar 2012 JP
04969437 Apr 2012 JP
04969640 Apr 2012 JP
4971491 Apr 2012 JP
04974524 Apr 2012 JP
04979780 Apr 2012 JP
05016020 Jun 2012 JP
05027364 Jun 2012 JP
2012115378 Jun 2012 JP
05031082 Jul 2012 JP
05042351 Jul 2012 JP
05043569 Jul 2012 JP
05043591 Jul 2012 JP
05046488 Jul 2012 JP
2012125452 Jul 2012 JP
2012125625 Jul 2012 JP
05053765 Aug 2012 JP
05070275 Aug 2012 JP
05079931 Sep 2012 JP
05080189 Sep 2012 JP
05084442 Sep 2012 JP
05084476 Sep 2012 JP
5085770 Sep 2012 JP
05089269 Sep 2012 JP
2012179286 Sep 2012 JP
05113146 Oct 2012 JP
05129536 Nov 2012 JP
05105884 Dec 2012 JP
5715806 May 2015 JP
20010005620 Jan 2001 KR
20020035634 May 2002 KR
20080028771 Apr 2008 KR
9400916 Mar 1994 SE
9704893 Dec 1997 SE
WO9015830 Dec 1990 WO
WO9219198 Nov 1992 WO
WO9321237 Oct 1993 WO
WO9321879 Nov 1993 WO
WO9510996 Apr 1995 WO
WO9511652 May 1995 WO
WO9514453 Jun 1995 WO
WO9515139 Jun 1995 WO
WO9516424 Jun 1995 WO
WO9516746 Jun 1995 WO
WO9519753 Jul 1995 WO
WO9521596 Aug 1995 WO
WO9524173 Sep 1995 WO
WO9526209 Oct 1995 WO
WO9529657 Nov 1995 WO
WO9532698 Dec 1995 WO
WO9534329 Dec 1995 WO
WO9616624 Jun 1996 WO
WO9619173 Jun 1996 WO
WO96029967 Oct 1996 WO
WO9711659 Apr 1997 WO
WO9717922 May 1997 WO
WO9724096 Jul 1997 WO
WO9816179 Apr 1998 WO
WO9816180 Apr 1998 WO
WO9843684 Oct 1998 WO
WO9913813 Mar 1999 WO
WO9934841 Jul 1999 WO
WO9951178 Oct 1999 WO
WO200000235 Jan 2000 WO
WO200032145 Jun 2000 WO
WO200059430 Oct 2000 WO
WO200115647 Mar 2001 WO
WO200126596 Apr 2001 WO
WO200135886 May 2001 WO
WO200207663 Jan 2002 WO
WO200232962 Apr 2002 WO
WO2002064877 Aug 2002 WO
WO2002067809 Sep 2002 WO
WO2003009794 Feb 2003 WO
WO2003039402 May 2003 WO
WO2003053297 Jul 2003 WO
WO03079946 Oct 2003 WO
WO03101622 Dec 2003 WO
WO2003105738 Dec 2003 WO
WO2004021946 Mar 2004 WO
WO2004049995 Jun 2004 WO
WO2004071539 Aug 2004 WO
WO2004084784 Oct 2004 WO
WO2004105664 Dec 2004 WO
WO2005018694 Mar 2005 WO
WO2005087164 Sep 2005 WO
WO2005102237 Nov 2005 WO
WO2006104024 May 2006 WO
WO2006059922 Jun 2006 WO
WO2006062258 Jun 2006 WO
WO2006066029 Jun 2006 WO
WO2006083584 Aug 2006 WO
WO2006134904 Dec 2006 WO
WO2006134906 Dec 2006 WO
WO2007000315 Jan 2007 WO
WO2007046052 Apr 2007 WO
WO2007047598 Apr 2007 WO
WO2007049725 May 2007 WO
WO2007061035 May 2007 WO
WO2007141744 Dec 2007 WO
WO2007142145 Dec 2007 WO
WO2007148502 Dec 2007 WO
WO2008018922 Feb 2008 WO
WO2008065945 Jun 2008 WO
WO2008146749 Dec 2008 WO
WO2008155699 Dec 2008 WO
WO2009004941 Jan 2009 WO
WO2009005431 Jan 2009 WO
WO2009139248 Jan 2009 WO
WO2009139255 Jan 2009 WO
WO2009041223 Apr 2009 WO
WO2009096108 Aug 2009 WO
WO2009107435 Sep 2009 WO
WO2009122830 Oct 2009 WO
WO2009152018 Dec 2009 WO
WO2009155264 Dec 2009 WO
WO2009155265 Dec 2009 WO
WO2010071508 Jun 2010 WO
WO2010074319 Jul 2010 WO
WO2010107096 Sep 2010 WO
WO2010114052 Oct 2010 WO
WO2010117015 Oct 2010 WO
WO2010118272 Oct 2010 WO
WO2011053044 May 2011 WO
WO2011118725 Sep 2011 WO
WO2011118842 Sep 2011 WO
WO2011145653 Nov 2011 WO
WO2011150955 Dec 2011 WO
WO2011163582 Dec 2011 WO
WO2012002252 Jan 2012 WO
WO2012014436 Feb 2012 WO
WO2012042908 Apr 2012 WO
WO2012043077 Apr 2012 WO
WO2012043078 Apr 2012 WO
WO2012052172 Apr 2012 WO
WO2012043082 May 2012 WO
WO2012067216 May 2012 WO
WO2012073499 Jun 2012 WO
WO2012074466 Jun 2012 WO
WO201291016 Jul 2012 WO
WO2012090508 Jul 2012 WO
WO2012101934 Aug 2012 WO
WO2012102034 Aug 2012 WO
WO2012117764 Sep 2012 WO
WO2012117824 Sep 2012 WO
WO2012132460 Oct 2012 WO
WO2012170778 Dec 2012 WO
WO2012170779 Dec 2012 WO
WO2012170781 Dec 2012 WO
WO2012170808 Dec 2012 WO
WO2012174026 Dec 2012 WO
WO2012177400 Dec 2012 WO
WO2013001788 Jan 2013 WO
WO2013046701 Apr 2013 WO
WO2013060733 May 2013 WO
WO2014073636 May 2014 WO
WO2014078247 May 2014 WO
Non-Patent Literature Citations (2)
Entry
All Office Actions; U.S. Appl. No. 15/152,583.
International Search Report and Written Opinion; Application Ser. No. PCT/US2016/032062; dated Jul. 21, 2016, 11 pages.
Related Publications (1)
Number Date Country
20200337915 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62160226 May 2015 US
Continuations (1)
Number Date Country
Parent 15152583 May 2016 US
Child 16921974 US