The present disclosure is generally directed to absorbent articles for personal hygiene. The absorbent articles may each comprises one or more substrates comprising zones having the same or different treatments.
Absorbent articles for personal hygiene are designed to absorb and contain bodily exudates (e.g., urine, bowel movements “BM”). These absorbent articles may comprise several layers providing different functions, for example, a topsheet, a backsheet, and an absorbent core disposed between the topsheet and the backsheet, among other layers.
The function of the absorbent core is to absorb and retain the bodily exudates for a prolonged amount of time, for example, overnight for a diaper, minimize re-wet to keep the wearer dry, and avoid soiling of clothes or bed sheets. Some currently marketed absorbent articles comprise absorbent cores comprising an absorbent material which is a blend of comminuted wood pulp (i.e., airfelt) with superabsorbent polymers (“SAP”) in particulate form, also known as absorbent gelling materials (“AGM”). Other absorbent articles have an absorbent core consisting essentially of SAP as the absorbent material and one or more hotmelt adhesives (so called “airfelt-free” cores).
Absorbent articles may also comprise a liquid management system (“LMS”) that may have an acquisition layer and/or a distribution layer. Some absorbent articles may comprise leg cuffs and waist bands which provide improved containment of liquids and other bodily exudates. Usually, each leg cuff comprises one or more elastic strands or elements comprised in the chassis of the diaper, for example, between the topsheet and backsheet in the area of the leg openings to provide an effective seal while the absorbent article is in use. These elasticized elements which may be substantially planar with the chassis of the absorbent article will be referred to herein as gasketing cuffs. It is also usual for the leg cuffs to comprise raised elasticized flaps, herein referred to as barrier leg cuffs, which improve the containment of fluid in the leg-torso joint regions.
Absorbent articles, such as diapers (taped or pants) or adult incontinence products, appear to have a shortcoming in their topsheets and/or their LMS in that the front and back regions, or other regions, are not specifically designed for their intended use in either function or appearance. Most commercial diapers or adult incontinence products include topsheets and/or acquisition layers that have zero features (regular nonwoven material) or one feature, such as apertures or embossments, for example, throughout the entire topsheet or LMS. The embossments or apertures are typically the same size and shape (same appearance as well) in the front and the back regions and, therefore, do not provide specific configurations for urine management compared to BM management or do not provide specific configurations that give the appearance of urine management compared to the appearance of BM management. This can be problematic in that urine management should be treated much differently than BM management to achieve an improved diaper owing to the fact that BM and urine have significant differences in rheology and solids content. It is not a one-size-fits-all situation. In view of the foregoing, topsheets and/or LMSs of absorbent articles should be improved to provide more zonal treatments or features that handle, or give the appearance of handling, urine management and BM management differently.
In addition to the above, typical absorbent articles need improved systems of handling bodily exudates once the bodily exudates are received by the topsheet. In general, some absorbent articles acquire bodily exudates too quickly or too slowly and other absorbent articles may leak because of the bodily exudates not be absorbed, or fully or properly absorbed, into the core. As such, it may be beneficial for topsheets and/or LMSs to have features that direct or alter (e.g., slow, hasten, restrict, channel) the flow of bodily exudates into, over, and/or through the topsheets and/or LMSs. This may be desirable to achieve better bodily exudate (e.g., urine) distribution into an absorbent core, for example. As a further example, this may further be desirable to achieve reduced leakage by maintaining the bodily exudates over a portion of the absorbent core for a suitable period of time so that they can be fully and properly absorbed by the core. In view of the foregoing, topsheets or LMSs should be improved to provide for better bodily exudate management.
In one form, the present disclosure is directed, in part, to an absorbent article comprising a liquid permeable topsheet, a liquid impermeable backsheet, and an absorbent core positioned at least partially intermediate the liquid permeable topsheet and the liquid impermeable backsheet. The absorbent article may comprise a substantially laterally-extending separation element defining a visual front portion and a visual back portion on a wearer-facing surface of the absorbent article. The liquid permeable topsheet may comprise a first zone in the visual front portion that comprises a first geometric treatment and a second zone in the visual back portion that comprises a second geometric treatment.
In one form, the present disclosure is directed, in part, to an absorbent article comprising a liquid permeable topsheet, a liquid impermeable backsheet, and an absorbent core positioned at least partially intermediate the liquid permeable topsheet and the liquid impermeable backsheet. The absorbent article comprises a lateral axis defining a front region and a back region. The liquid permeable topsheet comprises a first zone at least partially in the front region. The first zone may comprise a first morphological treatment configured for urine handling. The liquid permeable topsheet comprises a second zone at least partially in the back region. The second zone may comprise a second morphological treatment configured for BM handling. A pattern of the first morphological treatment in the first zone may be nonsymmetrical to, or symmetrical to, a pattern of the second morphological treatment in the second zone about the lateral axis.
In one form, the present disclosure is directed, in part, to an absorbent article comprising a liquid permeable topsheet, a liquid impermeable backsheet, a lateral axis, and an absorbent core positioned at least partially intermediate the liquid permeable topsheet and the liquid impermeable backsheet. The liquid permeable topsheet comprises a first zone at least partially positioned on a first side of the lateral axis and a second zone at least partially positioned on a second side of the lateral axis. The first zone may have apertures defined therein having an effective aperture area in the range of about 0.2 mm2 to about 15 mm2 according to the Aperture Test. The first zone may have a % effective open area of about 15% to about 40% according to the Aperture Test. The second zone may have apertures defined therein having an effective aperture area in the range of about 0.05 mm2 to about 2 mm2 according to the Aperture Test. The second zone may have a % effective open area of about 2% to about 15% according to the Aperture Test. The apertures in the first zone may be at least about 25% larger than the apertures in the second zone.
In one form, the present disclosure is directed, in part, to absorbent article comprising a liquid permeable topsheet, a liquid impermeable backsheet, a lateral axis defining a front region on a first side of the lateral axis and a back region on a second side of the lateral axis, and an absorbent core positioned at least partially intermediate the liquid permeable topsheet and the liquid impermeable backsheet. The liquid permeable topsheet may comprise a first zone situated primarily in the front region and having a substantially transferrable chemical treatment and a second zone situated primarily in the back region and having the substantially transferrable chemical treatment. A basis weight of the substantially transferrable chemical treatment may be greater in the second zone than in the first zone.
In one form, the present disclosure is directed, in part, to an absorbent article comprising a liquid permeable topsheet, a liquid impermeable backsheet, a laterally-extending separation element defining a front region on a first side of the separation element and a back region on a second side of the separation element, and an absorbent core positioned at least partially intermediate the liquid permeable topsheet and the liquid impermeable backsheet. The liquid permeable topsheet may comprise a first zone situated primarily in the front region and having a first substantially transferrable chemical treatment that may be hydrophobic and a second zone situated primarily in the back region and having a second substantially transferrable chemical treatment that may have a different hydrophilicity as the first chemical treatment.
In one form, the present disclosure is directed, in part, to an absorbent article comprising a liquid permeable topsheet, a liquid impermeable backsheet, a liquid management system, and an absorbent core positioned at least partially intermediate the liquid management system and the liquid impermeable backsheet. The liquid management system is positioned at least partially intermediate the liquid permeable topsheet and the absorbent core. The liquid permeable topsheet and the liquid management system may comprise a first zone on a first side of a lateral axis of the absorbent article and a second zone on a second side of the lateral axis. Portions of the liquid management system may extend into or through portions of the liquid impermeable topsheet or portions of the liquid impermeable topsheet may extend into or through portions of the liquid management system in the first zone. Portions of the liquid management system may extend into or through portions of the liquid impermeable topsheet or portions of the liquid impermeable topsheet may extend into or through portions of the liquid management system in the second zone. The first zone or the second zone may comprise a substantially transferrable chemical treatment.
In one form, the present disclosure is directed, in part, to an absorbent article comprising a liquid permeable topsheet, a liquid impermeable backsheet, and an absorbent core positioned at least partially intermediate the liquid permeable topsheet and the liquid impermeable backsheet. The liquid permeable topsheet may comprise a flow control material. The flow control material may form an at least mostly enclosed perimeter over at least a portion of the absorbent core. The flow control material may extend less than 0.2 mm outwardly from the liquid permeable topsheet, measured according to the Flow Control Material Outward Extension Method herein, and may penetrate a portion of the liquid permeable topsheet.
In one form, the present disclosure is directed, in part, to an absorbent article comprising a liquid permeable topsheet, a liquid impermeable backsheet, a lateral axis defining a front region of the absorbent article on a first side of the lateral axis and a back region of the absorbent article on a second side of the lateral axis, and an absorbent core positioned at least partially intermediate the liquid permeable topsheet and the liquid impermeable backsheet. The liquid permeable topsheet may comprise a first zone situated primarily in the front region and comprising a first flow control material and a second zone situated primarily in the back region and comprising a second flow control material. The first flow control material may be different than the second flow control material.
In one form, the present disclosure is directed, in part, to an absorbent article comprising a liquid permeable topsheet, a liquid impermeable backsheet, a liquid management system, and an absorbent core positioned at least partially intermediate the liquid management system and the liquid impermeable backsheet. The liquid management system is positioned at least partially intermediate the liquid permeable topsheet and the absorbent core. The liquid permeable topsheet or the liquid management system may comprise a flow control material positioned in or surrounding a urine or feces insult zone.
The above-mentioned and other features and advantages of the present disclosure, and the manner of attaining them, will become more apparent and the disclosure itself will be better understood by reference to the following description of non-limiting examples of the disclosure taken in conjunction with the accompanying drawings, wherein:
Various non-limiting embodiments of the present disclosure will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the absorbent articles comprising substrates comprising zonal treatments disclosed herein. One or more examples of these non-limiting embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the absorbent articles comprising substrates comprising zonal treatments described herein and illustrated in the accompanying drawings are non-limiting example embodiments and that the scope of the various non-limiting embodiments of the present disclosure are defined solely by the claims. The features illustrated or described in connection with one non-limiting embodiment may be combined with the features of other non-limiting embodiments. Such modifications and variations are intended to be included within the scope of the present disclosure.
Introduction
The term “absorbent article, as used herein, refers to disposable devices such as infant, child, or adult diapers, adult incontinence products, pant-style diapers, training pants, diaper inserts, and the like which are placed against or in proximity to the body of the wearer to absorb and contain the bodily exudates (e.g., urine and BM) discharged from the body. Typically, these articles comprise a topsheet, backsheet, an absorbent core, optionally a LMS, and typically other components, with the absorbent core normally placed at least partially between the backsheet and the LMS (if provided) or between the topsheet and the backsheet. The absorbent articles of the present disclosure will be further illustrated in the below description and in the Figures in the form of a taped diaper. Nothing in this description should be, however, considered to limit the scope of the claims. As such the present disclosure applies to any suitable form of absorbent articles (e.g., training pants, taped diapers, adult incontinence products-in either taped or pant forms).
The term “nonwoven web”, as used herein, means a manufactured sheet, web, or batt of directionally or randomly orientated fibers, bonded by friction, and/or cohesion, and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet-milling, whether or not additionally needled. The fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ. Commercially available fibers may have diameters ranging from less than about 0.001 mm to more than about 0.2 mm and may come in several different forms such as short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yam). Nonwoven webs can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, carding, and airlaying. The basis weight of nonwoven webs is usually expressed in grams per square meter (g/m2 or gsm).
The terms “joined” or “bonded” or “attached”, as used herein, encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
The term “channel”, as used herein, is a region or zone in a material layer that has a substantially lower basis weight (e.g., less than 50%, less than 70%, less than 90%) than the surrounding material in the material layer. The channel may be a region in a material layer that is substantially material-free (e.g., 90% material-free, 95% material-free, or 99% material-free, or completely material-free). A channel may extend through one or more material layers. The channels generally have a lower bending modulus than the surrounding regions of the material layer, enabling the material layer to bend more easily and/or contain more bodily exudates within the channels than in the surrounding areas of the material layer. Thus, a channel is not merely an indentation in the material layer that does not create a reduced basis weight in the material layer in the area of the channel.
The term “geometric treatment”, as used herein, means at least a portion or region of a single or multi-layer substrate that comprises elements that are apertures of any suitable size and shape and/or elements that form a morphological treatment.
The term “morphological treatment”, as used herein, means at least a portion or region of a single or multi-layer substrate that comprises elements having three-dimensional features, embossments, interpenetration of one layer into or through another layer (e.g., one or more layers of the LMS into the topsheet or the topsheet into one or more layer of the LMS), out-of-plane bumps, out-of-plane ridges, out-of-plane tufts, out-of-plane pleats, out-of-plane ripples, or fold lines. A morphological treatment causes a substantially uniform planar substrate to be transformed from a first morphological configuration (generally flat and planar) to another morphological configuration (generally not flat and planar). The morphological treatment is formed of a plurality of the elements. For the avoidance of doubt, a morphological treatment does not include apertures, but an apertured material may be subjected to a morphological treatment.
The term “chemical treatment”, as used herein, means at least a portion or region of a single or multi-layer substrate that has a compound, composition, or substance applied to at least a portion thereof. Some examples are one or more skin care compositions, surfactants, inks, dyes, pigments, hydrophilic coatings, hydrophobic coatings, lotions, enzyme inhibitors, vitamins, and/or active ingredients. The chemical treatment may be sprayed on, printed on, slot coated, or otherwise applied to the at least a portion or region of the substrate.
The term “substantially durable”, as used herein, means a chemical treatment where at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or more of the applied chemical treatment remains on the substrate from the time of manufacture throughout a typical period of intended use (e.g., from a point in time where an absorbent article is applied to a wearer to a point in time when the absorbent article is removed from the wearer and discarded).
The term “substantially transferrable”, as used herein, means a chemical treatment where at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or even at least 60% or more of the applied chemical treatment transfers to the skin of a wearer during a typical period of intended use (e.g., from a point in time where an absorbent article is applied to a wearer to a point in time when the absorbent article is removed from the wearer and discarded).
The term “hydrophilic coating”, as used herein, means a chemical treatment applied to a substrate to cause the substrate to become hydrophilic or more hydrophilic.
The term “hydrophilic”, as used herein, refers to a substrate or composition having a contact angle less than or equal to 90° according to The American Chemical Society Publication “Contact Angle, Wettability, and Adhesion,” edited by Robert F. Gould and copyrighted in 1964.
The term “hydrophobic coating”, as used herein, means a chemical treatment applied to a substrate to cause the substrate to become hydrophobic or more hydrophobic.
The term “hydrophobic”, as used herein, refers to a substrate or composition having a contact angle greater than or equal to 90° according to The American Chemical Society Publication “Contact Angle, Wettability, and Adhesion,” edited by Robert F. Gould and copyrighted in 1964.
The term “flow control material”, as used herein, may be a chemical treatment where a substance is applied to a substrate (such as a liquid permeable topsheet) that at least partially restricts, or fully restricts, the flow of bodily exudates therethrough. The flow control material may be a wax, an ink (having a pigment), a non-tack adhesive, a hot melt adhesive, a substantially durable component of a skin care composition, a polyolefin, a high molecular weight alcohol (one example of a component of a skin care composition), or other compositions substantially solid at 20 degrees C., for example. The flow control material may be substantially durable. The flow control material may also comprise when a material is applied to a substrate (e.g., a topsheet) and then the material and the substrate are run through two or more rolls to melt, join, bond, or attach the flow control material to the substrate.
The term “active ingredient”, as used herein, means an ingredient that has a chemical, biochemical, and/or biological effect—i.e., causes, initiates, or affects a change in a chemical, biochemical, and/or biological reaction, system, process, or equilibrium. This is opposed to inactive ingredients which may typically be used as carrier media, viscosity modifiers, melt temperature mediators, or for purely physical reasons (i.e., fillers).
The term “enzyme inhibitor”, as used herein, means a molecule, which binds to enzymes and decreases their activity.
General Description of the Substrates Having Zonal Treatments
The absorbent articles of the present disclosure comprise one or more single or multi-layer substrates comprising one or more zones, alternatively two or more zones, alternatively three or more zones, and alternatively four or more zones, and so forth. Each of the zones in the substrates may have different treatments or the same treatments. One or more zones of the substrates may not have a treatment at all. Some of, none of, or all of the zones may comprise flow control materials (can be referred to herein as a “treatment” generally). Each of the zones may have different or the same treatments to better provide for urine management or BM management owing to the fact that the rheology and solids content of BM and urine may be quite different. Alternatively, each of the zones may have different or the same treatments to provide the appearance of better urine or BM management or to provide the caregiver or wearer with clues as to the correct orientation of the absorbent article when donned on the wearer.
The substrates may be, for example, a liquid permeable topsheet, a patch or layer positioned over the liquid permeable topsheet, one or more layers of a LMS, and/or other substrates within an absorbent article. The zones in the substrate or substrates (used interchangeably herein) may be formed at least partially in the front and/or back regions of the absorbent article, in the crotch region of the absorbent article, in regions of the absorbent article on a first and second side of either a lateral or longitudinal axis, in regions of the absorbent article on the same or different side of a substantially laterally-extending separation element, in regions of the absorbent article dispersed throughout other regions of the absorbent article, and/or otherwise dispersed throughout regions of the substrates of the absorbent articles. Each zone in the substrate may have one or more of the same or different geometric treatments, morphological treatments, and/or chemical treatments (together “treatments”) as another zone in the substrate. By “the same”, it is meant that the treatments are of the same type (e.g., both embossments) and have the same pattern, height, length, width, size, shape, frequency, and other dimension, for example. By “different”, it is meant that the treatments may be the same (e.g., both embossments), but the pattern, height, length, width, size, shape, frequency, or other dimension is different. Alternatively, “different” can mean that the treatment is not the same as another treatment (e.g., apertures as one treatment and embossments as another treatment). Although the treatments in this scenario are “different” they may form symmetrical or asymmetrical patterns, or repeating or non-repeating patterns, about a lateral or longitudinal axis or a substantially laterally-extending separation element of an absorbent article. One or more zones in the substrate may overlap with, not overlap with, coincide with, or not coincide with other zones in the substrate. As such, the zones may be separate from each other or may overlap with each other. Any number of zones having the same or different treatments, or no treatments, may be provided in a particular substrate. A substrate may have one or more layers and the various treatments may be provided in one, all, or less than all of the layers.
Before the various zones and treatments and/or flow control material within the zones are discussed, a general discussion of absorbent articles will be presented to frame an example context of the zonal treatments and flow control materials of the present disclosure.
General Description of an Example Absorbent Article
An example absorbent article 20 according to the present disclosure, shown in the form of a diaper, is represented in
The absorbent article may comprise a liquid permeable topsheet 24, a liquid impermeable backsheet 25, an absorbent core 28 positioned at least partially intermediate the topsheet 24 and the backsheet 25, and barrier leg cuffs 34. The absorbent article may also comprise a liquid management system (“LMS”) 50 (shown in
The Figures also show typical taped diaper components such as a fastening system comprising adhesive tabs 42 or other mechanical fasteners attached towards the rear edge of the absorbent article 20 and cooperating with a landing zone 44 on the front of the absorbent article 20. The absorbent article may also comprise other typical elements, which are not represented, such as a rear elastic waist feature and a front elastic waist feature, for example.
The absorbent article 20 may comprise a front waist edge 10, a rear waist edge 12 longitudinally opposing the front waist edge 10, a first side edge 3, and a second side edge 4 laterally opposing the first side edge 3. The front waist edge 10 is the edge of the absorbent article 20 which is intended to be placed towards the front of the user when worn, and the rear waist edge 12 is the opposite edge. Together the front waist edge 10 and the rear waist edge form waist opening when the absorbent article 20 is donned on a wearer. The absorbent article 20 may have a longitudinal axis 80 extending from the lateral midpoint of the front waist edge 10 to a lateral midpoint of the rear waist edge 12 of the absorbent article 20 and dividing the absorbent article 20 in two substantially symmetrical halves relative to the longitudinal axis 80, with article placed flat and viewed from the wearer-facing surface as illustrated
The topsheet 24, the backsheet 25, the absorbent core 28, and the other article components may be assembled in a variety of configurations, in particular by gluing or heat embossing, for example. Example diaper configurations are described generally in U.S. Pat. Nos. 3,860,003, 5,221,274, 5,554,145, 5,569,234, 5,580,411, and 6,004,306.
The absorbent core 28 may comprise an absorbent material comprising 75% to 100%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99%, all by weight, of the absorbent material, specifically reciting all 0.1% increments within the above-specified ranges and all ranges formed therein or thereby, and a core wrap enclosing the absorbent material. The core wrap may typically comprise two materials, substrates, or nonwoven materials 16 and 16′ (see
The absorbent core 28 may comprises one or more channels, represented in
Topsheet
The topsheet 24 is the part of the absorbent article that is directly in contact with the wearer's skin. The topsheet 24 may be joined to the backsheet 25, the core 28 and/or any other layers as is known to those of skill in the art. Usually, the topsheet 24 and the backsheet 25 are joined directly to each other in some locations (e.g., on or close to the periphery of the article) and are indirectly joined together in other locations by directly joining them to one or more other elements of the absorbent article 20.
The topsheet 24 may be compliant, soft-feeling, and non-irritating to the wearer's skin. Further, at least a portion of the topsheet 24 may be liquid permeable, permitting liquids to readily penetrate through its thickness. A suitable topsheet may be manufactured from a wide range of materials, such as porous foams, reticulated foams, apertured plastic films, or woven or nonwoven materials of natural fibers (e.g., wood or cotton fibers), synthetic fibers or filaments (e.g., polyester or polypropylene or bicomponent PE/PP fibers or mixtures thereof), or a combination of natural and synthetic fibers. If the topsheet 24 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art, in particular spunbond PP nonwoven.
Typical absorbent article topsheets have a basis weight of from about 5 gsm to about 50 gsm, from about 10 to about 35 gsm or from about 12 to about 30 gsm, but other basis weights are within the scope of the present disclosure.
Backsheet
The backsheet 25 is generally that portion of the absorbent article 20 positioned adjacent the garment-facing surface of the absorbent core 28 and which prevents, or at least inhibits, the bodily exudates absorbed and contained therein from soiling articles such as bedsheets and undergarments. The backsheet 25 is typically impermeable, or at least substantially impermeable, to liquids (e.g., urine, running BM), but permeable to vapors to allow the diaper to “breath”. The backsheet may, for example, be or comprise a thin plastic film such as a thermoplastic film having a thickness of about 0.012 mm to about 0.051 mm. Example backsheet films include those manufactured by Tredegar Corporation, based in Richmond, Va., and sold under the trade name CPC2 film. Other suitable backsheet materials may include breathable materials which permit vapors to escape from the absorbent article 20 while still preventing, or at least inhibiting, bodily exudates from passing through the backsheet 25. Example breathable materials may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, microporous films, and monolithic films.
The backsheet 25 may be joined to the topsheet 24, the absorbent core 28, and/or any other element of the absorbent article 20 by any attachment methods known to those of skill in the art. Suitable attachment methods are described above with respect to methods for joining the topsheet 24 to other elements of the absorbent article 20.
Absorbent Core
As used herein, the term “absorbent core” refers to the individual component of the absorbent article having the most absorbent capacity and that comprises an absorbent material. The absorbent core may comprise a core wrap or core bag (hereafter “core wrap”) enclosing the absorbent material. The term “absorbent core” does not include the LMS or any other component of the absorbent article which is not either integral part of the core wrap or placed within the core wrap. The absorbent core may comprise, consist essentially of, or consist of, a core wrap, absorbent material as defined below, and glue enclosed within the core wrap. Pulp or air-felt may also be present within the core wrap and may form a portion of the absorbent material. The absorbent core periphery, which may be the periphery of the core wrap, may define any suitable shape, such as a “T,” “Y,” “hour-glass,” or “dog-bone” shape, for example. An absorbent core periphery having a generally “dog bone” or “hour-glass” shape may taper along its width towards the middle or “crotch” region of the core. In this way, the absorbent core may have a relatively narrow width in an area of the absorbent core intended to be placed in the crotch region of an absorbent article.
The absorbent core 28 of the present disclosure may comprise an absorbent material with a high amount of superabsorbent polymers (herein abbreviated as “SAP”) enclosed within a core wrap. The SAP content may represent 70% to 100% or at least 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100% by weight of the absorbent material contained in the core wrap. The SAP useful with the present disclosure may include a variety of water-insoluble, but water-swellable polymers capable of absorbing large quantities of fluids. The core wrap is not considered as absorbent material for the purpose of assessing the percentage of SAP in the absorbent core. The remainder of the absorbent material in the core 28 may be air-felt.
“Absorbent material” means a material which has some absorbency property or liquid retaining properties, such as SAP, cellulosic fibers as well as synthetic fibers. Typically, glues used in making absorbent cores have no absorbency properties and are not considered as absorbent material. The SAP content may be higher than 80%, for example at least 85%, at least 90%, at least 95%, at least 99%, and even up to and including 100% of the weight of the absorbent material contained within the core wrap, as stated above. This provides a relatively thin core compared to conventional cores typically comprising between 40-60% SAP, for example, and high content of cellulose fibers or airfelt. The absorbent material may comprise less than 15% or less than 10% weight percent of natural or synthetic fibers, less than 5% weight percent, less than 3% weight percent, less than 2% weight percent, less than 1% weight percent, or may even be substantially free of, or free of, natural and/or synthetic fibers, specifically reciting all 0.1% increments within the specified ranges and all ranges formed therein or thereby. The absorbent material may comprise little or no airfelt (cellulose) fibers, in particular the absorbent core may comprise less than 15%, 10%, 5%, 3%, 2%, 1% airfelt (cellulose) fibers by weight, or may even be substantially free of, or free of, cellulose fibers, specifically reciting all 0.1% increments within the specified ranges and all ranges formed therein or thereby.
The example absorbent core 28 of the absorbent article of
Cores comprising relatively high amount of SAP with various core designs are disclosed in U.S. Pat. No. 5,599,335 (Goldman), EP 1,447,066 (Busam), WO 95/11652 (Tanzer), U.S. Pat. Publ. No. 2008/0312622A1 (Hundorf), and WO 2012/052172 (Van Malderen).
The absorbent material may be one or more continuous layers present within the core wrap. Alternatively, the absorbent material may be comprised of individual pockets or stripes of absorbent material enclosed within the core wrap. In the first case, the absorbent material may be, for example, obtained by the application of a single continuous layer of absorbent material. The continuous layer of absorbent material, in particular of SAP, may also be obtained by combining two or more absorbent layers having discontinuous absorbent material application pattern, wherein the resulting layer is substantially continuously distributed across the absorbent particulate polymer material area, as disclosed in U.S. Pat. Appl. Publ. No. 2008/0312622A1 (Hundorf), for example. The absorbent core 28 may comprise a first absorbent layer and a second absorbent layer. The first absorbent layer may comprise the first material 16 and a first layer 61 of absorbent material, which may be 100% or less of SAP. The second absorbent layer may comprise the second material 16′ and a second layer 62 of absorbent material, which may also be 100% or less of SAP. The absorbent core 28 may also comprise a fibrous thermoplastic adhesive material 51 at least partially bonding each layer of absorbent material 61, 62 to its respective material 16 or 16′. This is illustrated in
The fibrous thermoplastic adhesive material 51 may be at least partially in contact with the absorbent material 61, 62 in the land areas and at least partially in contact with the materials 16 and 16′ in the junction areas. This imparts an essentially three-dimensional structure to the fibrous layer of thermoplastic adhesive material 51, which in itself is essentially a two-dimensional structure of relatively small thickness, as compared to the dimension in length and width directions. Thereby, the fibrous thermoplastic adhesive material may provide cavities to cover the absorbent material in the land area, and thereby immobilizes this absorbent material, which may be 100% or less of SAP.
Core Wrap
The core wrap may be made of a single substrate, material, or nonwoven folded around the absorbent material, or may comprise two (or more) substrates, materials, or nonwovens which are attached to another. Typical attachments are the so-called C-wrap and/or sandwich wrap. In a C-wrap, as illustrated, for example, in
The core wrap may also be formed by a single substrate which may enclose as in a parcel wrap the absorbent material and be sealed along the front side and rear side of the core and one longitudinal seal.
SAP Deposition Area
The absorbent material deposition area 8 may be defined by the periphery of the layer formed by the absorbent material 60 within the core wrap, as seen from the top side of the absorbent core. The absorbent material deposition area 8 may have various shapes, in particular, a so-called “dog bone” or “hour-glass” shape, which shows a tapering along its width towards the middle or “crotch” region of the core. In this way, the absorbent material deposition area 8 may have a relatively narrow width in an area of the core intended to be placed in the crotch region of the absorbent article, as illustrated in
Channels in the Absorbent Core
The absorbent material deposition area 8 may comprise at least one channel 26, which is at least partially oriented in the longitudinal direction of the absorbent article 80 (i.e., has a longitudinal vector component). Other channels may be at least partially oriented in the lateral direction (i.e., has a lateral vector component) or in any other direction. In the following, the plural form “channels” will be used to mean “at least one channel”. The channels may be circular, oblong, or be in the shape of a variety of other closed polygons. The channels may be formed in various ways. For example, the channels may be formed by zones within the absorbent material deposition area 8 which may be substantially free of, or free of, absorbent material, in particular, SAP. In addition or alternatively, the channels may also be formed by continuously or discontinuously bonding the top side of the core wrap to the bottom side of the core wrap through the absorbent material deposition area 8. The channels may be continuous or intermittent. The liquid management system 50, or another layer of the absorbent article, may also comprise channels, which may or not correspond to the channels of the absorbent core, as described in more detail below.
The absorbent core 28 may comprise more than two channels, for example, at least 3, at least 4, etc. Shorter channels may also be present, for example in the rear waist region 6 or the front waist region 5 of the core as represented by the pair of channels 27, 27′ in
At least some or all of the channels may be permanent channels, meaning their integrity is at least partially maintained both in the dry state and in the wet state. Permanent channels may be obtained by provision of one or more adhesive materials, for example, the fibrous layer of adhesive material or construction glue that helps adhere a substrate with an absorbent material within the walls of the channel. Permanent channels may also be formed by bonding the upper side and lower side of the core wrap (e.g., the first substrate 16 and the second substrate 16′) and/or the topsheet 24 to the backsheet 25 together through the channels. Typically, an adhesive may be used to bond both sides of the core wrap or the topsheet and the a backsheet through the channels, but it is possible to bond via other known processes, such as pressure bonding, ultrasonic bonding, heat bonding, or combination thereof. The core wrap or the topsheet 24 and the backsheet 25 may be continuously bonded or intermittently bonded along the channels. The channels may advantageously remain or become visible at least through the topsheet and/or backsheet when the absorbent article is fully loaded with a fluid. This may be obtained by making the channels substantially free of SAP, so they will not swell, and sufficiently large so that they will not close when wet. Furthermore, bonding the core wrap to itself or the topsheet to the backsheet through the channels may be advantageous.
Absorbent cores and/or LMSs without any channels are also within the scope of the present disclosure. These cores may include airfelt-free cores, SAP/pulp cores, pulp cores, or other cores known to those of skill in the art.
Barrier Leg Cuffs
The absorbent article may comprise a pair of barrier leg cuffs 34. Each barrier leg cuff may be formed by a piece of material which is bonded to the absorbent article so it can extend upwards from the inner surface of the absorbent article and provide improved containment of liquids and other bodily exudates approximately at the junction of the torso and legs of the wearer. The barrier leg cuffs 34 are delimited by a proximal edge 64 joined directly or indirectly to the topsheet 24 and/or the backsheet 25 and a free terminal edge 66, which is intended to contact and form a seal with the wearer's skin. The barrier leg cuffs 34 extend at least partially between the front waist edge 10 and the rear waist edge 12 of the absorbent article on opposite sides of the longitudinal axis 80 and are at least present in the crotch region 7. The barrier leg cuffs 34 may be joined at the proximal edge 64 with the chassis of the absorbent article by a bond 65 which may be made by gluing, fusion bonding, or combination of other suitable bonding processes. The bond 65 at the proximal edge 64 may be continuous or intermittent. The bond 65 closest to the raised section of the leg cuffs 34 delimits the proximal edge 64 of the standing up section of the leg cuffs 34.
The barrier leg cuffs 34 may be integral with the topsheet 24 or the backsheet 25 or may be a separate material joined to the absorbent article's chassis. The material of the barrier leg cuffs 34 may extend through the whole length of the diapers but may be “tack bonded” to the topsheet 24 towards the front waist edge 10 and rear waist edge 12 of the absorbent article so that in these sections the barrier leg cuff material remains flush with the topsheet 24.
Each barrier leg cuff 34 may comprise one, two or more elastic strands or strips of film 35 close to this free terminal edge 66 to provide a better seal.
In addition to the barrier leg cuffs 34, the absorbent article may comprise gasketing cuffs 32, which are joined to the chassis of the absorbent article, in particular to the topsheet 24 and/or the backsheet 25 and are placed externally relative to the barrier leg cuffs 34. The gasketing cuffs 32 may provide a better seal around the thighs of the wearer. Each gasketing leg cuff may comprise one or more elastic strings or elastic elements in the chassis of the absorbent article between the topsheet 24 and backsheet 25 in the area of the leg openings. All or a portion of the barrier leg and/or gasketing cuffs may be treated with a lotion or skin care composition. The barrier leg cuffs may be constructed in a number of different configurations, including those described in U.S. Pat. App. Publ. No. 2012/0277713.
Front and Rear Ears
In an embodiment, the absorbent article may comprise front ears 46 and rear ears 40. The ears may be an integral part of the chassis, such as formed from the topsheet 24 and/or backsheet 25 as side panel. Alternatively, as represented on
Liquid Management System (LMS)
One function of the LMS 50 is to quickly acquire the fluid and distribute it to the absorbent core 28 in an efficient manner. The LMS 50 may comprise one or more layers, which may form a unitary layer or may remain as discrete layers which may be attached to each other. The LMS 50 may comprise two layers: a distribution layer 54 and an acquisition layer 52 disposed between the absorbent core and the topsheet, but the present disclosure is not limited to such a configuration.
The LMS 50 may comprise SAP as this may slow the acquisition and distribution of the fluid. In other embodiments, the LMS may be substantially free (e.g., 80%, 85%, 90%, 95%, or 99% free of) or completely free of SAP. The LMS may also comprise one or more of a variety of other suitable types of materials, such as opened-cell foam, air-laid fibers, or carded, resin bonded nonwoven materials, for example. Suitable example LMSs are described in WO 2000/59430 (Daley), WO 95/10996 (Richards), U.S. Pat. No. 5,700,254 (McDowall), and WO 02/067809 (Graef), for example.
Distribution Layer
The LMS 50 may comprise a distribution layer 54. The distribution layer 54 may comprise at least 50% or more by weight of cross-linked cellulose fibers, for example. The cross-linked cellulosic fibers may be crimped, twisted, or curled, or a combination thereof including crimped, twisted, and curled. This type of material is disclosed in U.S. Pat. Publ. No. 2008/0312622 A1 (Hundorf).
Acquistion Layer
The LMS 50 may alternatively or additionally comprise an acquisition layer 52. The acquisition layer 52 may be disposed, for example, between the distribution layer 54 and the topsheet 24. The acquisition layer 52 may be or may comprise a non-woven material, such as an SMS or SMMS material, comprising a spunbonded, a melt-blown and a further spunbonded layer or alternatively a carded chemical-bonded nonwoven. The acquisition layer 52 may comprise air or wet-laid cellulosic, cross-linked cellulosic, or synthetic fibers, or blends thereof. The acquisition layer 52 may comprise a roll-stock web of synthetic fibers (which may be processed to increase void space, such as by solid state formation), or a combination of synthetic and cellulosic fibers, bonded together to form a highloft material. Alternatively, the acquisition layer 52 may comprise absorbent open cell foam. The nonwoven material may be latex bonded.
Channels in Liquid Management System
The LMS 50 of the absorbent article 20 may comprise channels that may generally enable better conformation of the absorbent article to the wearer's anatomy, leading to increased freedom-of-movement and reduced gapping. One or more of the channels of the LMS 50 may be configured to work in concert with various channels in the absorbent core 28, as discussed above. Furthermore, channels in the LMS 50 may also provide increased void space to hold and distribute urine, BM or other bodily exudates within the absorbent article, leading to reduced leakage and skin contact. Channels in the LMS 50 may also provide internal serviceable indicia, especially when highlighted via physical differences in texture, color, and/or pattern, to facilitate achieving the correct alignment of the absorbent article on a wearer. Thus, such physical differences may be, for example, visually and/or tactilely noticeable.
Similar to the channels in the absorbent core 28, a channel in the LMS 50 may be any region in a layer, or extending through more than one layer, that has a substantially lower basis weight or thickness than the surrounding material, as set forth in the definition of “channel” above. The channels in the LMS 50 may also serve to reduce the tension forces to enable controlled bending and maintain the LMS 50 in close proximity to the absorbent core 28. Thus, the presence of channels in the LMS 50, which may or may not be aligned with any channels in an underlying absorbent core 28, may generally function as hinges to allow for a more flexible composite structure. In some cases, for example, the channels of the LMS 50 allow for the LMS 50 to move toward the absorbent core 28 in a controlled bending arrangement, thereby limiting the separation between the LMS 50 and the absorbent core 28. Moreover, a channel in the LMS 50 may assist in the routing of fluid or other bodily exudates from one region of the absorbent article 20 to another region of the absorbent article 20. Such routing may desirably improve the overall distribution of fluid through the absorbent article 20 and may lead to increase in comfort, wearability, or longevity of the article.
For multi-layered LMSs, the channels may be present in one or more layers of the LMS 50 and may vary in their dimensions in all three planes of reference. The width of a given channel in the LMS 50 may vary in the longitudinal direction (i.e., in a direction substantially parallel to the longitudinal axis of the absorbent article). A channel may also have a different width, length, and/or volume in front of a lateral axis or lateral separation element of the absorbent article than behind the lateral axis or lateral separation element. The channels of the LMS 50 may have a range of widths, lengths, shapes, volumes, and patterns, similar to the channels described above with regard to the absorbent core 28.
One or more channels in the LMS 50 may at least partially overlap, or fully overlap, a channel in the absorbent core 28, creating a deeper recess in the overlapping regions. For embodiments where the LMS 50 includes more than one layer, the layer closest to the absorbent core 28 may include a channel. One or more layers in the structure, such as the topsheet 24, an acquisition layer 52, distribution layer 54, or other layers, may be bonded to an element of the absorbent core 28 in this region to increase the depth of the combined channel. In an embodiment, the channel in the acquisition layer 52 of the LMS 50 and the channel in the absorbent core 28 are coincident such that the channels are completely overlapping. In another embodiment, channels in the LMS and storage layers have no overlapping area. Other embodiments have a vertical overlap between the channels in the two layers that encompass the intervening range such that they partially overlap.
Referring again to
The channels of the LMS 50 may be present at least at the same longitudinal level as the lateral axis 90 in the absorbent article, as represented in
The LMS 50 may define any suitable number of channels, such as at least one or more than two channels. Shorter channels may also be present, for example in the rear waist region 6 or the front waist region 5 of the LMS 50. The channels of the LMS 50 may comprise one or more pairs of channels symmetrically arranged, or otherwise arranged relative to the longitudinal axis 80 and/or the lateral axis 90, or other transverse axis. The channels may extend substantially longitudinally or substantially laterally.
At least some or all of the channels in the LMS 50 may be permanent channels, meaning their integrity is at least partially maintained both in the dry state and in the wet state. Permanent channels may be obtained by provision of one or more adhesive materials, for example, the fibrous layer of adhesive material or construction glue that helps adhere a substrate with an absorbent material within the walls of the channel. Permanent channels may also be formed by bonding the topsheet 24 to the backsheet 25 together through a channel of the LMS 50. Typically, an adhesive may be used to bond the topsheet 24 and the backsheet 25 through the channels, but it is possible to bond via other known processes, such as pressure bonding, ultrasonic bonding, heat bonding, or combination thereof. The topsheet 24 and the backsheet 25 may be continuously bonded or intermittently bonded along or within portions of or all of the channels.
In an embodiment, referring to
The example LMS 50 of the absorbent article of
While portions of the channels 26, 26′ of the absorbent core 28 and the channels 49, 49′ of the LMS 50 shown in
Substantially Laterally-Extending Separation Element
A wearer-facing surface, or topsheet, of an absorbent article may have a visual front portion and a visual back portion. The visual front portion and the visual back portion may be separated by a substantially laterally-extending separation element 100. The term “substantially laterally” means within +/−15 degrees from a direction parallel to the lateral axis. The substantially laterally-extending separation element 100 may be, for example, a graphical indicia printed on the topsheet of the absorbent article, or other layer of the absorbent article (e.g., LMS 50), that is visible through the topsheet. The substantially laterally-extending separation element 100 may also be a portion of a tinted layer that is visible through the wearer-facing surface of the topsheet or the end of an underlying layer that has a different color than the topsheet. Alternatively or additionally, the visual front portion may be visually distinct from the visual back portion based on a color difference and/or a printed pattern difference. Such visual separation between the visual front portion and the visual back portion may help for proper alignment of the absorbent article during its application and help the appearance of separate zones configured for urine management and, separately, for BM management.
The substantially laterally-extending separation element 100, in various forms, may comprise a structural separator that is located in the region of the absorbent article generally corresponding to the perineal region of the wearer (i.e., disposed between the urethra and the anus). The structural separator may, for example, prevent, or at least somewhat inhibit, the surface migration of urine to the back of the absorbent article and BM to the front of the absorbent article. A structural separator may include any three-dimensional feature or component that functions as a transverse or laterally extending barrier (“TVB”), such as one or more projections above the wearer-facing surface of the absorbent article, recesses below the plane of the wearer-facing surface, and combinations thereof. One example includes a substantially laterally-oriented web or sheet that is attached to the wearer-facing surface of the absorbent article and that is attached on its ends to the barrier leg cuffs. Attachment to the barrier leg cuffs and the wearer-facing surface may provide a “seal” created by the TVB with respect to the front and back regions of the absorbent article to prevent, or at least inhibit, bodily exudates flow between the regions.
The structural separator may be rectangular or square when laid out flat in a relaxed, contracted state onto an even horizontal surface. The structural separator may also be trapezoidal when laid out flat in a relaxed, contracted state onto an even horizontal surface. The structural separator may be hydrophobic (e.g., it may be hydrophilic and made hydrophobic with a hydrophobic coating, for example a wax or a hydrophobic surface coating comprising one or more silicone polymers or fluorinated polymers.) The structural separator may have an elastic behavior such that it can be significantly elastically extensible in a lateral, transverse direction or other direction. The structural separator may have a certain tension during wear of the absorbent article to ensure that the structural separator forms an effective separator (barrier) with a Z-direction dimension, to avoid, or at least inhibit, migration of feces from the back to the front of the structural separator. Other structural separators may include raised or thicker portions of the topsheet, elements of the LMS or absorbent core, separately applied elements, or holes or depressions in one or more of the absorbent core elements or LMS.
Further to the above, the structural separator may have any suitable structure and may be a ridge, bump, and/or flap, for example. Some example cross-sectional views of substantially laterally-extending separation elements 100 configurations in the form of structural separators are illustrated in
Substrates, such as topsheets and/or LMS, for example, may have one or more zones in different regions or areas of the substrates. Some example configurations of zones in a topsheet and/or an LMS are illustrated in
For all of the zones discussed below, it will be understood that although a particular treatment may be specified for a specific zone, the zone may also include one or more other treatments or flow control materials. For example, if a certain morphological treatment is specified in a certain zone, another morphological treatment and/or another chemical or geometric treatment may also be provided in the same zone, or a portion thereof, although not specifically stated for each zone in the examples below. The zones may also have any suitable size and/or shape and are not limited by the examples illustrated below.
Referring to
Referring again to
Referring again to
Still referring to
Again referring to
In other instances, one of the zones Z1 or Z2 may comprise a substantially durable chemical treatment and the other of the zones may comprise a substantially transferrable chemical treatment.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
As is illustrated in the various substrates (e.g., topsheets) with zones illustrated in
Geometric Treatments
Some example geometric treatments are now discussed with reference to the figures. Because the phrase “geometric treatments” includes morphological treatments and apertures, only apertures will be discussed here, although it will be understood that the morphological treatments discussed below are also within the scope of the phrase “geometric treatments” as per the definition of geometric treatment.
The example substrate of
The example fabric substrate of
The example mesh substrate of
The example film of
The example film of
A topsheet of an absorbent article may have two or more zones with at least a first zone being positioned on a first side of a lateral axis or a first side of a substantially laterally-extending separation element and with a second zone being positioned on a second side of the lateral axis or a second side of a substantially laterally-extending separation element. The first zone may have apertures defined therein which may have an effective aperture area in the range of about 0.2 mm2 to about 15 mm2, specifically reciting all 0.1 mm2 increments within the specified range, according to the Aperture Test described below. The first zone may have an effective open area of about 15% to about 40%, specifically reciting all 0.1% increments within the specified range, according to the Aperture Test described below. The second zone may have apertures defined therein which may have an effective aperture area in the range of about 0.1 mm2 to about 2.0 mm2, about 0.05 mm2 to about 2 mm2, about 0.5 mm2 to about 2 mm2, or about 1.0 mm2, according to the Aperture Test described below. The second zone may have a % effective open area of about 2% to about 15%, specifically reciting all 0.1% increments within the specified range, according to the Aperture Test described below. The apertures in the first zone may be larger than the apertures in the second zone (e.g., 15-35% larger or 25% larger) such that the first zone is configured for BM management and such that the second zone is configured for urine management. Either of the first and second zones may comprise one or more chemical treatments and/or one or more morphological treatments. The morphological treatment may be present in a portion of, or all of, the first zone and/or the second zone. The absorbent article may also comprise barrier leg cuffs and a waist edge.
Any of the apertures of the geometric treatments may overlap or not overlap portions of, and/or all of, the channels (e.g., 49, 49′) in the liquid management system 50 or the channels (e.g., 26, 26′, 27, 27′) in the absorbent core 28, if either set of channels is provided.
Morphological Treatments
Various morphological treatments may be present in various zones of the topsheet 24, the LMS 50, or other substrate.
An example morphological treatment is illustrated in
Another example morphological treatment is illustrated in
Both of the two above-described morphological treatments may be formed in a similar fashion. The portions 106 or 106′ may be formed using the process illustrated in
The teeth 110 on the roll 104 may vary about the circumference of the roll 104, in the direction of rotation of the roll 104, such that the formed projections 106 may differ in pattern, depth, length, width, and/or frequency of the extension of the liquid management system 50 into or through the liquid permeable topsheet 24 or the liquid permeable topsheet 24 into or through the liquid management system 50. The teeth on about 50% of the roll 104, in the direction of rotation of the roll 104, may have a first configuration, size, length, width, pattern, frequency etc. while the teeth on the remainder of the roll may have a second configuration, size, length, width, pattern, frequency etc. In other instances, teeth having certain configurations may be formed in more than two zones on the roll 104. The varying of the teeth may allow the rolls to create zones having different portions 106 or 106′ and thereby different morphological treatments, in, for example, a first zone of the topsheet 24 and a second zone of the topsheet 24.
Chemical Treatments
One or more of the various zones of the topsheet 24 and/or the liquid management system 50 may comprise one or more chemical treatments. The chemical treatments may have any suitable color, size, shape, thickness, and/or pattern. The various zones may have the same chemical treatments or different chemical treatments. More than one chemical treatment may be provided in a certain zone or in multiple zones. Some chemical treatments may surround, or at least partially surround, other zones of chemical treatments, or may surround, or at least partially surround, other geometric or morphological treatments. In other instances, some chemical treatments may at least partially overlap other chemical treatments and/or be positioned on or overlap geometric and/or morphological treatments. Some example chemical treatments are illustrated in
Any of the zones having one or more chemical treatments or other treatments may overlap or not overlap portions of, or all of, the channels (e.g., 49, 49′) in the liquid management system 50 and/or the channels (e.g., 26, 26′, 27, 27′) in the absorbent core 28.
Hydrophobic/Hydrophilic
As discussed above, various zones of the topsheet may comprise chemical treatments that render those zones hydrophobic or hydrophilic or more hydrophobic or hydrophilic. Some additional details on these zones are provided below. A topsheet of an absorbent article may comprise a first chemical treatment comprising a hydrophilic coating and/or a second chemical treatment comprising a hydrophobic coating. In other instances, only one hydrophilic coating or hydrophobic coating may be provided on a topsheet. In still other instances, the first chemical treatment may by hydrophobic and the second chemical treatment may have a different hydrophilicity (i.e., more hydrophobic, less hydrophobic, more hydrophilic, or less hydrophilic). The hydrophilic coating and the hydrophobic coating may be positioned in any suitable areas or zones of the topsheet. The topsheet may comprise a first zone comprising the hydrophilic coating and a second zone comprising the hydrophilic coating. In other instances, one or more zones in the topsheet may comprise chemical treatments comprising either hydrophilic or hydrophobic coatings. The first and second zones of the topsheet may be positioned in the front and/or the back or the front and the back, respectively, of the absorbent article. In other instances, the first and seconds zones of the topsheet may be positioned on opposite sides of a substantially laterally-extending separation element, lateral axis, or longitudinal axis.
Chemical treatments that are hydrophilic may facilitate penetration of the liquid permeable topsheet, the LMS, and/or the absorbent core by urine or runny BM or may promote adherence of the BM to the liquid permeable topsheet vs. the wearer's skin. Hydrophobic treatments may hold a skin care composition in place to facilitate bodily contact, reduce rewet, improve skin dryness, and/or may prevent, or at least inhibit, runny BM from re-soiling the skin after having passed through a portion of the liquid permeable topsheet or the LMS.
Active Ingredients/Enzyme Inhibitors/Vitamins
As mentioned above, any of various zone discussed herein or portions of the topsheets of the present disclosure may also comprise one or more active ingredients, enzyme inhibitors, and/or vitamins. An example of an active ingredient is zinc oxide, which may function as an antimicrobial agent to reduce the pathogen count on skin to help prevent opportunistic infection of the skin or urinary tract. An example of an enzyme inhibitor is hexamidine, which is a protease inhibitor which may help prevent attack by proteolytic fecal enzymes, such as trypsin, on the skin barrier, thereby reducing irritation and dermatitis. An example of a vitamin is Vitamin E, which may help stabilize the skin barrier function.
Durable/Transferrable
As discussed above, some of the zones of the topsheets may comprise a substantially durable chemical treatment and/or a substantially transferrable chemical treatment. Those treatments are discussed further below. A topsheet of an absorbent article may comprise a first chemical treatment that is substantially transferrable or that is substantially durable and/or a second chemical treatment that is substantially durable or that is substantially transferrable. In one instance, only one substantially transferrable or substantially durable chemical treatment may be provided on a topsheet. The substantially transferrable and substantially durable chemical treatments may be positioned in any suitable areas or zones of the topsheet. The topsheet may comprise a first zone comprising the first chemical treatment that is substantially transferrable or substantially durable and a second zone comprising the second chemical treatment that is substantially durable or substantially transferrable. In other instances, one or more zones in the topsheet may comprise chemical treatments that are either substantially transferrable or substantially durable. In some instances, two substantially durable or substantially transferrable chemical treatments may be provided in various zone of a topsheet. In such an instance, one of the treatments may be applied to the topsheet in a different pattern, thickness, basis weight as the other treatment. The first and second zones of the topsheet may be positioned in the front and/or the back or the front and the back, respectively, of the absorbent article. In other instances, the first and second zones of the topsheet may be positioned on opposite sides of a substantially laterally-extending separation element, lateral axis, or longitudinal axis.
Some of the benefits of having a substantially durable chemical treatment are that a chemical treatment, such as a soil capture polymer composition, may remain on the topsheet to hold the BM on the topsheet more tightly than the BM adheres to the skin to facilitate more removal of BM from the skin with the absorbent article. Other examples of substantially durable chemical treatments may include: a) a hydrophilic treatment to help maintain urine penetration with subsequent urine events (i.e., after the first urination event), and/or b) a flow control material to preferentially restrict urine penetration in select regions of the topsheet (as described in greater detail below).
Some of the benefits of having a substantially transferrable chemical treatment are that a chemical treatment, such as a skin care composition, may be at least partially transferred to the skin of the wearer for skin barrier enhancement vs. irritants or other skin health benefits. Another example of substantially transferrable chemical treatments is BM anti-stick lotion which would prevent, or at least inhibit, BM adhesion to skin.
Flow Control Materials
As discussed above, some of the zones of the topsheets may comprise chemical treatments comprising flow control material. Those flow control material are discussed further below.
The flow control materials may hasten, slow, or restrict the movement and/or penetration of bodily exudates on, into, or through a topsheet of an absorbent article.
A topsheet may comprise a first chemical treatment comprising a first flow control material (see
The first and second flow control materials may be the same or different. The first flow control material may have a different permeability, basis weight, surface energy, and/or thickness compared to the second flow control material. The first flow control material and/or the second flow control material may comprise a pigment, a colorant, a printed ink, a dye, and/or a skin care composition. The pigments, colorants, printed inks, dyes, and/or skin care compositions of the first and second flow control materials may be the same or different.
The first and second flow control materials may have different patterns in different zones (see e.g.
Flow control materials may at least partially, or fully, restrict or slow penetration of liquid bodily exudates in certain regions of the absorbent article and direct the exudates to regions where they may be preferentially stored (i.e., to reduce bulkiness, to improve fit, and/or to improve (reduce) rewet to the skin) For example, if the flow control material is located in a region where urine is expected to insult the product from the wearer and is directed in either or both longitudinal directions, this may reduce the wet bulk in the crotch region. Such a feature may also provide appearance and/or comfort/freedom of motion benefits for the absorbent article. Alternatively, the flow control material may prevent, or at least inhibit, rewet of bodily exudates (i.e., that have travelled through the topsheet) back through certain regions of the topsheet to avoid soiling otherwise uncontaminated skin.
In other instances, the flow control materials may hasten the flow of bodily exudates either across a topsheet or into or through a topsheet to allow the absorbent article to more effectively absorb the bodily exudates.
As an example of a flow control material, an absorbent article may comprise a liquid permeable topsheet, a liquid impermeable backsheet, and an absorbent core positioned at least partially intermediate the liquid permeable topsheet and the liquid impermeable backsheet. The liquid permeable topsheet may comprise a flow control material that may form an at least mostly, or fully, enclosed perimeter over at least a portion of the absorbent core (see e.g.,
The topsheet may also comprise one or more geometric treatments, morphological treatments, and/or chemical treatments (chemical treatments other than flow control materials). Referring to
The flow control material may penetrate through at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 50%, or more of a thickness of the liquid permeable topsheet. The flow control material may also penetrate onto and/or at least partially through the liquid management system of the absorbent article. In some instances, the flow control material may only be present on a surface of the topsheet or the liquid management system and/or the absorbent core. In other instances the flow control material may penetrate fully through the topsheet and/or the liquid management system. In still other instances, the flow control material may penetrate the topsheet or the liquid management system in the range of 1% to 75%, 5% to 50%, 5% to 50%, and 5% to 25% specifically reciting all 0.1% increments within the specified ranges and all ranges formed therein or thereby. The flow control materials may be applied to the topsheet or the liquid management system by any suitable methods known to those of skill in the art, such as spraying, melting, and rolling.
The flow control material may penetrate through at a depth of at least about 50 micrometers, at least about 75 micrometers, at least about 100 micrometers, at least about 150 micrometers, at least about 200 micrometers, at least about 250 micrometers, at least about 300 micrometers, or at least about 350 micrometers, below a wearer-facing surface of the topsheet, measured according to the Penetration Depth Test Method herein. The flow control material may also penetrate through at a depth in the range of about 25 micrometers to about 500 micrometers, about 50 micrometers to about 500 micrometers, about 100 micrometers to about 400 micrometers, about 100 micrometers to about 300 micrometers, about 150 micrometers to about 300 micrometers, or about 100 micrometers to about 250 micrometers, specifically reciting all 0.5 micrometer increments within the above-specified ranges and all ranges formed therein or thereby, below a wearer-facing surface of the topsheet, measured according to the Penetration Depth Test Method herein.
As another example, an absorbent article may comprise a liquid permeable topsheet, a liquid impermeable backsheet, a lateral axis defining a front region of the absorbent article on a first side of the lateral axis and a back region of the absorbent article on a second side of the lateral axis, and an absorbent core positioned at least partially intermediate the liquid permeable topsheet and the liquid impermeable backsheet. Referring generally to
The flow control material(s) may also be positioned at: a) areas of a topsheet or liquid management system of an absorbent article which, in use, will be subjected to “high pressure” from the body (e.g., under the ischia or buttocks cheeks); b) at or proximate to a perimeter of the absorbent core; c) at or proximate to a location where the bodily exudates are expected to insult the absorbent article (i.e., to direct the bodily exudates to either the front or back portions (or other portions) of the absorbent article); d) at or proximate to perimeters of various zones, e) about or proximate to the lateral axis; or f) about a or proximate to, or on, a laterally extending separation element.
The absorbent article may comprise a liquid management system positioned at least partially intermediate the liquid permeable topsheet and the absorbent core. The liquid management system may comprise a third flow control material applied thereto and positioned to form an at least mostly, or fully, enclosed perimeter over a portion of the absorbent core.
As another example, an absorbent article may comprise a liquid permeable topsheet, a liquid impermeable backsheet, a liquid management system, and an absorbent core positioned at least partially intermediate the liquid management system and the liquid impermeable backsheet. The liquid management system may be positioned at least partially intermediate the liquid permeable topsheet and the absorbent core. Referring to
Any of the various zones, or one or more portions thereof, either in addition to or in lieu of the various treatments discussed herein, may have one or more colors, shades of the same color, different colors, and/or different delta E values. For example, a first zone, or one or more portions thereof, may have a first color and a second zone (or third or fourth zone etc.), or one or more portions thereof, may have a second color. The first and second colors may be the same or different. In certain instances, all or some of zones, or one or more portions thereof, in a front region of an absorbent article may have the same or different colors as all or some of the zones, or portions thereof, in a rear region of the absorbent article. In some instances, the various treatments may have colors that are the same or different. The color may be provided by or on any of the materials, treatments (e.g., chemical treatments), and/or layers (e.g., acquisition layer) within the various zones.
Test Methods
Condition all samples at about 23° C.±2 C.° and about 50%±2% relative humidity for 2 hours prior to testing.
Aperture Test
Aperture dimensions, effective aperture area, and % effective open area measurements are performed on images generated using a flat bed scanner capable of scanning in reflectance mode at a resolution of 6400 dpi and 8 bit grayscale (a suitable scanner is the Epson Perfection V750 Pro, Epson, USA). Analyses are performed using ImageJ software (v.s 1.46, National Institute of Health, USA) and calibrated against a ruler certified by NIST. A steel frame (100 mm square, 1.5 mm thick with an opening 60 mm square) is used to mount the specimen and a black glass tile (P/N 11-0050-30, available from HunterLab, Reston, Va.) is used as the background for the scanned images. Take the steel frame and place double-sided adhesive tape on the bottom surface surrounding the interior opening. To obtain a specimen, lay the absorbent article flat on a lab bench with the wearer-facing surface directed upward. Remove the release paper of the tape, and adhere the steel frame to the topsheet of the absorbent article. Using a razor blade, excise the top sheet from the underling layers of the absorbent article around the outer perimeter of the frame. Carefully remove the specimen such that its longitudinal and lateral extension is maintained. A cryogenic spray (such as Cyto-Freeze, Control Company, Houston Tex.) can be used to remove the topsheet specimen from the underling layers, if necessary. Five replicates obtained from five substantially similar absorbent articles are prepared for analysis.
Place the ruler on the scanner bed, close the lid and acquire a 50 mm by 50 mm calibration image of the ruler in reflectance mode at a resolution of 6400 dpi and 8 bit grayscale. Save the image as an uncompressed TIFF format file. Lift the lid and remove the ruler. After obtaining the calibration image, all specimens are scanned under the same conditions and measured based on the same calibration file. Next, place the framed specimen onto the center of the scanner bed with the wearer-facing surface of the specimen facing the scanner's glass surface. Place the black glass tile on top of the frame covering the specimen, close the lid and acquire a scanned image. In like fashion scan the remaining four replicates.
Open the calibration file in ImageJ and perform a linear calibration using the imaged ruler, with the scale set to Global so that the calibration will be applied to subsequent specimens. Open a specimen image in ImageJ. View the histogram and identify the gray level value for the minimum population located between the dark pixel peak of the holes and the lighter pixel peak of the nonwoven. Threshold the image at the minimum gray level value to generate a binary image. In the processed image, the apertures appear as black and nonwoven as white.
Select the analyze particles function. Set the minimum aperture area exclusion limit to 0.3 mm2 and for the analysis to exclude the edge apertures. Set the software to calculate: effective aperture area, perimeter, feret (length of the aperture) and minimum feret (width of the aperture). Record the average effective aperture area to the nearest 0.01 mm2, and the average perimeter to the nearest 0.01 mm. Again select the analyze particles function, but his time set the analysis to include the edge holes as it calculates the effective aperture areas. Sum the effective aperture areas (includes whole and partial apertures) and divide by the total area included in the image (2500 mm2). Record as the % effective open area to the nearest 0.01%.
In like fashion analyze the remaining four specimen images. Calculate and report the average effective aperture area to the nearest 0.01 mm2, the average aperture perimeter to the nearest 0.01 mm, feret and minimum feret to the nearest 0.01 mm, and the % effective open area to the nearest 0.01% for the five replicates.
Flow Control Material Outward Extension Method/Flow Control Material Penetration Depth Method
Experimental Settings
The values indicated herein are measured according to the methods indicated herein below, unless specified otherwise. All measurements are performed at 21° C.±2° C. and 50%±20% RH, unless specified otherwise. All samples should be kept at least 24 hours in these conditions to equilibrate before conducting the tests, unless indicated otherwise. All measurements should be reproduced on at least 4 samples and the average value obtained indicated, unless otherwise indicated.
Equipment
An area 1.5 cm to 3 cm in length and 1.3 cm in width is cut from an absorbent article in an area where the liquid permeable topsheet comprises a flow control material. This subsample is sectioned along the length, using a new razor blade (VWR Single Edge Industrial, 0.009″ thick surgical carbon steel or equivalent.) If the topsheet contains protruded or inverted elements, the cross-sections should be made across the middle of these features. The sectioned subsample is adhered to an SEM mount using double-sided conductive tape, with the topsheet's wearer-facing surface of the section up and sectioned edge at the mount edge, so that the cross-section is revealed when the SEM stage is tilted backward 90°. The mounted sample is sputter Au coated and viewed in an SEM (Hitachi S3500N or equivalent).
The following measurements should be made with the manual line tool in PCI v4.2 image analysis software (or equivalent) from cross-sectional images:
(1) Flow Control Material Outward Extension Method is determined by obtaining the z-directional distance between the point where flow control material is no longer observed in an outward, wearer-facing direction, and the nearest point on the topsheet's wearer-facing surface where there is no flow control material within the image area. Three areas should be measured if the topsheet is planar, and line lengths averaged. If the topsheet contains protrusions and/or inversions, three areas should be measured for the protrusions (if there are any), three for the inversions (if there are any), and three from land area between these features (if there is any). Line lengths measured at protrusions are averaged; line lengths measured at inversions are averaged, and line lengths measured at land area are averaged. The smallest of the three measurements is designated the Flow Control Material Outward Extension and reported in micrometers to the nearest 0.1 micrometer.
(2) Flow Control Material Penetration Depth Method is determined by measuring the z-directional distance between the lowest point the flow control material is observed in a cross-sectional image (in the z-direction away from the wearer) and the nearest point on the topsheet's wearer-facing surface where there is no flow control material on. Three areas should be measured if the topsheet system is planar, and line lengths averaged. If the topsheet contains protrusions and/or inversions, three areas should be measured for the protrusions (if there are any), three for the inversions (if there are any), and three from land area between these features (if there is any). Line lengths measured at protrusions are averaged; line lengths measured at inversions are averaged, and line lengths measured at land area are averaged. Flow Control Material Penetration Depth is designated as the higher of these measurements and reported in micrometers to the nearest 0.1 micrometer.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any embodiment disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such embodiment. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present disclosure have been illustrated and described, it will be understood by those skilled in the art that various other changes and modifications may be made without departing from the spirit and scope of the present disclosure. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2005298 | O'Brien | Jun 1935 | A |
2896618 | Schaefer | Jul 1959 | A |
3559648 | Mason, Jr. | Feb 1971 | A |
3559649 | Grad | Feb 1971 | A |
3595235 | Jespersen | Jul 1971 | A |
3693622 | Jones | Sep 1972 | A |
3714946 | Rudes | Feb 1973 | A |
3799167 | Miller et al. | Mar 1974 | A |
4015604 | Csillag | Apr 1977 | A |
4200103 | Black | Apr 1980 | A |
4321924 | Ahr | Mar 1982 | A |
4395215 | Bishop | Jul 1983 | A |
4397645 | Buell | Aug 1983 | A |
4433972 | Malfitano | Feb 1984 | A |
4662877 | Williams | May 1987 | A |
4692161 | Puletti | Sep 1987 | A |
4695278 | Lawson | Sep 1987 | A |
4795454 | Dragoo | Jan 1989 | A |
4892536 | DesMarais et al. | Jan 1990 | A |
4895568 | Enloe | Jan 1990 | A |
4895749 | Rose | Jan 1990 | A |
4973325 | Sherrod | Nov 1990 | A |
4988344 | Reising | Jan 1991 | A |
4990147 | Freeland | Feb 1991 | A |
5019069 | Klemp | May 1991 | A |
5062838 | Nalowaniec | Nov 1991 | A |
5100398 | Leroy | Mar 1992 | A |
5167654 | Yang | Dec 1992 | A |
5171236 | Dreier et al. | Dec 1992 | A |
5269775 | Freeland et al. | Dec 1993 | A |
D343232 | Lombardi | Jan 1994 | S |
5304161 | Noel et al. | Apr 1994 | A |
5342337 | Runeman | Aug 1994 | A |
5342338 | Roe | Aug 1994 | A |
5352217 | Curro | Oct 1994 | A |
5354400 | Lavash et al. | Oct 1994 | A |
5369858 | Gilmore et al. | Dec 1994 | A |
5383870 | Takai | Jan 1995 | A |
5389094 | Lavash et al. | Feb 1995 | A |
5397316 | LaVon et al. | Mar 1995 | A |
5431643 | Ouellette | Jul 1995 | A |
5439458 | Noel et al. | Aug 1995 | A |
5449352 | Nishino | Sep 1995 | A |
5458590 | Schleinz | Oct 1995 | A |
5462541 | Bruemmer et al. | Oct 1995 | A |
5620430 | Bamber | Apr 1997 | A |
5628097 | Benson et al. | May 1997 | A |
5643588 | Roe | Jul 1997 | A |
5658639 | Curro et al. | Aug 1997 | A |
H1687 | Roe et al. | Oct 1997 | H |
5704930 | Lavash et al. | Jan 1998 | A |
5714107 | Levy et al. | Feb 1998 | A |
5716351 | Roe et al. | Feb 1998 | A |
5762642 | Coles | Jun 1998 | A |
5776122 | Faulks et al. | Jul 1998 | A |
5785697 | Trombetta et al. | Jul 1998 | A |
5807367 | Dilnik | Sep 1998 | A |
5853402 | Faulks et al. | Dec 1998 | A |
5873868 | Nakahata | Feb 1999 | A |
5916661 | Benson et al. | Jun 1999 | A |
5925026 | Arteman et al. | Jul 1999 | A |
5941864 | Roe | Aug 1999 | A |
5957907 | Sauer | Sep 1999 | A |
5968028 | Roe et al. | Oct 1999 | A |
5989478 | Ouellette et al. | Nov 1999 | A |
5990337 | Kleiner | Nov 1999 | A |
5998695 | Roe et al. | Dec 1999 | A |
6010490 | Freeland et al. | Jan 2000 | A |
6025049 | Ouellette et al. | Feb 2000 | A |
D423098 | Stancyk, Jr. | Apr 2000 | S |
6090090 | Roe et al. | Jul 2000 | A |
6093871 | Takai | Jul 2000 | A |
6107537 | Elder et al. | Aug 2000 | A |
6117523 | Sugahara | Sep 2000 | A |
6120485 | Gustafsson et al. | Sep 2000 | A |
6120783 | Roe et al. | Sep 2000 | A |
6123692 | Guidotti et al. | Sep 2000 | A |
6152907 | Widlund et al. | Nov 2000 | A |
6152908 | Widlund et al. | Nov 2000 | A |
6156020 | Roe et al. | Dec 2000 | A |
6156022 | Hedlund | Dec 2000 | A |
6180052 | Ouellette et al. | Jan 2001 | B1 |
6217890 | Paul | Apr 2001 | B1 |
6221460 | Weber et al. | Apr 2001 | B1 |
6231555 | Lynard et al. | May 2001 | B1 |
6231948 | Ouellette et al. | May 2001 | B1 |
6248098 | Sayama | Jun 2001 | B1 |
6262331 | Nakahata et al. | Jul 2001 | B1 |
6274218 | Shimizu | Aug 2001 | B1 |
6280428 | Lash et al. | Aug 2001 | B1 |
6290979 | Roe et al. | Sep 2001 | B1 |
6328722 | Lavash et al. | Dec 2001 | B1 |
6391011 | Davis et al. | May 2002 | B1 |
6406465 | Otsubo | Jun 2002 | B1 |
6423884 | Oehmen | Jul 2002 | B1 |
6443936 | Hamilton et al. | Sep 2002 | B1 |
6450998 | Otsubo et al. | Sep 2002 | B1 |
6458111 | Onishi et al. | Oct 2002 | B1 |
6458114 | Mishima et al. | Oct 2002 | B1 |
6465711 | Brisebois | Oct 2002 | B1 |
6476288 | VanRijswijck et al. | Nov 2002 | B1 |
6482193 | Samuelsson | Nov 2002 | B1 |
6494871 | Lariviere et al. | Dec 2002 | B1 |
6498284 | Roe | Dec 2002 | B1 |
6610902 | Gustafsson | Aug 2003 | B1 |
6632504 | Gillespie et al. | Oct 2003 | B1 |
6639119 | Roe et al. | Oct 2003 | B2 |
6676646 | Bast et al. | Jan 2004 | B2 |
6723892 | Daley et al. | Apr 2004 | B1 |
6770579 | Dawson et al. | Aug 2004 | B1 |
6811239 | Salacz | Nov 2004 | B1 |
6860874 | Gubernick | Mar 2005 | B2 |
6861571 | Roe et al. | Mar 2005 | B1 |
6965058 | Raidel | Nov 2005 | B1 |
7005558 | Johansson et al. | Feb 2006 | B1 |
7056311 | Kinoshita et al. | Jun 2006 | B2 |
7067711 | Kuroda et al. | Jun 2006 | B2 |
7102054 | Cree et al. | Sep 2006 | B1 |
7150733 | Yamakawa et al. | Dec 2006 | B2 |
7163528 | Christon et al. | Jan 2007 | B2 |
7172801 | Hoying et al. | Feb 2007 | B2 |
7204830 | Yoshitaka et al. | Apr 2007 | B2 |
7241280 | Christon et al. | Jul 2007 | B2 |
7252656 | Bonelli et al. | Aug 2007 | B2 |
7270651 | Adams et al. | Sep 2007 | B2 |
7270861 | Broering et al. | Sep 2007 | B2 |
7306582 | Adams et al. | Dec 2007 | B2 |
7311696 | Christon et al. | Dec 2007 | B2 |
7335810 | Yoshimasa et al. | Feb 2008 | B2 |
7344523 | Van Gompel et al. | Mar 2008 | B2 |
7388123 | Cowell et al. | Jun 2008 | B2 |
7402157 | Christon et al. | Jul 2008 | B2 |
7410683 | Curro et al. | Aug 2008 | B2 |
7507459 | Turner et al. | Mar 2009 | B2 |
7537585 | Christon et al. | May 2009 | B2 |
7553532 | Turner et al. | Jun 2009 | B2 |
7589249 | Gubernick et al. | Sep 2009 | B2 |
7648752 | Hoying et al. | Jan 2010 | B2 |
7666174 | Onishi et al. | Feb 2010 | B2 |
7670665 | Hoying et al. | Mar 2010 | B2 |
7682686 | Curro et al. | Mar 2010 | B2 |
7718243 | Curro et al. | May 2010 | B2 |
7718844 | Olson | May 2010 | B2 |
7727213 | Nomoto et al. | Jun 2010 | B2 |
7732657 | Hammons et al. | Jun 2010 | B2 |
7754050 | Redd et al. | Jul 2010 | B2 |
7785690 | Turner et al. | Aug 2010 | B2 |
7812213 | Doverbo et al. | Oct 2010 | B2 |
7824385 | Ecker | Nov 2010 | B2 |
7829173 | Turner et al. | Nov 2010 | B2 |
7838099 | Curro et al. | Nov 2010 | B2 |
7867210 | Mori et al. | Jan 2011 | B2 |
7910195 | Hammons et al. | Mar 2011 | B2 |
7938635 | Heilman et al. | May 2011 | B2 |
7967801 | Hammons et al. | Jun 2011 | B2 |
7972316 | Toyoshima et al. | Jul 2011 | B2 |
7972317 | Christon et al. | Jul 2011 | B2 |
7993317 | Hammons et al. | Aug 2011 | B2 |
8022267 | Hellström et al. | Sep 2011 | B2 |
8030535 | Hammons et al. | Oct 2011 | B2 |
8039685 | Mason, Jr. et al. | Oct 2011 | B2 |
8058501 | Hammons et al. | Nov 2011 | B2 |
8075977 | Curro et al. | Dec 2011 | B2 |
8142876 | Ueminami et al. | Mar 2012 | B2 |
8153225 | Turner et al. | Apr 2012 | B2 |
8153226 | Curro et al. | Apr 2012 | B2 |
8157778 | Moriya et al. | Apr 2012 | B2 |
8158043 | Gibson et al. | Apr 2012 | B2 |
8193407 | Mansfield et al. | Jun 2012 | B2 |
D664642 | Hood et al. | Jul 2012 | S |
8231592 | Suzuki et al. | Jul 2012 | B2 |
8241543 | O'Donnell et al. | Aug 2012 | B2 |
8262633 | Larson et al. | Sep 2012 | B2 |
8292864 | Hood et al. | Oct 2012 | B2 |
8318284 | Curro et al. | Nov 2012 | B2 |
8357445 | Hammons et al. | Jan 2013 | B2 |
8378165 | Visscher et al. | Feb 2013 | B2 |
8440587 | Arora et al. | May 2013 | B2 |
8536401 | Ecker et al. | Sep 2013 | B2 |
8759606 | Bond et al. | Jun 2014 | B2 |
20010020157 | Mizutani et al. | Sep 2001 | A1 |
20020013567 | Mishima et al. | Jan 2002 | A1 |
20020138054 | Erdman | Sep 2002 | A1 |
20030021951 | Desai et al. | Jan 2003 | A1 |
20030055392 | Tagami et al. | Mar 2003 | A1 |
20030078553 | Wada et al. | Apr 2003 | A1 |
20030093045 | Erdman | May 2003 | A1 |
20030114811 | Christon et al. | Jun 2003 | A1 |
20030114812 | Braverman et al. | Jun 2003 | A1 |
20030114819 | Sayama et al. | Jun 2003 | A1 |
20030125687 | Gubernick et al. | Jul 2003 | A1 |
20030130638 | Baker | Jul 2003 | A1 |
20030158532 | Magee | Aug 2003 | A1 |
20030167043 | Roe et al. | Sep 2003 | A1 |
20030225384 | Zenker et al. | Dec 2003 | A1 |
20040102752 | Chen | May 2004 | A1 |
20040127872 | Petryk | Jul 2004 | A1 |
20040127883 | Cowell | Jul 2004 | A1 |
20040162536 | Becker | Aug 2004 | A1 |
20040229008 | Hoying | Nov 2004 | A1 |
20040265544 | Di Salvo et al. | Dec 2004 | A1 |
20050004548 | Otsubo et al. | Jan 2005 | A1 |
20050064136 | Turner et al. | Mar 2005 | A1 |
20050074584 | Zehner et al. | Apr 2005 | A1 |
20050113791 | Neubauer et al. | May 2005 | A1 |
20050116976 | Salacz et al. | Jun 2005 | A1 |
20050119631 | Giloh et al. | Jun 2005 | A1 |
20050124953 | Woltman | Jun 2005 | A1 |
20050137544 | Schroeder et al. | Jun 2005 | A1 |
20050148258 | Chakravarty et al. | Jul 2005 | A1 |
20050203477 | Mishima et al. | Sep 2005 | A1 |
20050228358 | Mishima et al. | Oct 2005 | A1 |
20060069371 | Ohashi | Mar 2006 | A1 |
20060135920 | Virgilio et al. | Jun 2006 | A1 |
20060135934 | Gilbert | Jun 2006 | A1 |
20060142724 | Watanabe et al. | Jun 2006 | A1 |
20060161122 | Erdman et al. | Jul 2006 | A1 |
20060178650 | Hakansson et al. | Aug 2006 | A1 |
20060184151 | Onishi et al. | Aug 2006 | A1 |
20060241557 | Moriya | Oct 2006 | A1 |
20070005038 | Mansfield et al. | Jan 2007 | A1 |
20070073253 | Miyama et al. | Mar 2007 | A1 |
20070088302 | Sugiyama et al. | Apr 2007 | A1 |
20070088305 | Sakano et al. | Apr 2007 | A1 |
20070088308 | Ehrnsperger et al. | Apr 2007 | A1 |
20070088309 | Ehrnsperger et al. | Apr 2007 | A1 |
20070100307 | Nomoto et al. | May 2007 | A1 |
20070219515 | Marsh | Sep 2007 | A1 |
20070255247 | Moberg-Alehammar et al. | Nov 2007 | A1 |
20070282288 | Noda et al. | Dec 2007 | A1 |
20080119810 | Kuroda et al. | May 2008 | A1 |
20080208153 | Oetjen et al. | Aug 2008 | A1 |
20080249494 | Digiacomantonio | Oct 2008 | A1 |
20080281287 | Marcel et al. | Nov 2008 | A1 |
20080287903 | Vega | Nov 2008 | A1 |
20080294138 | Andersson et al. | Nov 2008 | A1 |
20090018519 | Yoshida | Jan 2009 | A1 |
20090026651 | Lee et al. | Jan 2009 | A1 |
20090030390 | Hammons et al. | Jan 2009 | A1 |
20090030391 | Hammons et al. | Jan 2009 | A1 |
20090240225 | Noda et al. | Sep 2009 | A1 |
20090247978 | Boissier et al. | Oct 2009 | A1 |
20090270825 | Wciork et al. | Oct 2009 | A1 |
20090281515 | Noda et al. | Nov 2009 | A1 |
20090306614 | Boissier | Dec 2009 | A1 |
20090306615 | Olsson | Dec 2009 | A1 |
20100004615 | Boissier | Jan 2010 | A1 |
20100010464 | Nishitani et al. | Jan 2010 | A1 |
20100035014 | Hammons et al. | Feb 2010 | A1 |
20100036338 | Hammons et al. | Feb 2010 | A1 |
20100036339 | Hammons et al. | Feb 2010 | A1 |
20100036346 | Hammons et al. | Feb 2010 | A1 |
20100036347 | Hammons et al. | Feb 2010 | A1 |
20100036349 | Hammons et al. | Feb 2010 | A1 |
20100036352 | Hood et al. | Feb 2010 | A1 |
20100100067 | Pugliese, III | Apr 2010 | A1 |
20100121294 | Okawa et al. | May 2010 | A1 |
20100130952 | Mura | May 2010 | A1 |
20100168707 | Nishikawa et al. | Jul 2010 | A1 |
20100174261 | Nomoto et al. | Jul 2010 | A1 |
20100222759 | Hammons | Sep 2010 | A1 |
20100255258 | Curro et al. | Oct 2010 | A1 |
20100274210 | Noda et al. | Oct 2010 | A1 |
20100310810 | Bond et al. | Dec 2010 | A1 |
20100310837 | Bond et al. | Dec 2010 | A1 |
20100310845 | Bond et al. | Dec 2010 | A1 |
20100312208 | Bond et al. | Dec 2010 | A1 |
20100312212 | Bond et al. | Dec 2010 | A1 |
20110037938 | Raynes et al. | Feb 2011 | A1 |
20110046596 | Kudo et al. | Feb 2011 | A1 |
20110060303 | Bissah et al. | Mar 2011 | A1 |
20110071486 | Harada et al. | Mar 2011 | A1 |
20110073513 | Weisman et al. | Mar 2011 | A1 |
20110087185 | Wöhlke et al. | Apr 2011 | A1 |
20110094669 | Oetjen | Apr 2011 | A1 |
20110094674 | Oetjen | Apr 2011 | A1 |
20110125120 | Nishitani et al. | May 2011 | A1 |
20110137276 | Yoshikawa | Jun 2011 | A1 |
20110137624 | Weisman | Jun 2011 | A1 |
20110172623 | Roe et al. | Jul 2011 | A1 |
20110196330 | Hammons et al. | Aug 2011 | A1 |
20110206904 | Heilman et al. | Aug 2011 | A1 |
20110282314 | Hammons | Nov 2011 | A1 |
20110313385 | Hammons et al. | Dec 2011 | A1 |
20120035566 | Sagisaka et al. | Feb 2012 | A1 |
20120049404 | Gibson et al. | Mar 2012 | A1 |
20120078209 | Sakai et al. | Mar 2012 | A1 |
20120095424 | Komatsu et al. | Apr 2012 | A1 |
20120095425 | Nishitani et al. | Apr 2012 | A1 |
20120095426 | Visscher et al. | Apr 2012 | A1 |
20120164368 | Curro et al. | Jun 2012 | A1 |
20120226255 | Mariko et al. | Sep 2012 | A1 |
20120273990 | O'Donnell et al. | Nov 2012 | A1 |
20120273997 | Stone et al. | Nov 2012 | A1 |
20120316529 | Kruezer et al. | Dec 2012 | A1 |
20130060218 | Kudo et al. | Mar 2013 | A1 |
20130079742 | Seiichi et al. | Mar 2013 | A1 |
20130158497 | Yamaguchi et al. | Jun 2013 | A1 |
20130317470 | Nobuyuki et al. | Nov 2013 | A1 |
20140031779 | Hammons et al. | Jan 2014 | A1 |
20140052088 | Weisman et al. | Feb 2014 | A1 |
20140228796 | Burvall et al. | Aug 2014 | A1 |
20140296809 | Hammons et al. | Oct 2014 | A1 |
20150038933 | Lee et al. | Feb 2015 | A1 |
20150038934 | Lee et al. | Feb 2015 | A1 |
20150282998 | Arizti | Oct 2015 | A1 |
20150282999 | Arizti | Oct 2015 | A1 |
20170290715 | Arizti et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
03304429 | Mar 2003 | CN |
03354923 | Mar 2003 | CN |
2827323 | Oct 2006 | CN |
201263750 | Jul 2009 | CN |
202235945 | May 2012 | CN |
203988677 | Dec 2014 | CN |
0432882 | Jun 1991 | EP |
0585904 | Mar 1994 | EP |
626160 | Nov 1994 | EP |
1124522 | Aug 2001 | EP |
1030636 | Mar 2003 | EP |
1371379 | Dec 2003 | EP |
1206926 | Jul 2009 | EP |
2656826 | Oct 2013 | EP |
2262906 | Jul 1993 | GB |
2383957 | Jul 2003 | GB |
635KOL2001 | Mar 2006 | IN |
2790DEL1998 | Aug 2008 | IN |
980MUM2009 | Jun 2009 | IN |
H10-080968 | Mar 1998 | JP |
2001037810 | Feb 2001 | JP |
2001120597 | May 2001 | JP |
2002325794 | Nov 2002 | JP |
2003275237 | Sep 2003 | JP |
2004089269 | Mar 2004 | JP |
2004298454 | Oct 2004 | JP |
2005312547 | Nov 2005 | JP |
2006102001 | Apr 2006 | JP |
D1281004 | Jul 2006 | JP |
2006346021 | Dec 2006 | JP |
2007089906 | Apr 2007 | JP |
2007105298 | Apr 2007 | JP |
2007105299 | Apr 2007 | JP |
2007105303 | Apr 2007 | JP |
2007167453 | Jul 2007 | JP |
2007190315 | Aug 2007 | JP |
2007202691 | Aug 2007 | JP |
2007202701 | Aug 2007 | JP |
2007209518 | Aug 2007 | JP |
2008079747 | Apr 2008 | JP |
2008086428 | Apr 2008 | JP |
2008272269 | Nov 2008 | JP |
2009045333 | Mar 2009 | JP |
2009050621 | Mar 2009 | JP |
2009101091 | May 2009 | JP |
2009112590 | May 2009 | JP |
2009125199 | Jun 2009 | JP |
2009125200 | Jun 2009 | JP |
2009125203 | Jun 2009 | JP |
2009136601 | Jun 2009 | JP |
2009148425 | Jul 2009 | JP |
2009178384 | Aug 2009 | JP |
2009178422 | Aug 2009 | JP |
2009195303 | Sep 2009 | JP |
2009219744 | Oct 2009 | JP |
2009240416 | Oct 2009 | JP |
2010022560 | Feb 2010 | JP |
2010131206 | Jun 2010 | JP |
2010201093 | Sep 2010 | JP |
2010221067 | Oct 2010 | JP |
2011030700 | Feb 2011 | JP |
2011239858 | Feb 2011 | JP |
2011104014 | Jun 2011 | JP |
2011125537 | Jun 2011 | JP |
2011156254 | Aug 2011 | JP |
2012070867 | Apr 2012 | JP |
20010024622 | Mar 2001 | KR |
20010113258 | Dec 2001 | KR |
20020035634 | May 2002 | KR |
20040022412 | Mar 2004 | KR |
20050092868 | Sep 2005 | KR |
100639632 | Oct 2006 | KR |
520458 | Jul 2003 | SE |
WO-1996029037 | Sep 1996 | WO |
WO-1999025294 | May 1999 | WO |
WO9925287 | May 1999 | WO |
WO-2000028929 | May 2000 | WO |
WO-2000069483 | Nov 2000 | WO |
WO-2003015681 | Feb 2003 | WO |
WO-2006047282 | May 2006 | WO |
WO-2006134906 | Dec 2006 | WO |
WO-2008093659 | Aug 2008 | WO |
WO-2010109992 | Sep 2010 | WO |
WO-2010131548 | Nov 2010 | WO |
WO-2011053044 | May 2011 | WO |
WO-2012052172 | Apr 2012 | WO |
Entry |
---|
All Office Actions, U.S. Appl. No. 14/247,598. |
International Search Report and Written Opinion, PCT/US2015/020498, dated May 28, 2015. |
Office Actions for U.S. Appl. No. 14/656,820. |
Office Actions for U.S. Appl. No. 15/590,037. |
Number | Date | Country | |
---|---|---|---|
20150282999 A1 | Oct 2015 | US |