The present invention relates to absorbent articles with channeled cores and printed signals.
Absorbent articles for receiving and retaining bodily discharges such as urine or feces are well known in the art. Examples of these include disposable diaper(s), training pants and adult incontinence articles. Typically, disposable diapers comprise a liquid pervious topsheet that faces the wearer's body, a liquid impervious backsheet that faces the wearer's clothing and an absorbent core interposed between the liquid pervious topsheet and the backsheet.
An important component of disposable absorbent articles is the absorbent core/absorbent structure. The absorbent core/structure typically includes superabsorbent polymer material, such as hydrogel-forming polymer material, also referred to as absorbent gelling material, AGM, or superabsorbent polymer, SAP. This superabsorbent polymer material ensures that large amounts of bodily fluids, e.g. urine, can be absorbed by the absorbent article during its use and be locked away, thus providing low rewet and good skin dryness.
Traditionally, the superabsorbent polymer material is incorporated into the absorbent core structure with pulp, i.e. cellulose fibres. To make the absorbent core structures thinner, it has been proposed to reduce or eliminate these cellulose fibres from the absorbent core structures.
However, it was found that some absorbent core structures with reduced cellulose fibre levels, whilst very thin when not loaded with bodily fluids, may have an increased stiffness when partially loaded or fully loaded, especially in those regions which comprise most of the absorbent capacity of the absorbent article, such as the front region and crotch region of the diaper. It has been found that by providing specific permanent channels that are free of superabsorbent polymer particles or free of superabsorbent polymer material, improved liquid transport is achieved, and hence faster acquisition, and more efficient liquid absorbency over the whole absorbent structure; even though less absorbent material may be used, surprisingly improved performance can be achieved. By immobilising the absorbent material or channels (by the use of adhesive, the channels are more permanent, and remain channels during the use of the absorbent structure, e.g. when friction is applied to the absorbent structure, or when the absorbent structure is wetted, and the absorbent material expands. Furthermore, it has been found that by the provision of such channels, for example in the front region of the absorbent core/structure, and/or in the crotch region of the absorbent core/structure, a diaper of increased flexibility can be provided, whilst surprisingly maintaining its performance throughout its use.
As the functionality of the absorbent core is changed to improve, e.g. absorbency, fit, or reduced cost, the performance and/or appearance of the article may be affected negatively. Efforts can be made to modify the article or parts of the article in order to provide them with a particular appearance. In some examples, the article may be modified to communicate or signal to the caregiver that the channels exist in the absorbent core of the article, and that the channels are there to create faster and more efficient liquid absorbency. Such signalling or communication may be done, for example, via exterior graphics and/or interior printed adhesives. As such, there is a need for improved absorbent articles comprising absorbent cores with channels that exhibit excellent performance and that are aesthetically pleasing.
Absorbent articles herein may provide a topsheet, a backsheet, an absorbent core disposed between the topsheet and the backsheet. The absorbent core may comprise a channel, and the backsheet may comprise graphics which substantially match the shape of the channel.
“Absorbent article” refers to a device that absorbs and contains body exudates, and, more specifically, refers to devices that are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body. Absorbent articles may include adult and infant diaper (1), including pants, such as infant training pants and adult incontinence undergarments, and feminine hygiene products, such as sanitary napkins and panty-liners and adult in continent pads, and breast pads, care mats, bibs, wound dressing products, and the like.
Absorbent articles may further include floor cleaning articles, food industry articles, and the like. As used herein, the term “body fluids” or “body exudates” includes, but is not limited to, urine, blood, vaginal discharges, breast milk, sweat and fecal matter.
As used herein “diaper (1)” refers to devices which are intended to be placed against the skin of a wearer to absorb and contain the various exudates discharged from the body. Diaper (1)s are generally worn by infants and incontinent persons about the lower torso so as to encircle the waist and legs of the wearer. Examples of diaper (1)s include infant or adult diaper (1)s and pant-like diaper (1)s such as training pants. A diaper may comprise a fastening system, which may include at least one fastening member (8) and at least one landing zone (9), and may also comprise leg cuffs (10) and elastic members (11). “Training pant”, as used herein, refers to disposable garments having a waist opening and leg openings designed for infant or adult wearers. A pant may be placed in position on the wearer by inserting the wearer's legs into the leg openings and sliding the pant into position about a wearer's lower torso. A pant may be preformed by any suitable technique including, but not limited to, joining together portions of the article using refastenable and/or non-refastenable bonds (e.g., seam, weld, adhesive, cohesive bond, fastener, etc.). A pant may be preformed anywhere along the circumference of the article (e.g., side fastened, front waist fastened).
“Disposable” is used herein to describe articles that are generally not intended to be laundered or otherwise restored or reused (i.e., they are intended to be discarded after a single use and, may be recycled, composted or otherwise disposed of in an environmentally compatible manner).
As used herein “absorbent structure (13)” refers to a three dimensional structure useful to absorb and contain liquids, such as urine. The absorbent structure (13) may be the absorbent structure (13) of an absorbent article or may be only part of the absorbent core (7) of an absorbent article, i.e. an absorbent component of the absorbent core (7), as will be further described herein.
“Superabsorbent polymer material” as used herein refers to substantially water-insoluble polymer material that can absorb at least 10 times (and typically at least 15 times or at least 20 times) its weight of a 0.9% saline solution in de-mineralized water as measured using the Centrifuge Retention Capacity test (Edana 441.2-01).
“Nonwoven material” as used herein refers to a manufactured web of directionally or randomly orientated fibers, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet-milling, whether or not additionally needled. Nonwoven materials and processes for making them are known in the art. Generally, processes for making nonwoven materials comprise laying fibers onto a forming surface, which may comprise spunlaying, meltblowing, carding, airlaying, wetlaying, coform and combinations thereof. The fibers may be of natural or man-made origin and may be staple fibers or continuous filaments or be formed in situ.
“Visible” as used herein means capable of being perceived by the unaided human eye.
Absorbent Structure (13) with Channels
The present invention provides absorbent articles with absorbent cores comprising channels and printed signals that communicate the channels. The present invention relates to absorbent articles with channels disclosed in U.S. application Ser. Nos. 13/491,642, 13/491,643, 13/491,644, and 13/491,648, all filed Jun. 10, 2011.
The absorbent structure (13) herein comprises a supporting sheet (16) with an absorbent layer (17) of absorbent material (50). The absorbent material (50) comprises at least a superabsorbent polymer material and optionally a cellulosic material, such as a cellulose, e.g. pulp, or modified cellulose.
The absorbent structure (13) also comprises one or more adhesive material(s), further described below. The absorbent layer (17) is three dimensional and comprises a first substantially longitudinal channel (26) and a second substantially longitudinal channel (26) that are substantially free of said superabsorbent polymer material. Other materials may be present in said channels (26), as further described below, for example said one or more adhesive material(s) (40; 60).
The absorbent structure (13) and the absorbent layer (17) each have a longitudinal dimension and average length L, e.g. extending in the longitudinal dimension of the structure or layer and a transverse dimension and average width W, e.g. extending in the transverse dimension of the structure or layer. The absorbent structure (13) and the absorbent layer (17) each have a front region, being in use towards the front of the user, back region, being in use towards the back of the user, and therein between a crotch region, each extending the full transverse width of the structure/layer, and each having ⅓ of the average length of the structure/layer.
The absorbent structure (13) and the absorbent layer (17) each possess a central longitudinal axis X, a central transverse axis Y perpendicular to said central longitudinal axis X; said absorbent layer (17) and said absorbent structure (13) have each a pair of opposing longitudinal side edges extending in the longitudinal dimension of the structure or layer and a pair of opposing transverse edges (19), e.g. front transverse edge being in use towards the front of a user (wearer), and a back transverse edge being in use towards the back of a user. The longitudinal side edges (18) and/or transverse edges (19) of the absorbent structure (13) or absorbent layer (17) may be parallel respectively to the central longitudinal axis and/or central transverse axis respectively or one or more may be curvilinear, and for instance provide for a narrower transverse dimension in the crotch region. Typically the longitudinal side edges are mirror images of one another in the longitudinal X-axis.
The central longitudinal X-axis of the absorbent layer (17) delimits first and second longitudinal side portions (20) of the absorbent layer (17), respectively, referred herein as longitudinal side portions (20). Each of said longitudinal side portions is thus present in said front region, crotch region and back region, and hence, there is a first longitudinal portion's front region, and a second longitudinal portion's front region etc. In some embodiments herein, said longitudinal portions of the absorbent layer (17) are mirror images of one another in the X-axis of the layer.
The absorbent layer (17) comprises at least a first channel (26) and second channel (26) that are substantially free of (e.g. free of) said superabsorbent polymer particles, said channels (26) extending through the thickness (height) of the absorbent layer (17). (It should be understood that, accidentally, a small, negligible amount of superabsorbent polymer particles may be present in the channel, which does not contribute to the overall functionality). When the absorbent layer (17) comprises cellulosic or cellulose, in some embodiments the said first and second channels (26) are also free of such cellulosic/cellulose material.
The first channel (26) is present in said first longitudinal side portion of the absorbent layer (17) and the second channel (26) is present in said second longitudinal side portion of the absorbent layer (17).
The first and second channel (26) each extend substantially longitudinally, which means typically that each channel (26) extends more in the longitudinal dimension than in the transverse dimension, and typically at least twice as much in the longitudinal dimension than in the transverse dimension.
Thus, this includes channels (26) that are completely longitudinal and parallel to the longitudinal direction of said absorbent layer (17) (i.e. paralleled to said longitudinal-axis); and this includes channels (26) that may be curved, provided the radius of curvature is typically at least equal (optionally at least 1.5 or at least 2.0 times this average transverse dimension) to the average transverse dimension of the absorbent layer; and this includes channels (26) that are straight but under an angle of (e.g. from 5°) up to 30°, or for example up to 20°, or up to 10° with a line parallel to the longitudinal axis. This may also includes channels with an angle therein, provided said angle between two parts of a channel is at least 120°, at least 150°; and in any of these cases, provided the longitudinal extension of the channel is more than the transverse extension.
In some embodiments, there may be no completely or substantially transverse channels present in at least said crotch region, or no such channels at all.
Each of said first and second channels (26) may have an average width W′ that is least 4% of the average width W of said absorbent layer (17), or for example W′ is at least 7% of W; and/or for example and up to 25% of W, or up to 15% of W; and/or for example at least 5 mm; and for example up to 25 mm, or for example up to 15 mm.
Each of said first and second channels (26) may have an average length L′ which may for example be up to 80% of the average length L of said absorbent layer (17); if the channels (26) are only in the front region, or only in the crotch region, or only in the back region, L′ is for example up to 25% of L, or up to 20% of L, and/or L′ is for example at least 5% of L, or at least 10% of L; and/or L′ is for example at least 10 mm, or at least 20 mm; if the channels (26) extend in said crotch region and front region, and optionally the back region, L′ is for example up to 80% of L, or up to 70% of L, and/or L′ is for example at least 40% of L, or at least 50% of L. In case the channel is not parallel to the longitudinal axis, the length L′ of the channel is the length as measured by projection against the longitudinal axis.
The channels (26) may typically be so-called “permanent” channels (26). By permanent, it is meant that the integrity of the channels (26) is at least partially maintained both in the dry state and in the wet state, including during friction by the wearer thereon. The Wet Channel Integrity Test described below can be used to test if channels are permanent following wet saturation and to what extent.
Permanent channels (26) may be obtained by provision of one or more adhesive material that immobilize said absorbent material (50), and/or said channels (26), e.g. or said absorbent layer (17), and/or that immobilize said supporting sheet (16) into said channels (26), or part thereof. The absorbent cores (7) may comprise in particular permanent channels formed by bonding of the first supporting sheet (16) and second supporting sheet (16′) through the channels, as exemplarily shown in
Indeed, the inventors observed that such channels provide for fast liquid acquisition which reduces risk of leakages. The permanent channels help to avoid saturation of the absorbent layer in the region of fluid discharge (such saturation increases the risk of leakages). Furthermore, the inventors surprisingly found that, in contrast to what would be expected, whilst decreasing the overall amount of superabsorbent polymer material in the absorbent structure is reduced (by providing channels free of such material), the fluid handling properties of the absorbent structure, or diaper, are improved. Permanent channels, also have the further advantages that in wet state the absorbent material cannot move within the core and remains in its intended position, thus providing better fit and fluid absorption.
For example, the inventors have compared the amount of AGM loss in a wet state according to the WAIIT test for a core having two absorbent layers with permanent channels as shown in
In short, the WAIIT test determines the amount of non-immobilized absorbent particulate material amount in the cores in wet conditions. In this test, the absorbent core is wet to 73% capacity and is cut in its middle in the transversal direction and left to fall from a pre-determined height and loss of material is measured. Further information regarding the test can be found in US 2008/0312622 A1.
The results were that the core had a Wet Immobilization of 87% (StDev=5%) of AGM compared to a Wet Immobilization of 65% (StDev=5%) for the comparative core without channels. In this example the channels were made permanent by adhesive bonding of the two supporting sheets in the channels using two layers of thermoplastic fibrous adhesive (Fuller 1151 applied twice at 5 gsm) and one layer of hotmelt adhesive (Fuller 1358 applied at 5 gsm).
Wet Channel Integrity Test
This test is designed to check the integrity of a channel following wet saturation. The test can be performed directly on an absorbent structure or on an absorbent core containing the absorbent structure.
Advantageously, a permanent channel according to the disclosure has a percentage of integrity of at least 20%, or 30%, or 40%, or 50%, or 60, or 70%, or 80%, or 90% following this test.
As for example shown in
In addition, or alternatively, the absorbent structure (13) may comprise one or more adhesive materials (40) applied on said absorbent layer (17) or part thereof, that is already supported by said supporting sheet (16), (herein referred to as “first adhesive material”) e.g. after said absorbent material (50) is combined with/deposited on said supporting sheet (16) to form an absorbent layer (17). This may for example be a thermoplastic fibrous adhesive, as described herein after. It some embodiments, this may be applied continuously over the absorbent layer (17), hence over the absorbent material (50) and in the channels (26), to immobilize the absorbent layer and to optionally also adhere the supporting sheet in said channel, as described above. This is for example shown in
It should be understood that the first and second adhesive material may be the same type of adhesive, for example as a thermoplastic hotmelt adhesive, for example as described below, the difference between the first and second adhesive thus being the location where it is applied.
In some embodiments, said one or more adhesive material are at least present in the channels (26), for example at least said first adhesive material, or both said first and second adhesive material. It may thus be present on the longitudinal walls of the channels (26) (extending the height of the absorbent layer (17) and the length thereof). If the supporting sheet (16) material folds into said channels (26), or part thereof, e.g. the supporting sheet (16) has undulations into said channels (26) or part thereof, said undulations may be fixed to said walls or part thereof, to ensure the channels (26) are maintained (at least partially) during use. This is for example shown in
The first and second channels (26) may be mirror images of one another with respect to the central longitudinal axis (X-axis) of the absorbent layer (17)/structure.
In some embodiments, and as for example shown in the Figures, there is no channel (26) that coincides with said longitudinal axis of said absorbent layer (17). The channels (26) may be spaced apart from one another over their whole longitudinal dimension. The smallest spacing distance D may for example be at least 5% of average transverse dimension W of layer, or for example at least 10% of W, or at least 15% of W; or for example may be at least 5 mm, or for example at least 8 mm.
Furthermore, in order to reduce the risk of fluid leakages, the longitudinal main channels (26) typically do not extend up to any of the transverse edges (19) and/or longitudinal edges (18) of the absorbent layer (17), as for example shown in the Figures. Typically, the smallest distance I between a channel (26) and the nearest longitudinal edge corresponds to at least 5% of W, or for example to at least 10% of W. In some embodiments, the distance is for example at least 10 mm; the smallest distance F between a channel and the nearest transverse edge (19) of the absorbent layer (17) may for example be at least 5% of the average length L of the layer.
The absorbent structure may comprise only two channels, for example only in the front region, such as for example shown in
The absorbent structure (13) may comprise more than two of such channels (26), for example at least 4, or at least 5 or at least 6. Some or all of these may be substantially parallel to one another, for example being all straight and completely longitudinally, and/or two or more or all may be mirror images of one another in the longitudinal axis, or two or more may be curved or angled and for example mirror images of one another in the longitudinal axis, and two or more may be differently curved or straight, and for example mirror images of one another in the longitudinal axis. This is for example shown in
For example the front region of the absorbent layer (17) may comprise two or more channels (26), that are typically mirror images of one another in the longitudinal axis of the layer, and the crotch region may comprise two or more channels (26), that are typically mirror images of one another in the longitudinal axis of the layer, for example shown in
The first and second channels (26), and optionally further channels (26), may be positioned in said absorbent layer (17) such that there is a central longitudinal strip, coinciding with said longitudinal axis, which is free of any channels (26); said absorbent material (50) may be substantially continuously present in said strip. For example, said strip may have a minimum width D of at least 5% of W, or at least 10% of W, and/or for example at least 5 mm, or at least 10 mm or at least 15 mm, and/or even up to 40 mm.
In some embodiments, in said central longitudinal strip between two neighboring channels (26) the average basis weight of absorbent material (50), or of said superabsorbent polymer material, is at least 350, and for example up to 1000 grams per m2, or for example from 450 grams per m2, and for example up to 750 grams per m2.
In some embodiments, adjacent each first and second channel, and optionally adjacent said further channel(s), said absorbent material (50) is substantially continuously present.
The absorbent structure (13) typically comprises one or more further material(s) (e.g. a further material layer) to cover the absorbent layer (17), herein referred to as further material; the further material may be a layer comprising adhesive, for example on the surface that is to contact the absorbent layer (17) of the absorbent structure (13) herein. Thus, the further material may comprise, on the surface to be placed adjacent said absorbent layer (17) of the absorbent structure (13), an adhesive material.
The resulting structure is herein referred to as “absorbent core (7)”. Examples thereof are shown in
This further material may be a further absorbent structure (13′), with a second absorbent layer (17′) and a second supporting sheet (16′), so that both absorbent layers (17, 17′) are sandwiched between said supporting sheets (16; 16′); this may be a further absorbent structure (13′) of the disclosure, with two or more channels (26′) as described herein, and for example shown in
The second absorbent structure (13′) may be identical to the first absorbent structure (13), or they may both be absorbent structure with channels (26; 26′) of the disclosure, but they may be different, for example having different channels, different number of channels (such as for example shown in
The channels (26), or some of those, of the first absorbent structure (13) and the channels (26′) of the second absorbent structure (13′), or some of those, may coincide and overlap with one another; e.g. completely or for example coincide only partially and overlap only partially; or some or all of the channels (26; 26′) may even not coincide and not overlap one another. In some embodiments they are about identical to one another and the channels (26) of one structure substantially completely coincide and overlap the channels (26) of another structure. This is for example shown in
In some embodiments, the further material may be a part of the supporting sheet (16), which is folded over the absorbent layer (17) and then sealed along the peripheral edges, to enclose the absorbent layer (17).
In some embodiments, the further material is a further supporting sheet (16′), i.e. the absorbent structure (13) is covered with a further supporting sheet (16′), said absorbent layer then being sandwiched between the two supporting sheets.
In some embodiments, the further material may be an acquisition material layer (70) and/or an acquisition sheet (12), for example sealed to said supporting sheet (16). In some embodiments, the further material includes a further absorbent structure, e.g. any of those described above, or further supporting sheet (16′), and then combined with an acquisition material layer (70), and optionally a further acquisition sheet (12). This is for example shown in
The further material may also be an acquisition material layer (70) present adjacent said absorbent layer (17), the acquisition material layer (70) optionally comprising chemically cross-linked cellulosic fibers, and the acquisition material layer being supported on a second supporting sheet (16′). The absorbent layer (17) and the acquisition material layer (70) may then be sandwiched between said supporting sheet (16) of the first structure and said second supporting sheet (16′), as exemplary shown in
The supporting sheet (16) of the first structure and/or the second supporting sheet (16′) of the acquisition material layer (70) may fold into the channels (26) of the first absorbent structure (13) and/or optionally into the channels (26′) of the acquisition material layer (70), if present, or part of these channels (26,26′). The one or more adhesive material(s) may be at least present in the channels (26, 26′), or part thereof, and the supporting sheets (16; 16′) may be adhered to one another in said channels (26, 26′) by one or more of these adhesive material(s). Another second adhesive (60′) may be present between the second supporting sheet (16′) and the acquisition material layer (70). Another adhesive (not represented) may be placed between the acquisition material layer (70) and the absorbent layer (17), in addition to the thermoplastic adhesive (40), to improve better adhesion of both layers.
In any of these cases, the further material, can then be sealed to the supporting sheet (16) along the peripheral edges thereof, to enclose the absorbent layer (s) (17; optionally 17′).
In any of these cases the supporting sheet (16) or acquisition layer/sheet may fold into (i.e. undulate into) said channels (26) or part thereof. This is shown for example in
It may be adhered to the supporting sheet (16) of the absorbent structure (13) of the disclosure in said channels (26), e.g. by an adhesive material, as described herein. Alternatively, or in addition, it may be adhered to the walls of the channels (26 and/or 26′) or part thereof.
In some embodiments the absorbent structure (13) comprises such a further material overlaying said absorbent layer (17), and a pressure means is applied selectively to said supporting sheet (16) and/or to said further material, in those parts that coincide with said channels (26 and/or 26′), to pressurize said supporting sheet (16) and/or said further material into said channels of the absorbent structure (13) and/or into the channels of a further (second) absorbent structure 913′) if present (so: into channels 26 and/or 26′, if present), to aid formulation of said undulations and/or to aid adhering of the further material and said supporting sheet (16) to one another in said channels (26 and/or 26′), if an adhesive material is present as described herein.
The pressure means may be a pressure roll with raised portions that have substantially the size, shape, pattern of said channels (26 and/or 26′), that can coincide (i.e.: mate) with said parts of the supporting sheet (16) or further material coinciding with said channels (26 and/or 26′).
In some embodiments, the further (e.g. second) supporting sheet (16′) may be wider than the absorbent structure to enable the second supporting sheet (16′) to fold into the channels (26 and/or 26′) or part thereof, and thereby may adhere to the first supporting sheet (16). This is for example shown in
In embodiments wherein the absorbent core (7) comprises two (or more) absorbent structures (13; 13′) comprising the channels (26; 26′), described herein, it may be that one or two, or more, or all, of the channels (26) of one absorbent structure (13) substantially superpose the channels (26′) of the adjacent absorbent structure (13′). The resulting absorbent core (7) is then a laminate of absorbent structures (13′; 13′) with channels (26; 26′), wherein the channels (26;26′) extend substantially through the thickness of the absorbent layers (17;17′). This is for example shown in
In addition or alternatively, it may be that one or two, or more, or all, channels (26) of one absorbent structure (13) do not superpose the channels (26′) of the adjacent absorbent structure (13′); they may for example be complementary with the channels (26) of the adjacent structure. By complementary it is meant that the channels (26′) of the second absorbent structure (13′) form an extension of the channels (26) of the first absorbent structure (13).
In some embodiments, the absorbent core (7) may comprise two or more absorbent structures (13), one of which being the structure of the disclosure, and one being an absorbent structure (13) with a supporting sheet (16′) with thereon an absorbent layer (17′) (with superabsorbent polymer material) without channels and/or without adhesive.
If a second absorbent structure (13′) is present in the absorbent core (7), this may comprise one or more adhesives, in the manner as described above, and for the reasons described above.
For example, it may be present such that it coincides with the channels (26) of the first absorbent structure (13) at least, and/or with its channels (26′), if present.
Absorbent Material (50)
The absorbent layer (17) comprises absorbent material (50) that comprises superabsorbent polymer material (e.g. particles), optionally combined with cellulosic material (including for example cellulose, comminuted wood pulp in the form of fibers). The further material described above (e.g. a further, second absorbent structure (13′) may include an absorbent material, and the following may apply thereto too.
In some embodiment, the absorbent material (50) may comprise at least 60%, or at least 70% by weight of superabsorbent polymer material, and at the most 40% or at the most 30% of cellulosic material.
In some other embodiments, the absorbent layer (17) comprises absorbent material (50) that consists substantially of absorbent polymer material, e.g. particles, e.g. less than 5% by weight (of the absorbent material (50)) of cellulosic material is present; and said absorbent layer (17)/absorbent structure (13), may be free of cellulosic material.
Typically, the superabsorbent polymer material is in the form of particles. Suitable for use in the absorbent layer (17) can comprise any superabsorbent polymer particles known from superabsorbent literature, for example such as described in Modern Superabsorbent Polymer Technology, F. L. Buchholz, A. T. Graham, Wiley 1998. The absorbent polymer particles may be spherical, spherical-like or irregular shaped particles, such as Vienna-sausage shaped particles, or ellipsoid shaped particles of the kind typically obtained from inverse phase suspension polymerizations. The particles can also be optionally agglomerated at least to some extent to form larger irregular particles.
In some embodiments herein, the absorbent material (50) as a whole and/or said particulate superabsorbent polymer material at least, has a high sorption capacity, e.g. having a CRC of for example at least 20 g/g, or at 30 g/g. Upper limits may for example be up to 150 g/g, or up to 100 g/g.
In some embodiments herein, the absorbent material (50) comprising or consisting of superabsorbent polymer particles that are formed from polyacrylic acid polymers/polyacrylate polymers, for example having a neutralization degree of from 60% to 90%, or about 75%, having for example sodium counter ions.
The superabsorbent polymer may be polyacrylates and polyacrylic acid polymers that are internally and/or surface cross-linked. Suitable materials are described in the PCT Patent Application WO 07/047598 or for example WO 07/046052 or for example WO2009/155265 and WO2009/155264. In some embodiments, suitable superabsorbent polymer particles may be obtained by current state of the art production processes as is more particularly described in WO 2006/083584. The superabsorbent polymers may be internally cross-linked, i.e. the polymerization is carried out in the presence of compounds having two or more polymerizable groups which can be free-radically copolymerized into the polymer network. Useful crosslinkers include for example ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane as described in EP-A 530 438, di- and triacrylates as described in EP-A 547 847, EP-A 559 476, EP-A 632 068, WO 93/21237, WO 03/104299, WO 03/104300, WO 03/104301 and in DE-A 103 31 450, mixed acrylates which, as well as acrylate groups, include further ethylenically unsaturated groups, as described in DE-A 103 31 456 and DE-A 103 55 401, or crosslinker mixtures as described for example in DE-A 195 43 368, DE-A 196 46 484, WO 90/15830 and WO 02/32962 as well as cross-linkers described in WO2009/155265. The superabsorbent polymer particles may be externally surface cross-linked, or: post cross-linked). Useful post-crosslinkers include compounds including two or more groups capable of forming covalent bonds with the carboxylate groups of the polymers. Useful compounds include for example alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds as described in EP-A 083 022, EP-A 543 303 and EP-A 937 736, polyhydric alcohols as described in DE-C 33 14 019, cyclic carbonates as described in DE-A 40 20 780, 2-oxazolidone and its derivatives, such as N-(2-hydroxyethyl)-2-oxazolidone as described in DE-A 198 07 502, bis- and poly-2-oxazolidones as described in DE-A 198 07 992, 2-oxotetrahydro-1,3-oxazine and its derivatives as described in DE-A 198 54 573, N-acyl-2-oxazolidones as described in DE-A 198 54 574, cyclic ureas as described in DE-A 102 04 937, bicyclic amide acetals as described in DE-A 103 34 584, oxetane and cyclic ureas as described in EP-A 1 199 327 and morpholine-2,3-dione and its derivatives as described in WO 03/031482.
The superabsorbent polymers or particles thereof may have surface modifications, such as being coated or partially coated with a coating agent. Examples of coated absorbent polymer particles are disclosed in WO2009/155265. The coating agent may be such that it renders the absorbent polymer particles more hydrophilic. For example, it may be hydrophilic (i.e., fumed) silica, such as Aerosils. The coating agent may be a polymer, such as an elastic polymer or a film-forming polymer or an elastic film-forming polymer, which forms an elastomeric (elastic) film coating on the particle. The coating may be a homogeneous and/or uniform coating on the surface of the absorbent polymer particles. The coating agent may be applied at a level of from 0.1% to 5%.
The superabsorbent polymer particles may have a particle sizes in the range from 45 μm to 4000 μm, more specifically a particle size distribution within the range of from 45 μm to about 2000 μm, or from about 100 μm to about 1000 or to 850 μm. The particle size distribution of a material in particulate form can be determined as it is known in the art, for example by means of dry sieve analysis (EDANA 420.02 “Particle Size distribution).
In some embodiments herein, the superabsorbent material is in the form of particles with a mass medium particle size up to 2 mm, or between 50 microns and 2 mm or to 1 mm, or from 100 or 200 or 300 or 400 or 500 μm, or to 1000 or to 800 or to 700 μm; as can for example be measured by the method set out in for example EP-A-0691133. In some embodiments of the disclosure, the superabsorbent polymer material is in the form of particles whereof at least 80% by weight are particles of a size between 50 m and 1200 m and having a mass median particle size between any of the range combinations above. In addition, or in another embodiment of the disclosure, said particles are essentially spherical. In yet another or additional embodiment of the disclosure the superabsorbent polymer material has a relatively narrow range of particle sizes, e.g. with the majority (e.g. at least 80%, at least 90% or even at least 95% by weight) of particles having a particle size between 50 μm and 1000 μm, between 100 μm and 800 μm, between 200 μm and 600 μm.
Supporting Sheet (16; 16′)
The absorbent structure (13) herein comprises a supporting sheet (16) on which said absorbent material (50) is supported and immobilized. The further material may be or include a supporting sheet (16′), and the following applies also to such a sheet (16′).
This supporting sheet (16) may be an individual sheet or a web material that is subsequently divided in to individual absorbent structure (13)s, in particular paper, films, wovens or nonwovens, or laminate of any of these.
In some embodiments herein, the supporting sheet (16) is a nonwoven, e.g. a nonwoven web, such as a carded nonwoven, spunbond nonwoven or meltblown nonwoven, and including nonwoven laminates of any of these.
The fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ. Commercially available fibers have diameters ranging typically from less than about 0.001 mm to more than about 0.2 mm and they come in several different forms: short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yarn). The fibers may be bicomponent fibers, for example having a sheath-core arrangement, e.g. with different polymers forming the sheath and the core. Nonwoven fabrics can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, and carding. The basis weight of nonwoven fabrics is usually expressed in grams per square meter (gsm).
The nonwoven herein may be made of hydrophilic fibers; “Hydrophilic” describes fibers or surfaces of fibers, which are wettable by aqueous fluids (e.g. aqueous body fluids) deposited on these fibers. Hydrophilicity and wettability are typically defined in terms of contact angle and the strike through time of the fluids, for example through a nonwoven fabric. This is discussed in detail in the American Chemical Society publication entitled “Contact angle, wettability and adhesion”, edited by Robert F. Gould (Copyright 1964). A fiber or surface of a fiber is said to be wetted by a fluid (i.e. hydrophilic) when either the contact angle between the fluid and the fiber, or its surface, is less than 90°, or when the fluid tends to spread spontaneously across the surface of the fiber, both conditions are normally co-existing. Conversely, a fiber or surface of the fiber is considered to be hydrophobic if the contact angle is greater than 90° and the fluid does not spread spontaneously across the surface of the fiber.
The supporting sheet (16) herein may be air-permeable. Films useful herein may therefore comprise micro pores. Nonwovens herein may for example be air permeable. The supporting sheet (16) may have for example an air-permeability of from 40 or from 50, to 300 or to 200 m3/(m2×min), as determined by EDANA method 140-1-99 (125 Pa, 38.3 cm2). The supporting sheet (16) may alternatively have a lower air-permeability, e.g. being non-air-permeable, to for example be better detained on a moving surface comprising vacuum.
In some executions, the supporting sheet (16) is a nonwoven laminate material, a nonwoven laminate web, for example of the SMS or SMMS type.
In order to form easily said undulations, the supporting sheet (16) may have a basis weight that is less than 60 gsm, or for example than 50 gsm, for example from 5 gsm to 40 gsm, or to 30 gsm.
The supporting sheet (16) may have a CD-extensibility or a MD-extensibility.
In one of the embodiment herein, the supporting sheet (16) has undulations that fold (undulate) into said first and second channels (26), and optionally in to said further channel(s), of part thereof. For example the undulations may extend over about the full longitudinal dimension of the channel; they may for example extend to complete average height of the absorbent layer (17)/channel, or for example only up to 75% thereof, or up to 50% of the average height of the absorbent layer (17)/channel. This aids immobilization of the absorbent material (50) adjacent said channels (26) and said channels (26) of said layers.
The undulations may be adhered with said one or more adhesive material, e.g. said second adhesive material, to said walls of said channels (26). The supporting sheet (16) may alternatively, or in addition, be adhered in said channels (26) to said further material, e.g. second supporting sheet (16), describe herein above, e.g. with said first and/or second adhesive.
Adhesive Material
The absorbent structure (13) may comprise one or more adhesive materials. In some embodiments, it comprises a first adhesive material and/or a second adhesive material, as described above, and in the manner described above.
The absorbent core herein may comprise a further second absorbent structure (13′) that may comprise one or more adhesive materials; the following equally applies thereto.
Any suitable adhesive can be used for this, for example so-called hotmelt adhesives used. For example, a sprayable hot melt adhesives, such as H.B. Fuller Co. (St. Paul, Minn.) Product No. HL-1620-B, can be used.
The adhesive material(s) may not only help in immobilizing the absorbent material on the supporting sheet but it may also help in maintaining the integrity of the channels in the absorbent structure absorbent core during storage and/or during use of the disposable article. The adhesive material may help to avoid that a significant amount of absorbent material migrates into the channels. Furthermore, when the adhesive material is applied in the channels or on the supporting sheet portions coinciding with the channels it may thereby help to adhere the supporting sheet of the absorbent structure to said walls, and/or to a further material, as will be described in further details below.
In some embodiments, the first adhesive (40) and/or the second adhesive (60) may be a thermoplastic adhesive material.
In some embodiments, the first adhesive (40) may be applied as fibers, forming a fibrous network that immobilizes the absorbent material on the supporting sheet. The thermoplastic adhesive fibers may be partially in contact with the supporting sheet of the absorbent structure; if applied also in the channels, it (further) anchors the absorbent layer to the supporting sheet.
The thermoplastic adhesive material may for example allow for such swelling, without breaking and without imparting too many compressive forces, which would restrain the absorbent polymer particles from swelling. Thermoplastic adhesive materials (40; 60) suitable for use in the present disclosure includes hot melt adhesives comprising at least a thermoplastic polymer in combination with a plasticizer and other thermoplastic diluents such as tackifying resins and additives such as antioxidants. Exemplary suitable hot melt adhesive materials (40; 60) are described in EP 1447067 A2. In some embodiments, the thermoplastic polymer has a molecular weight (Mw) of more than 10,000 and a glass transition temperature (Tg) below room temperature or −6° C.>Tg<16° C. In certain embodiments, the concentrations of the polymer in a hot melt are in the range of about 20 to about 40% by weight. In certain embodiments, thermoplastic polymers may be water insensitive. Exemplary polymers are (styrenic) block copolymers including A-B-A triblock structures, A-B diblock structures and (A-B)n radial block copolymer structures wherein the A blocks are non-elastomeric polymer blocks, typically comprising polystyrene, and the B blocks are unsaturated conjugated diene or (partly) hydrogenated versions of such. The B block is typically isoprene, butadiene, ethylene/butylene (hydrogenated butadiene), ethylene/propylene (hydrogenated isoprene), and mixtures thereof.
Other suitable thermoplastic polymers that may be employed are metallocene polyolefins, which are ethylene polymers prepared using single-site or metallocene catalysts. Therein, at least one comonomer can be polymerized with ethylene to make a copolymer, terpolymer or higher order polymer. Also applicable are amorphous polyolefins or amorphous polyalphaolefins (APAO) which are homopolymers, copolymers or terpolymers of C2 to C8 alpha olefins.
The thermoplastic adhesive material, typically a hot-melt adhesive material, is generally present in the form of fibres, i.e. the hot melt adhesive can be fiberized. In some embodiments, the thermoplastic adhesive material forms a fibrous network over the absorbent polymer particles. Typically, the fibres can have an average thickness from about 1 μm to about 100 μm, or from about 25 μm to about 75 μm, and an average length from about 5 mm to about 50 cm. In particular the layer of hot melt adhesive material can be provided such as to comprise a net-like structure. In certain embodiments the thermoplastic adhesive material is applied at an amount of from 0.5 to 30 g/m2, or from 1 to 15 g/m2, or from 1 and 10 g/m2 or even from 1.5 and 5 g/m2 per supporting sheet (16).
A typical parameter for an adhesive suitable for use in the present disclosure can be a loss angle tan Delta at 60° C. of below the value of 1, or below the value of 0.5. The loss angle tan Delta at 60° C. is correlated with the liquid character of an adhesive at elevated ambient temperatures. The lower tan Delta, the more an adhesive behaves like a solid rather than a liquid, i.e. the lower its tendency to flow or to migrate and the lower the tendency of an adhesive superstructure as described herein to deteriorate or even to collapse over time. This value is hence particularly important if the absorbent article is used in a hot climate.
It may be beneficial, e.g. for process reasons and/or performance reasons, that the thermoplastic adhesive material has a viscosity of between 800 and 4000 mPa·s, or from 1000 mPa·s or 1200 mPa·s or from 1600 mPa·s to 3200 mPa·s or to 3000 mPa·s or to 2800 mPa·s or to 2500 mPa·s, at 175° C., as measurable by ASTM D3236-88, using spindle 27, 20 rpm, 20 minutes preheating at the temperature, and stirring for 10 min.
The thermoplastic adhesive material may have a softening point of between 60° C. and 150° C., or between 75° C. and 135° C., or between 90° C. and 130° C., or between 100° C. and 115° C., as can be determined with ASTM E28-99 (Herzog method; using glycerine).
In one embodiment herein, the thermoplastic adhesive component may be hydrophilic, having a contact angle of less than 90°, or less than 80° or less than 75° or less than 70°, as measurable with ASTM D 5725-99.
Signals
The absorbent articles of the present invention may comprise signals that communicate to the consumer the functionality and benefits of the absorbent core channels. Non-limiting examples of such signals may include printed adhesive layers, backsheet graphics, embossing of the topsheet and/or acquisition layer, and combinations thereof.
One type of signal that may be used to communicate the existence and the benefits of the channels is a printed adhesive layer. In some embodiments, an article with channels in the core may have a layer of an adhesive that is applied in a pattern that connotes the absorbency and other benefits of the channels. This adhesive layer may be applied to a substrate, such as a supporting layer, in some embodiments an acquisition layer, that may be positioned between a topsheet and the absorbent core with channels. In some embodiments, the layer of printed adhesive may be visible through the topsheet.
In some embodiments, a fluid, such as an adhesive, may be applied or printed onto an advancing substrate. The fluid application apparatus may include a slot die applicator and a substrate carrier. The slot die applicator may include a slot opening, a first lip, and a second lip, the slot opening located between the first lip and the second lip. And the substrate carrier may include one or more pattern elements and may be adapted to advance the substrate past the slot die applicator as the slot die applicator discharges adhesive onto the substrate. In operation, when the first surface of the substrate is disposed on the substrate carrier, the substrate carrier advances the second surface of the substrate past the slot opening of the slot die applicator. In turn, the substrate is intermittently compressed between the slot die applicator and the pattern surface of the pattern element. As the substrate is intermittently compressed, adhesive discharged from the slot die applicator is applied onto the second surface of the advancing substrate in an area having a shape that is substantially the same as a shape defined by the pattern surface. In some embodiments, the adhesive may be a different color than the substrate. The adhesive may comprise pigments or dyes. Other methods and apparatuses involved for the application of adhesives in pre-determined patterns to an advancing substrate are disclosed in U.S. Pat. No. 8,186,296. In some embodiments, the fluid printed on the substrate may be an ink without an adhesive.
The term “pattern” as used herein means a decorative or distinctive design, not necessarily repeating or imitative, including but not limited to the following: marbled, check, mottled, veined, clustered, geometric, spotted, helical, swirl, arrayed, variegated, textured, spiral, cycle, contoured, laced, tessellated, starburst, lobed, lightning, blocks, textured, pleated, cupped, concave, convex, braided, tapered, and combinations thereof. Examples of patterns for the printed adhesive layer may be seen in
As discussed above, the absorbent structure of the present invention typically comprises one or more further materials, such as a further material layer, to cover the absorbent layer. This layer may comprise an adhesive, for example on the surface that is to contact the absorbent layer of the absorbent structure. Thus, the further material may comprise on the surface to be placed adjacent said absorbent layer of the absorbent structure, an adhesive material. In some embodiments, the further material layer may be an acquisition material layer that may have the adhesive printed onto it to form a patterned appearance. Thus, the adhesive is printed onto the surface of the acquisition layer that is adjacent to the absorbent core. In addition to an absorbent core with channels and a printed adhesive layer printed onto the surface of the acquisition layer adjacent to the absorbent core, the article may also comprise a topsheet, wherein the printed adhesive layer is visible through the topsheet. In some embodiments, the printing (ink or an adhesive with ink) may be on the topsheet itself, and where ink is the substance being printed, the printing may be performed using digital printing.
In some embodiments, the absorbent article may comprise graphics printed onto the backsheet. As the absorbent core is loaded with fluid, the absorbent material will expand in particular towards the backsheet, while the channels which do not comprise absorbent material will not expand. This difference may be used, as the channels will become more perceptible through the backsheet as fluid is absorbed as they may form depressions. These depressions will become more pronounced as the absorbent article absorbs the fluid.
The depth of these depressions formed by the channels on the backsheet side will be proportional to the amount of fluid absorbed, and the inventors have found that that the visual appearance to the caregiver may be improved by providing a backsheet printing which matches or at least indicates the region of the channels to the caregiver. Thus the backsheet printing may comprise a line or a curve which substantially matches the shape and/or position of the channels.
Backsheet graphics, for example, as shown in
As shown in
The relative lengths of any of the lines above may be expressed as ratios, and may be exact, or may be expressed with a tolerance of plus or minus 2%, 3%, 4%, 5%, 7%, or 10%, alone or in combination with other ratios of lengths, and the length may be rounded to the nearest whole number or multiple of 5, after the percent of tolerance is applied.
Applicants have found that ratios particularly important in signaling one or more benefits of the channels are those of: (a) A′ to L′; (b) B′ to L′; and (c) P′ to F′. In some embodiments: the A′ to L′ ratio will range from 2.2 to 2.7, preferably from 2.3 to 2.5, more preferably it will be 2.4. In some embodiments: the B′ to L′ ratio will range from 1.0 to 1.4, preferably from 1.1 to 1.3, more preferably it will be 1.2. In some embodiments: the P′ to F′ ratio will range from 8.0 to 9.8, preferably from 8.5 to 9.4, more preferably it will be 8.9.
Further, in some embodiments, the graphics visually signaling the inner channels will not extend beyond the area of the outer channels themselves, and/or the area where the absorbent core is present, and in some embodiments, the graphics visually signaling the outer channels will not extend beyond the area of the outer channels themselves, and/or the area where the absorbent core is present, and in some embodiments, the graphics visually signaling the inner and outer channels will not extend beyond the area of the inner and outer channels themselves, and/or the area where the absorbent core is present.
In addition, the article may comprise other or additional visual cues that signal the absorbent core channels, such as, for example, embossing. Embossing may be done on the topsheet or on the absorbent core, or, in some embodiments, there may be multi-layer embossing of both the topsheet and the absorbent core. For example, thermal embossing may be done over the channels (where there is no superabsorbent polymer) at a small gap setting to enhance the visual presence. Any embossing may be done alone or in combination with printing to help signal the absorbent core channels. Further, any embossing may be done to the topsheet, core, or both, on-line (during assembly of the absorbent article's component parts) or prior to such assembly, e.g. at the site where a supplier of component parts makes the component part itself.
In some embodiments, the printed adhesive layer or the backsheet printing may be a pattern that covers the majority or even all of the absorbent core. In other embodiments, the printed adhesive layer or backsheet printing may be printed only in discrete areas. For example, in some embodiments, the printed adhesive layer or backsheet printing may be printed so as to not overlap or intersect with the absorbent core channels. The term “overlap” as used herein means to cover over a part of, or to have an area in common. The term “intersect” as used herein means items that cut across or through each other, or that narrow and merge.
In order to ensure that absorbent article components (including graphic absorbent article components) are properly oriented when attached to other absorbent article components, registration may be used. Registration may include using a system to detect a location on an absorbent article component and to compare the location against a set point (which may be an operator desired or machine set location). The system may adjust placement of the absorbent article component in accordance with said comparison. For example, the location of absorbent core channels and a printed adhesive layer may be detected and a repeat length of the printed adhesive layer may be altered via a length control system (described in U.S. Pat. Nos. 6,444,064 and 6,955,733). Alternatively, a system may be used to detect and control the longitudinal or machine direction position of a component relative to a desired position on the absorbent article wherein the position at which subsequent occurrences of a first component is attached to a second component is altered to ensure the first component is in the desired location. Such can be performed based on multiple detections and the use of an averaging position, deviation from the desired position, or by detecting less frequently than every occurrence. Additionally, a system may detect a first location on a first absorbent article component and a second location on a second absorbent article component, where the first and second locations may be compared relative to each other and against a set point or desired offset position. The system may adjust placement of the first and/or second absorbent article components in accordance with said comparison. Combinations of detection methods may be used.
In some embodiments, registration may be used to optimize the visual impression of the printing and the absorbent core channels.
In some embodiments, any printing, whether a printed adhesive layer, a backsheet graphic, or some combination, may match, or substantially match the shape or contour of the absorbent core channels. In some embodiments, the printing will not necessarily match or correlate with the shape or contour of the absorbent core channels, but will otherwise communicate or signal to the consumer the existence and/or benefits of the channels.
Absorbent Articles, e.g. Diapers
The absorbent structure (13) or absorbent core (7) herein may be useful in an absorbent article, such as described above, and in particular in a diaper (1), including fastenable diapers (1) and (refastenable) training pants, for infants or for adults, or in an absorbent pad, such as a sanitary napkin or adult incontinence undergarment pad.
The article may comprise, in addition to an absorbent structure (13) or absorbent core (7) as described herein, a topsheet and backsheet, and for example one or more side flaps or cuffs. The topsheet or cuffs or side flaps may comprise a skin care composition or lotion or powder, known in the art, panels, including those described in U.S. Pat. Nos. 5,607,760; 5,609,587; 5,635,191; 5,643,588.
Articles herein comprise a topsheet, facing the wearer in use, for example a nonwoven sheet, and/or an apertured sheet, including apertured formed films, as known in the art, and a backsheet.
The backsheet may be liquid impervious, as known in the art. In some embodiments, the liquid impervious backsheet comprises a thin plastic film such as a thermoplastic film having a thickness of about 0.01 mm to about 0.05 mm. Suitable backsheet materials comprise typically breathable material, which permit vapors to escape from the diaper (1) while still preventing exudates from passing through the backsheet. Suitable backsheet films include those manufactured by Tredegar Industries Inc. of Terre Haute, Ind. and sold under the trade names X15306, X10962 and X10964.
The backsheet, or any portion thereof, may be elastically extendable in one or more directions. The backsheet may be attached or joined to a topsheet, the absorbent structure/core, or any other element of the diaper (1) by any attachment means known in the art.
Diapers herein may comprise leg cuffs and/or barrier cuffs; the article then typically has a pair of opposing side flaps and/or leg and/or barrier cuffs, each of a pair being positioned adjacent one longitudinal side of the absorbent structure/core, and extending longitudinally along said structure/core, and typically being mirror images of one another in the longitudinal-axis of the article; if leg cuffs and barrier cuffs are present, then each leg cuffs is typically positioned outwardly from a barrier cuff. The cuffs may be extending longitudinally along at least 70% of the length of the article. The cuff(s) may have a free longitudinal edge that can be positioned out of the X-Y plane (longitudinal/transverse directions) of the article, i.e. in z-direction. The side flaps or cuffs of a pair may be mirror images of one another in the longitudinal axis of the article. The cuffs may comprise elastic material.
The diapers herein may comprise a waistband, or for example a front waistband and back waist band, which may comprise elastic material.
The diaper (1) may comprise side panels, or so-called ear panels. The diaper (1) may comprise fastening means, to fasten the front and back, e.g. the front and back waistband. Fastening systems may comprise fastening tabs and landing zones, wherein the fastening tabs are attached or joined to the back region of the diaper (1) and the landing zones are part of the front region of the diaper (1).
The absorbent structure (13) may be combined with, and the absorbent core (7) or diaper (1) may comprise, an acquisition layer (12) and/or acquisition material layer (70), or system thereof this may comprise chemically cross-linked cellulosic fibers. Such cross-linked cellulosic fibers may have desirable absorbency properties. Exemplary chemically cross-linked cellulosic fibers are disclosed in U.S. Pat. No. 5,137,537. In certain embodiments, the chemically cross-linked cellulosic fibers are cross-linked with between about 0.5 mole % and about 10.0 mole % of a C2 to C9 polycarboxylic cross-linking agent or between about 1.5 mole % and about 6.0 mole % of a C2 to C9 polycarboxylic cross-linking agent based on glucose unit. Citric acid is an exemplary cross-linking agent. In other embodiments, polyacrylic acids may be used. Further, according to certain embodiments, the cross-linked cellulosic fibers have a water retention value of about 25 to about 60, or about 28 to about 50, or about 30 to about 45. A method for determining water retention value is disclosed in U.S. Pat. No. 5,137,537. According to certain embodiments, the cross-linked cellulosic fibers may be crimped, twisted, or curled, or a combination thereof including crimped, twisted, and curled.
In a certain embodiment, one or both of the upper and lower acquisition layers may comprise a non-woven, which may be hydrophilic. Further, according to a certain embodiment, one or both of the upper and lower acquisition layers may comprise the chemically cross-linked cellulosic fibers, which may or may not form part of a nonwoven material. According to an exemplary embodiment, the upper acquisition layer may comprise a nonwoven, without the cross-linked cellulosic fibers, and the lower acquisition layer may comprise the chemically cross-linked cellulosic fibers. Further, according to an embodiment, the lower acquisition layer may comprise the chemically cross-linked cellulosic fibers mixed with other fibers such as natural or synthetic polymeric fibers. According to exemplary embodiments, such other natural or synthetic polymeric fibers may include high surface area fibers, thermoplastic binding fibers, polyethylene fibers, polypropylene fibers, PET fibers, rayon fibers, lyocell fibers, and mixtures thereof. Suitable non-woven materials for the upper and lower acquisition layers include, but are not limited to SMS material, comprising a spunbonded, a melt-blown and a further spunbonded layer. In certain embodiments, permanently hydrophilic non-wovens, and in particular, nonwovens with durably hydrophilic coatings are desirable. Another suitable embodiment comprises a SMMS-structure. In certain embodiments, the non-wovens are porous.
The diaper (1) may include a sub-layer disposed between the topsheet and the absorbent structure (13)/absorbent core (7), capable of accepting, and distributing and/or immobilizing bodily exudates. Suitable sublayers include acquisition layers, surge layers and or fecal material storage layers, as known in the art. Suitable materials for use as the sub-layer may include large cell open foams, macro-porous compression resistant non woven highlofts, large size particulate forms of open and closed cell foams (macro and/or microporous), highloft non-wovens, polyolefin, polystyrene, polyurethane foams or particles, structures comprising a multiplicity of vertically oriented, looped, strands of fibers, or apertured formed films, as described above with respect to the genital coversheet. (As used herein, the term “microporous” refers to materials that are capable of transporting fluids by capillary action, but having a mean pore size of more than 50 microns. The term “macroporous” refers to materials having pores too large to effect capillary transport of fluid, generally having pores greater than about 0.5 mm (mean) in diameter and more specifically, having pores greater than about 1.0 mm (mean) in diameter, but typically less than 10 mm or even less than 6 mm (mean).
Processes for assembling the absorbent article or diaper (1) include conventional techniques known in the art for constructing and configuring disposable absorbent articles. For example, the backsheet and/or the topsheet can be joined to the absorbent structure/core or to each other by a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive. Adhesives which have been found to be satisfactory are manufactured by H. B. Fuller Company of St. Paul, Minn. under the designation HL-1258 or H-2031. While the topsheet, the backsheet, and the absorbent structure (13)/core may be assembled in a variety of well-known configurations, diaper (1) configurations are described generally in U.S. Pat. No. 5,554,145 entitled “Absorbent Article With Multiple Zone Structural Elastic-Like Film Web Extensible Waist Feature” issued to Roe et al. on Sep. 10, 1996; U.S. Pat. No. 5,569,234 entitled “Disposable Pull-On Pant” issued to Buell et al. on Oct. 29, 1996; and U.S. Pat. No. 6,004,306 entitled “Absorbent Article With Multi-Directional Extensible Side Panels” issued to Robles et al. on Dec. 21, 1999.
Method of Making the Absorbent Structure (13)
The absorbent structure (13) herein may be made by any method comprising the step of depositing absorbent material (50) onto a supporting sheet (16), for example by pacing first said supporting sheet (16) onto raised portions in the shape and dimensions of said channels (26) to be produced and then depositing said absorbent material (50) thereon; thereby, the absorbent material (50) does not remain onto said raised portions, but only on the remaining portions of the supporting sheet (16).
In some embodiments, the absorbent structure (13) with the absorbent layer (17) with therein two or more channels (26) with substantially no absorbent material (50) is for example obtainable by a method comprising the steps of:
whereby said air-permeable outer shell is connected to one or more secondary vacuum systems for facilitating retention of supporting sheet (16) and/or said absorbent material (50) thereon, and
whereby, in a meeting point, said first moving endless surface and said outer shell are at least partially adjacent to one another and in close proximity of one another during transfer of said absorbent material (50) and such that each mating strip is substantially completely adjacent and in close proximity to a raised strip during transfer of said absorbent material (50);
Step i) 1) may involve spraying said first adhesive material in the form of fibers onto said absorbent layer (17), or part thereof, for example substantially continuously, so it is also present in said channels (26).
Step i) 2) may involve slot coating or spray-coating the supporting sheet (16), either continuously, or for example in a pattern corresponding to the channel (26) pattern.
Said reservoir(s) may be formed by of a multitude of grooves and/or cavities with a void volume, for receiving said absorbent material (50) therein. In some embodiments, the average width W of (each) strip may be at least 6 mm, or for example at least 7 mm, and/or at least at least 7%, or for example at least 10% of the average width of the respective reservoir.
Said grooves and/or cavities may each for example have a maximum dimension in transverse direction which is at least 3 mm, and whereby the shortest distance between directly neighboring cavities and/or grooves in substantially transverse dimension, is less than 5 mm. Cavities and/or grooves that are directly adjacent a raised strip may have a volume that is more than the volume of one or more, or all of their neighboring cavities or grooves, that are not directly adjacent said strip or another strip (thus further removed from a strip).
Said first moving endless surface's reservoir may be at least partially air permeable and said first moving endless surface may have a cylindrical surface with said reservoirs, rotatably moving around a stator, comprising a vacuum chamber; said second moving surface's outershell may be cylindrical, rotatably moving around a stator, comprising a secondary vacuum chamber connected to said secondary vacuum system.
The method may be to produce an absorbent core (7) or structure that comprises two or more of the above described absorbent structures (13;13′); for example two such layers, superposed on one another such that the absorbent material (50) of a first layer and the absorbent material (50) of the other second layer are adjacent one another and sandwiched between the supporting sheet (16) of the first layer and the supporting sheet (16) of the second layer.
The method may involve the provision of a pressure means, such as a pressure roll, that can apply pressure onto the absorbent structure (13), and typically an absorbent structure (13) whereby the absorbent material (50) is sandwiched between the supporting sheet (16) a further material; the pressure may be applied onto said supporting sheet (16) or on any of the further material/layer that placed over the absorbent layer (17), as described above in this section. This pressure application may be done to selectively apply pressure only onto the channels (26 and/or 26′) of the absorbent structure (13), e.g. on the portions of the supporting sheet (16) that correspond to the channels (26), and that thus not comprise (on the opposed surface) absorbent material (50), to avoid compaction of said absorbent material (50) itself and/or on the portions of the further material, e.g. the supporting sheet (16′) thereof, that correspond to the channels (26′), and that thus not comprise (on the opposed surface) absorbent material (50), to avoid compaction of said absorbent material (50) itself.
Thus, the pressure means may have a raised pressuring pattern corresponding to said pattern of the raised strip(s) and/or of said mating strip(s), in some corresponding to the pattern of the mating strip(s).
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.” Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
1733997 | Marr | Oct 1929 | A |
1734499 | Marinsky | Nov 1929 | A |
1989283 | Limacher | Jan 1935 | A |
2058509 | Rose | Oct 1936 | A |
2271676 | Bjornbak | Feb 1942 | A |
2450789 | Frieman | Oct 1948 | A |
2508811 | Best et al. | May 1950 | A |
2568910 | Condylis | Sep 1951 | A |
2570796 | Gross | Oct 1951 | A |
2570963 | Mesmer | Oct 1951 | A |
2583553 | Faure | Jan 1952 | A |
2705957 | Mauro | Apr 1955 | A |
2788003 | Van | Apr 1957 | A |
2788786 | Dexter | Apr 1957 | A |
2798489 | Behrman | Jul 1957 | A |
2807263 | Newton | Sep 1957 | A |
2830589 | Doner | Apr 1958 | A |
2890700 | Lönberg-Holm | Jun 1959 | A |
2890701 | Weinman | Jun 1959 | A |
2898912 | Adams | Aug 1959 | A |
2931361 | Sostsrin | Apr 1960 | A |
2977957 | Clyne | Apr 1961 | A |
3071138 | Gustavo | Jan 1963 | A |
3180335 | Duncan et al. | Apr 1965 | A |
3207158 | Yoshitake et al. | Sep 1965 | A |
3227160 | Joy | Jan 1966 | A |
3386442 | Sabee | Jun 1968 | A |
3561446 | Jones | Feb 1971 | A |
3572342 | Lindquist et al. | Mar 1971 | A |
3572432 | Burton | Mar 1971 | A |
3575174 | Mogor | Apr 1971 | A |
3578155 | Small et al. | May 1971 | A |
3606887 | Roeder | Sep 1971 | A |
3610244 | Jones | Oct 1971 | A |
3618608 | Brink | Nov 1971 | A |
3642001 | Sabee | Feb 1972 | A |
3653381 | Warnken | Apr 1972 | A |
3670731 | Harmon | Jun 1972 | A |
3688767 | Goldstein | Sep 1972 | A |
3710797 | Marsan | Jan 1973 | A |
3731688 | Litt et al. | May 1973 | A |
3756878 | Willot | Sep 1973 | A |
3774241 | Zerkle | Nov 1973 | A |
3776233 | Schaar | Dec 1973 | A |
3814100 | Nystrand et al. | Jun 1974 | A |
3828784 | Sabee | Oct 1974 | A |
3840418 | Sabee | Oct 1974 | A |
3847702 | Jones | Nov 1974 | A |
3848594 | Buell | Nov 1974 | A |
3848595 | Endres | Nov 1974 | A |
3848597 | Endres | Nov 1974 | A |
3860003 | Buell | Jan 1975 | A |
3863637 | MacDonald et al. | Feb 1975 | A |
3882870 | Hathaway | May 1975 | A |
3884234 | Taylor | May 1975 | A |
3900032 | Heurlen | Aug 1975 | A |
3911173 | Sprague, Jr. | Oct 1975 | A |
3920017 | Karami | Nov 1975 | A |
3924626 | Lee et al. | Dec 1975 | A |
3926189 | Taylor | Dec 1975 | A |
3929134 | Karami | Dec 1975 | A |
3929135 | Thompson | Dec 1975 | A |
3930501 | Schaar | Jan 1976 | A |
3938523 | Gilliland et al. | Feb 1976 | A |
3968799 | Schrading | Jul 1976 | A |
3978861 | Schaar | Sep 1976 | A |
3981306 | Krusko | Sep 1976 | A |
3987794 | Schaar | Oct 1976 | A |
3995637 | Schaar | Dec 1976 | A |
3995640 | Schaar | Dec 1976 | A |
3999547 | Hernandez | Dec 1976 | A |
4014338 | Schaar | Mar 1977 | A |
4034760 | Amirsakis | Jul 1977 | A |
4055180 | Karami | Oct 1977 | A |
4074508 | Reid | Feb 1978 | A |
4079739 | Whitehead | Mar 1978 | A |
4084592 | Tritsch | Apr 1978 | A |
4100922 | Hernandez | Jul 1978 | A |
4232674 | Melican | Nov 1980 | A |
4257418 | Hessner | Mar 1981 | A |
4259220 | Bunnelle et al. | Mar 1981 | A |
4296750 | Woon et al. | Oct 1981 | A |
4315508 | Bolick | Feb 1982 | A |
4324246 | Mullane et al. | Apr 1982 | A |
4340706 | Obayashi et al. | Jul 1982 | A |
4341216 | Obenour | Jul 1982 | A |
4342314 | Radel et al. | Aug 1982 | A |
4360021 | Stima | Nov 1982 | A |
4381783 | Elias | May 1983 | A |
4388075 | Mesek et al. | Jun 1983 | A |
4410571 | Korpman | Oct 1983 | A |
4461621 | Karami et al. | Jul 1984 | A |
4463045 | Ahr et al. | Jul 1984 | A |
4469710 | Rielley et al. | Sep 1984 | A |
4475912 | Coates | Oct 1984 | A |
4490148 | Beckeström | Dec 1984 | A |
4507438 | Obayashi et al. | Mar 1985 | A |
4515595 | Kievet et al. | May 1985 | A |
4527990 | Sigi | Jul 1985 | A |
4541871 | Obayashi et al. | Sep 1985 | A |
4551191 | Kock et al. | Nov 1985 | A |
4573986 | Minetola et al. | Mar 1986 | A |
4578072 | Lancaster | Mar 1986 | A |
4578702 | Campbell | Mar 1986 | A |
4585448 | Enloe | Apr 1986 | A |
4585450 | Rosch et al. | Apr 1986 | A |
4589878 | Mitrani | May 1986 | A |
4596568 | Flug | Jun 1986 | A |
4601717 | Blevins | Jul 1986 | A |
4606964 | Wideman | Aug 1986 | A |
4609518 | Curro et al. | Sep 1986 | A |
4610678 | Weisman et al. | Sep 1986 | A |
4623342 | Ito et al. | Nov 1986 | A |
4624666 | Derossett | Nov 1986 | A |
4629643 | Curro et al. | Dec 1986 | A |
4636207 | Buell | Jan 1987 | A |
4641381 | Heran et al. | Feb 1987 | A |
4646510 | McIntyre | Mar 1987 | A |
4662875 | Hirotsu et al. | May 1987 | A |
4666983 | Tsubakimoto et al. | May 1987 | A |
4670011 | Mesek | Jun 1987 | A |
4670012 | Johnson | Jun 1987 | A |
4680030 | Coates et al. | Jul 1987 | A |
4681579 | Toussant et al. | Jul 1987 | A |
4681581 | Coates | Jul 1987 | A |
4681793 | Linman et al. | Jul 1987 | A |
4690680 | Higgins | Sep 1987 | A |
4695278 | Lawson | Sep 1987 | A |
4699622 | Toussant et al. | Oct 1987 | A |
4704115 | Buell | Nov 1987 | A |
4704116 | Enloe | Nov 1987 | A |
4710189 | Lash | Dec 1987 | A |
4720321 | Smith | Jan 1988 | A |
4731066 | Korpman | Mar 1988 | A |
4731070 | Koci | Mar 1988 | A |
RE32649 | Brandt et al. | Apr 1988 | E |
4741941 | Englebert et al. | May 1988 | A |
4747846 | Boland et al. | May 1988 | A |
4753648 | Jackson | Jun 1988 | A |
4773905 | Molee | Sep 1988 | A |
4784892 | Storey et al. | Nov 1988 | A |
4785996 | Ziecker et al. | Nov 1988 | A |
4787896 | Houghton et al. | Nov 1988 | A |
4795454 | Dragoo | Jan 1989 | A |
4800102 | Takada | Jan 1989 | A |
4802884 | Fröidh et al. | Feb 1989 | A |
4806408 | Pierre et al. | Feb 1989 | A |
4806598 | Morman | Feb 1989 | A |
4808176 | Kielpikowski | Feb 1989 | A |
4808178 | Aziz | Feb 1989 | A |
4826880 | Lesniak et al. | May 1989 | A |
4834735 | Alemany et al. | May 1989 | A |
4834740 | Suzuki et al. | May 1989 | A |
4834742 | Wilson et al. | May 1989 | A |
4838886 | Kent | Jun 1989 | A |
4842666 | Werenicz | Jun 1989 | A |
4846815 | Scripps | Jul 1989 | A |
4846825 | Enloe et al. | Jul 1989 | A |
4848815 | Molloy | Jul 1989 | A |
4861652 | Lippert et al. | Aug 1989 | A |
4869724 | Scripps | Sep 1989 | A |
4886697 | Perdelwitz, Jr. et al. | Dec 1989 | A |
4888231 | Angstadt | Dec 1989 | A |
4892528 | Suzuki et al. | Jan 1990 | A |
4892535 | Bjornberg | Jan 1990 | A |
4892536 | DesMarais et al. | Jan 1990 | A |
4894060 | Nestegard | Jan 1990 | A |
4894277 | Akasaki | Jan 1990 | A |
4904251 | Igaue et al. | Feb 1990 | A |
4900317 | Buell | Mar 1990 | A |
4909802 | Ahr et al. | Mar 1990 | A |
4909803 | Aziz et al. | Mar 1990 | A |
4936839 | Molee | Jun 1990 | A |
4940463 | Leathers et al. | Jul 1990 | A |
4940464 | Van Gompel et al. | Jul 1990 | A |
4946527 | Battrell | Aug 1990 | A |
4950264 | Osborn | Aug 1990 | A |
4960477 | Mesek | Oct 1990 | A |
4963140 | Robertson et al. | Oct 1990 | A |
4966809 | Tanaka et al. | Oct 1990 | A |
4968313 | Sabee | Nov 1990 | A |
4990147 | Freeland | Feb 1991 | A |
4994053 | Lang | Feb 1991 | A |
5006394 | Baird | Apr 1991 | A |
5019063 | Marsan et al. | May 1991 | A |
5019072 | Polski | May 1991 | A |
5021051 | Hiuke | Jun 1991 | A |
5030314 | Lang | Jul 1991 | A |
5032120 | Freeland et al. | Jul 1991 | A |
5034008 | Breitkopf | Jul 1991 | A |
5037416 | Allen et al. | Aug 1991 | A |
5071414 | Elliott | Aug 1991 | A |
5072687 | Mitchell | Dec 1991 | A |
5085654 | Buell | Feb 1992 | A |
5087255 | Sims et al. | Feb 1992 | A |
5092861 | Nomura et al. | Mar 1992 | A |
5102597 | Roe et al. | Apr 1992 | A |
5114420 | Igaue et al. | May 1992 | A |
5124188 | Roe et al. | Jun 1992 | A |
5135522 | Fahrenkrug et al. | Aug 1992 | A |
5137537 | Herron et al. | Aug 1992 | A |
D329697 | Fahrenkrug et al. | Sep 1992 | S |
5143679 | Weber et al. | Sep 1992 | A |
5147343 | Kellenberger | Sep 1992 | A |
5147345 | Young et al. | Sep 1992 | A |
5149334 | Roe et al. | Sep 1992 | A |
5149335 | Kellenberger et al. | Sep 1992 | A |
5151091 | Glaug | Sep 1992 | A |
5151092 | Buell et al. | Sep 1992 | A |
5156793 | Buell et al. | Oct 1992 | A |
5167653 | Igaue et al. | Dec 1992 | A |
5167897 | Weber et al. | Dec 1992 | A |
5175046 | Nguyen | Dec 1992 | A |
5180622 | Berg et al. | Jan 1993 | A |
5190563 | Herron et al. | Mar 1993 | A |
5190606 | Merkatoris et al. | Mar 1993 | A |
5204997 | Suzuki et al. | Apr 1993 | A |
5213817 | Pelley | May 1993 | A |
5221274 | Buell et al. | Jun 1993 | A |
5235515 | Ungpiyakul et al. | Aug 1993 | A |
5242436 | Weil et al. | Sep 1993 | A |
5246431 | Minetola et al. | Sep 1993 | A |
5246432 | Suzuki et al. | Sep 1993 | A |
5246433 | Hasse et al. | Sep 1993 | A |
5248309 | Serbiak et al. | Sep 1993 | A |
5260345 | Desmarais et al. | Nov 1993 | A |
5269775 | Freeland et al. | Dec 1993 | A |
5281683 | Yano et al. | Jan 1994 | A |
H1298 | Ahr | Apr 1994 | H |
5300565 | Berg et al. | Apr 1994 | A |
5312386 | Correa et al. | May 1994 | A |
5331059 | Engelhardt et al. | Jul 1994 | A |
5336552 | Strack et al. | Aug 1994 | A |
5348547 | Payne et al. | Sep 1994 | A |
5358500 | LaVon et al. | Oct 1994 | A |
5366782 | Curro et al. | Nov 1994 | A |
5382610 | Harada et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5387208 | Ashton et al. | Feb 1995 | A |
5387209 | Yamamoto et al. | Feb 1995 | A |
5389095 | Suzuki | Feb 1995 | A |
5397316 | Lavon et al. | Mar 1995 | A |
5397317 | Thomas | Mar 1995 | A |
5399175 | Glaug | Mar 1995 | A |
5401792 | Babu et al. | Mar 1995 | A |
5409771 | Dahmen et al. | Apr 1995 | A |
H1440 | New et al. | May 1995 | H |
5411497 | Tanzer et al. | May 1995 | A |
5415644 | Enloe | May 1995 | A |
5425725 | Tanzer et al. | Jun 1995 | A |
5429630 | Beal et al. | Jul 1995 | A |
5433715 | Tanzer et al. | Jul 1995 | A |
5451219 | Suzuki | Sep 1995 | A |
5451442 | Pieniak | Sep 1995 | A |
5460622 | Dragoo et al. | Oct 1995 | A |
5460623 | Emenaker et al. | Oct 1995 | A |
5462541 | Bruemmer et al. | Oct 1995 | A |
5476458 | Glaug et al. | Dec 1995 | A |
5486166 | Bishop et al. | Jan 1996 | A |
5486167 | Dragoo et al. | Jan 1996 | A |
5490846 | Ellis et al. | Feb 1996 | A |
5492962 | Lahrman et al. | Feb 1996 | A |
5494622 | Heath et al. | Feb 1996 | A |
5499978 | Buell et al. | Mar 1996 | A |
5507736 | Clear et al. | Apr 1996 | A |
5507895 | Suekane | Apr 1996 | A |
5509915 | Hanson et al. | Apr 1996 | A |
5514104 | Cole | May 1996 | A |
5518801 | Chappell et al. | May 1996 | A |
5520674 | Hines et al. | May 1996 | A |
5522810 | Allen, Jr. | Jun 1996 | A |
5527300 | Sauer | Jun 1996 | A |
5531730 | Dreier | Jul 1996 | A |
5532323 | Yano et al. | Jul 1996 | A |
5542943 | Sageser | Aug 1996 | A |
5549592 | Fries et al. | Aug 1996 | A |
5549593 | Ygge et al. | Aug 1996 | A |
5549791 | Herron et al. | Aug 1996 | A |
5554145 | Roe et al. | Sep 1996 | A |
5559335 | Zing et al. | Sep 1996 | A |
5560878 | Dragoo et al. | Oct 1996 | A |
5562634 | Flumene et al. | Oct 1996 | A |
5562646 | Goldman et al. | Oct 1996 | A |
5569234 | Buell et al. | Oct 1996 | A |
5571096 | Dobrin et al. | Nov 1996 | A |
5574121 | Irie et al. | Nov 1996 | A |
5575783 | Clear et al. | Nov 1996 | A |
5580411 | Nease et al. | Dec 1996 | A |
5584829 | Lavash et al. | Dec 1996 | A |
5586979 | Thomas | Dec 1996 | A |
5591152 | Buell et al. | Jan 1997 | A |
5591155 | Nishikawa et al. | Jan 1997 | A |
5593399 | Tanzer et al. | Jan 1997 | A |
5599335 | Goldman et al. | Feb 1997 | A |
5601542 | Melius et al. | Feb 1997 | A |
5607414 | Richards et al. | Mar 1997 | A |
5607537 | Johnson et al. | Mar 1997 | A |
5607760 | Roe et al. | Mar 1997 | A |
5609587 | Roe | Mar 1997 | A |
5609588 | DiPalma et al. | Mar 1997 | A |
5611879 | Morman | Mar 1997 | A |
5613959 | Roessler et al. | Mar 1997 | A |
5613960 | Mizutani | Mar 1997 | A |
5614283 | Potnis et al. | Mar 1997 | A |
5622589 | Johnson et al. | Apr 1997 | A |
5624423 | Anjur | Apr 1997 | A |
5624424 | Saisaka et al. | Apr 1997 | A |
5625222 | Yoneda et al. | Apr 1997 | A |
5607416 | Yamamoto et al. | May 1997 | A |
5626571 | Young et al. | May 1997 | A |
5628741 | Buell et al. | May 1997 | A |
5628845 | Murray et al. | May 1997 | A |
5635191 | Roe et al. | Jun 1997 | A |
5635271 | Zafiroglu | Jun 1997 | A |
5637106 | Mitchell | Jun 1997 | A |
5643238 | Baker | Jul 1997 | A |
5643243 | Klemp | Jul 1997 | A |
5643588 | Roe et al. | Jul 1997 | A |
5649914 | Glaug | Jul 1997 | A |
5650214 | Anderson | Jul 1997 | A |
H1674 | Ames et al. | Aug 1997 | H |
5658268 | Johns et al. | Aug 1997 | A |
5662634 | Yamamoto et al. | Sep 1997 | A |
5662638 | Johnson et al. | Sep 1997 | A |
5662758 | Hamilton et al. | Sep 1997 | A |
5669894 | Goldman et al. | Sep 1997 | A |
5674215 | Ronnberg | Oct 1997 | A |
5681300 | Ahr | Oct 1997 | A |
5683374 | Yamamoto | Nov 1997 | A |
5685874 | Buell et al. | Nov 1997 | A |
5690624 | Sasaki et al. | Nov 1997 | A |
5690627 | Clear et al. | Nov 1997 | A |
5691035 | Chappell et al. | Nov 1997 | A |
5691036 | Chappell et al. | Nov 1997 | A |
5695488 | Sosalla | Dec 1997 | A |
5700254 | McDowall et al. | Dec 1997 | A |
5702376 | Glaug | Dec 1997 | A |
5714156 | Schmidt et al. | Feb 1998 | A |
5723087 | Chappell et al. | Mar 1998 | A |
5733275 | Davis et al. | Mar 1998 | A |
5749866 | Roe et al. | May 1998 | A |
5752947 | Awolin | May 1998 | A |
5756039 | Mcfall et al. | May 1998 | A |
H1732 | Johnson | Jun 1998 | H |
5762641 | Bewick Sonntag et al. | Jun 1998 | A |
5766388 | Pelley | Jun 1998 | A |
5766389 | Brandon et al. | Jun 1998 | A |
5772825 | Schmitz | Jun 1998 | A |
5776121 | Roe et al. | Jul 1998 | A |
5779831 | Schmitz | Jul 1998 | A |
5788684 | Abuto et al. | Aug 1998 | A |
5795345 | Mizutani | Aug 1998 | A |
5797892 | Glaug | Aug 1998 | A |
5797894 | Cadieux et al. | Aug 1998 | A |
5807365 | Luceri | Sep 1998 | A |
5810796 | Kimura et al. | Sep 1998 | A |
5810800 | Hunter et al. | Sep 1998 | A |
5814035 | Gryskiewicz et al. | Sep 1998 | A |
5820618 | Roberts et al. | Oct 1998 | A |
5827257 | Fujioka | Oct 1998 | A |
5830202 | Bogdanski et al. | Nov 1998 | A |
5833678 | Ashton et al. | Nov 1998 | A |
5837789 | Stockhausen et al. | Nov 1998 | A |
5840404 | Graff | Nov 1998 | A |
5843059 | Niemeyer et al. | Dec 1998 | A |
5846231 | Fujioka et al. | Dec 1998 | A |
5846232 | Serbiak et al. | Dec 1998 | A |
5849816 | Suskind et al. | Dec 1998 | A |
5851204 | Mitzutani | Dec 1998 | A |
5855572 | Schmidt | Jan 1999 | A |
5858013 | Kling | Jan 1999 | A |
5858515 | Stokes et al. | Jan 1999 | A |
5865823 | Curro | Feb 1999 | A |
5865824 | Chen | Feb 1999 | A |
5873868 | Nakahata | Feb 1999 | A |
5876391 | Roe et al. | Mar 1999 | A |
5879751 | Bogdanski | Mar 1999 | A |
5891118 | Toyoshima | Apr 1999 | A |
5891544 | Chappell et al. | Apr 1999 | A |
5897545 | Kline et al. | Apr 1999 | A |
5904673 | Roe et al. | May 1999 | A |
5925439 | Haubach | Jul 1999 | A |
5928184 | Etheredge | Jul 1999 | A |
5931825 | Kuen et al. | Aug 1999 | A |
5938648 | Lavon et al. | Aug 1999 | A |
5938650 | Baer et al. | Aug 1999 | A |
5941862 | Haynes et al. | Aug 1999 | A |
5944706 | Palumbo et al. | Aug 1999 | A |
5947949 | Inoue et al. | Sep 1999 | A |
5951536 | Osborn, III et al. | Sep 1999 | A |
5957908 | Kline et al. | Sep 1999 | A |
5968025 | Roe et al. | Oct 1999 | A |
5968029 | Chappell et al. | Oct 1999 | A |
5980500 | Shimizu et al. | Nov 1999 | A |
5981824 | Luceri | Nov 1999 | A |
5989236 | Roe et al. | Nov 1999 | A |
6004306 | Roe et al. | Dec 1999 | A |
6022430 | Blenke et al. | Feb 2000 | A |
6022431 | Blenke et al. | Feb 2000 | A |
6042673 | Johnson et al. | Mar 2000 | A |
6050984 | Fujioka | Apr 2000 | A |
6054631 | Gent | Apr 2000 | A |
6056732 | Fujioka et al. | May 2000 | A |
6060115 | Borowski et al. | May 2000 | A |
6068620 | Chmielewski | May 2000 | A |
6080909 | Osterdahl et al. | Jun 2000 | A |
6083210 | Young et al. | Jul 2000 | A |
6090994 | Chen | Jul 2000 | A |
6091336 | Zand | Jul 2000 | A |
6093474 | Sironi | Jul 2000 | A |
6099515 | Sugito | Aug 2000 | A |
6102892 | Putzer et al. | Aug 2000 | A |
6103814 | Van Drongelen et al. | Aug 2000 | A |
6107537 | Elder et al. | Aug 2000 | A |
6110157 | Schmidt | Aug 2000 | A |
6117121 | Faulks et al. | Sep 2000 | A |
6117803 | Morman et al. | Sep 2000 | A |
6120486 | Toyoda et al. | Sep 2000 | A |
6120487 | Ashton | Sep 2000 | A |
6120489 | Johnson et al. | Sep 2000 | A |
6120866 | Arakawa et al. | Sep 2000 | A |
6121509 | Ashraf et al. | Sep 2000 | A |
6129717 | Fujioka et al. | Oct 2000 | A |
6129720 | Blenke et al. | Oct 2000 | A |
6132411 | Huber et al. | Oct 2000 | A |
6139912 | Onuschak | Oct 2000 | A |
6143821 | Houben | Nov 2000 | A |
6152908 | Widlund | Nov 2000 | A |
6156023 | Yoshioka | Dec 2000 | A |
6156424 | Taylor | Dec 2000 | A |
6160197 | Lassen | Dec 2000 | A |
6165160 | Suzuki et al. | Dec 2000 | A |
6174302 | Kumasaka | Jan 2001 | B1 |
6177606 | Etheredge | Jan 2001 | B1 |
6177607 | Blaney et al. | Jan 2001 | B1 |
6186996 | Martin | Feb 2001 | B1 |
6210386 | Inoue | Apr 2001 | B1 |
6210390 | Karlsson | Apr 2001 | B1 |
6231556 | Osborn, III | May 2001 | B1 |
6231566 | Lai | May 2001 | B1 |
6238380 | Sasaki | May 2001 | B1 |
6241716 | Rönnberg | Jun 2001 | B1 |
6254294 | Muhar | Jul 2001 | B1 |
6258996 | Goldman | Jul 2001 | B1 |
6265488 | Fujino et al. | Jul 2001 | B1 |
6290686 | Tanzer et al. | Sep 2001 | B1 |
6306122 | Narawa et al. | Oct 2001 | B1 |
6307119 | Cammarota et al. | Oct 2001 | B1 |
6315765 | Datta | Nov 2001 | B1 |
6319239 | Daniels et al. | Nov 2001 | B1 |
6322552 | Blenke et al. | Nov 2001 | B1 |
6325787 | Roe et al. | Dec 2001 | B1 |
6326525 | Hamajima | Dec 2001 | B1 |
6330735 | Hahn et al. | Dec 2001 | B1 |
6334858 | Rönnberg et al. | Jan 2002 | B1 |
6336922 | Van Gompel et al. | Jan 2002 | B1 |
6340611 | Shimizu | Jan 2002 | B1 |
6342715 | Shimizu | Jan 2002 | B1 |
6402731 | Suprise et al. | Jan 2002 | B1 |
6350332 | Thomas et al. | Feb 2002 | B1 |
6368687 | Joseph et al. | Apr 2002 | B1 |
6371948 | Mizutani | Apr 2002 | B1 |
6372952 | Lash et al. | Apr 2002 | B1 |
6375644 | Mizutani | Apr 2002 | B2 |
6376034 | Brander | Apr 2002 | B1 |
6383431 | Dobrin et al. | May 2002 | B1 |
6383960 | Everett et al. | May 2002 | B1 |
6394989 | Mizutani | May 2002 | B2 |
6403857 | Gross et al. | Jun 2002 | B1 |
6406467 | Dilnik et al. | Jun 2002 | B1 |
6409883 | Makolin | Jun 2002 | B1 |
6410820 | McFall et al. | Jun 2002 | B1 |
6410822 | Mizutani | Jun 2002 | B1 |
6402729 | Boberg et al. | Jul 2002 | B1 |
6413248 | Mizutani | Jul 2002 | B1 |
6413249 | Turi et al. | Jul 2002 | B1 |
6414214 | Engelhardt et al. | Jul 2002 | B1 |
6416502 | Connelly et al. | Jul 2002 | B1 |
6416697 | Venturino et al. | Jul 2002 | B1 |
6419667 | Avalon et al. | Jul 2002 | B1 |
6423046 | Fujioka et al. | Jul 2002 | B1 |
6423048 | Suzuki et al. | Jul 2002 | B1 |
6423884 | Oehmen | Jul 2002 | B1 |
6429350 | Tanzer et al. | Aug 2002 | B1 |
6432094 | Fujioka et al. | Aug 2002 | B1 |
6432098 | Kline et al. | Aug 2002 | B1 |
6432099 | Rönnberg | Aug 2002 | B2 |
6437214 | Everett et al. | Aug 2002 | B1 |
6441268 | Edwardsson | Aug 2002 | B1 |
6443933 | Suzuki et al. | Sep 2002 | B1 |
6444064 | Henry et al. | Sep 2002 | B1 |
6447496 | Mizutani | Sep 2002 | B1 |
6458111 | Onishi et al. | Oct 2002 | B1 |
6458877 | Ahmed et al. | Oct 2002 | B1 |
6459016 | Rosenfeld et al. | Oct 2002 | B1 |
6461034 | Schaefer et al. | Oct 2002 | B1 |
6461342 | Tanji et al. | Oct 2002 | B2 |
6461343 | Schaefer et al. | Oct 2002 | B1 |
6472478 | Funk et al. | Oct 2002 | B1 |
6475201 | Saito et al. | Nov 2002 | B2 |
6492574 | Chen et al. | Dec 2002 | B1 |
6494872 | Suzuki et al. | Dec 2002 | B1 |
6494873 | Karlsson et al. | Dec 2002 | B2 |
6500159 | Carvalho | Dec 2002 | B1 |
6503233 | Chen | Jan 2003 | B1 |
6503979 | Funk et al. | Jan 2003 | B1 |
6506186 | Roessler | Jan 2003 | B1 |
6506961 | Levy | Jan 2003 | B1 |
6515195 | Lariviere | Feb 2003 | B1 |
6517525 | Berthou | Feb 2003 | B1 |
6518479 | Graef | Feb 2003 | B1 |
6520947 | Tilly et al. | Feb 2003 | B1 |
6521811 | Lassen | Feb 2003 | B1 |
6521812 | Graef | Feb 2003 | B1 |
6524294 | Hilston et al. | Feb 2003 | B1 |
6525240 | Graef | Feb 2003 | B1 |
6528698 | Mizutani et al. | Mar 2003 | B2 |
6529860 | Strumolo et al. | Mar 2003 | B1 |
6531025 | Lender et al. | Mar 2003 | B1 |
6531027 | Lender et al. | Mar 2003 | B1 |
6534149 | Daley et al. | Mar 2003 | B1 |
6559081 | Erspamer | May 2003 | B1 |
6559239 | Riegel et al. | May 2003 | B1 |
6562168 | Schmitt et al. | May 2003 | B1 |
6562192 | Hamilton | May 2003 | B1 |
6563013 | Murota | May 2003 | B1 |
6569137 | Suzuki et al. | May 2003 | B2 |
6573422 | Rosenfeld | Jun 2003 | B1 |
6585713 | LaMahieu et al. | Jul 2003 | B1 |
6585858 | Otto et al. | Jul 2003 | B1 |
6602234 | Klemp et al. | Aug 2003 | B2 |
6605070 | Ludwig et al. | Aug 2003 | B2 |
6605172 | Anderson et al. | Aug 2003 | B1 |
6605752 | Magnusson et al. | Aug 2003 | B2 |
6610900 | Tanzer | Aug 2003 | B1 |
6630054 | Graef | Oct 2003 | B1 |
6632209 | Chmielewski | Oct 2003 | B1 |
6632504 | Gillespie et al. | Oct 2003 | B1 |
6645569 | Cramer et al. | Nov 2003 | B2 |
6646180 | Chmielewski | Nov 2003 | B1 |
6648869 | Gillies et al. | Nov 2003 | B1 |
6648870 | Itoh et al. | Nov 2003 | B2 |
6648871 | Kusibojoska et al. | Nov 2003 | B2 |
6649807 | Mizutani | Nov 2003 | B2 |
6649810 | Minato et al. | Nov 2003 | B1 |
6657015 | Riegel et al. | Dec 2003 | B1 |
6657102 | Furuya | Dec 2003 | B2 |
6667424 | Hamilton | Dec 2003 | B1 |
6670522 | Graef | Dec 2003 | B1 |
6673982 | Chen | Jan 2004 | B1 |
6673983 | Graef | Jan 2004 | B1 |
6673985 | Mizutani | Jan 2004 | B2 |
6682515 | Mizutani et al. | Jan 2004 | B1 |
6682516 | Johnston | Jan 2004 | B2 |
6689115 | Popp et al. | Feb 2004 | B1 |
6689934 | Dodge, II et al. | Feb 2004 | B2 |
6695827 | Chen | Feb 2004 | B2 |
6700034 | Lindsay et al. | Mar 2004 | B1 |
6703538 | Lassen | Mar 2004 | B2 |
6705465 | Ling et al. | Mar 2004 | B2 |
6706129 | Ando et al. | Mar 2004 | B2 |
6706943 | Onishi | Mar 2004 | B2 |
6710224 | Chmielewski et al. | Mar 2004 | B2 |
6710225 | Everett et al. | Mar 2004 | B1 |
6716205 | Popp et al. | Apr 2004 | B2 |
6716441 | Roe et al. | Apr 2004 | B1 |
6717029 | Baker | Apr 2004 | B2 |
6726668 | Underhill et al. | Apr 2004 | B2 |
6726792 | Johnson et al. | Apr 2004 | B1 |
6730387 | Rezai et al. | May 2004 | B2 |
6734335 | Graef | May 2004 | B1 |
6746976 | Urankar et al. | Jun 2004 | B1 |
6790798 | Suzuki et al. | Sep 2004 | B1 |
6802834 | Melius et al. | Oct 2004 | B2 |
6809158 | Ikeuchi et al. | Oct 2004 | B2 |
6811642 | Ochi | Nov 2004 | B2 |
6818083 | Mcamish et al. | Nov 2004 | B2 |
6818166 | Edwardson et al. | Nov 2004 | B2 |
6830800 | Curro et al. | Dec 2004 | B2 |
6832905 | Delzer et al. | Dec 2004 | B2 |
6840929 | Kurata | Jan 2005 | B2 |
6846374 | Popp | Jan 2005 | B2 |
6858771 | Yoshimasa | Feb 2005 | B2 |
6863933 | Cramer et al. | Mar 2005 | B2 |
6863960 | Curro et al. | Mar 2005 | B2 |
6867345 | Shimoe et al. | Mar 2005 | B2 |
6867346 | Dopps | Mar 2005 | B1 |
6878433 | Curro et al. | Apr 2005 | B2 |
6878647 | Rezai | Apr 2005 | B1 |
6880211 | Jackson et al. | Apr 2005 | B2 |
6891080 | Minato | May 2005 | B2 |
6904865 | Klofta | Jun 2005 | B2 |
6911574 | Mizutani | Jun 2005 | B1 |
6923797 | Shinohara et al. | Aug 2005 | B2 |
6923926 | Walter et al. | Aug 2005 | B2 |
6926703 | Sugito | Aug 2005 | B2 |
6929629 | Drevik et al. | Aug 2005 | B2 |
6939914 | Qin et al. | Sep 2005 | B2 |
6946585 | Brown | Sep 2005 | B2 |
6953451 | Berba | Oct 2005 | B2 |
6955733 | Henry et al. | Oct 2005 | B2 |
6962578 | Lavon | Nov 2005 | B1 |
6962645 | Graef | Nov 2005 | B2 |
6965058 | Raidel | Nov 2005 | B1 |
6969781 | Graef | Nov 2005 | B2 |
6972010 | Pesce et al. | Dec 2005 | B2 |
6972011 | Maeda et al. | Dec 2005 | B2 |
6979564 | Glucksmann et al. | Dec 2005 | B2 |
6982052 | Daniels et al. | Jan 2006 | B2 |
7001167 | Venturino | Feb 2006 | B2 |
7014632 | Takino et al. | Mar 2006 | B2 |
7015370 | Watanabe | Mar 2006 | B2 |
7037299 | Turi et al. | May 2006 | B2 |
7037571 | Fish et al. | May 2006 | B2 |
7048726 | Kusagawa et al. | May 2006 | B2 |
7056311 | Kinoshita | Jun 2006 | B2 |
7067711 | Kinoshita et al. | Jun 2006 | B2 |
7073373 | La Fortune | Jul 2006 | B2 |
7078583 | Kudo | Jul 2006 | B2 |
7090665 | Ohashi | Aug 2006 | B2 |
7108759 | You | Sep 2006 | B2 |
7108916 | Ehmsperger et al. | Sep 2006 | B2 |
7112621 | Rohrbaugh et al. | Sep 2006 | B2 |
7122713 | Komatsu | Oct 2006 | B2 |
7125470 | Graef | Oct 2006 | B2 |
7132585 | Kudo | Nov 2006 | B2 |
7147628 | Drevik | Dec 2006 | B2 |
7150729 | Shimada | Dec 2006 | B2 |
7154019 | Mishima et al. | Dec 2006 | B2 |
7160281 | Leminh et al. | Jan 2007 | B2 |
7163528 | Christon et al. | Jan 2007 | B2 |
7166190 | Graef | Jan 2007 | B2 |
7169136 | Otsubo | Jan 2007 | B2 |
7183360 | Daniel et al. | Feb 2007 | B2 |
7189888 | Wang et al. | Mar 2007 | B2 |
7196241 | Kinoshita | Mar 2007 | B2 |
7199211 | Popp et al. | Apr 2007 | B2 |
7204830 | Mishima | Apr 2007 | B2 |
7207978 | Takino | Apr 2007 | B2 |
7219403 | Miyamoto et al. | May 2007 | B2 |
7220251 | Otsubo et al. | May 2007 | B2 |
7241280 | Christen et al. | Jul 2007 | B2 |
7250481 | Jaworek et al. | Jul 2007 | B2 |
7252657 | Mishima | Aug 2007 | B2 |
7265258 | Hamilton | Sep 2007 | B2 |
7270651 | Adams et al. | Sep 2007 | B2 |
7285178 | Mischler et al. | Oct 2007 | B2 |
7306582 | Adams et al. | Dec 2007 | B2 |
7311696 | Christen et al. | Dec 2007 | B2 |
7311968 | Ehrnsperger et al. | Dec 2007 | B2 |
7312372 | Miyama | Dec 2007 | B2 |
7318820 | LaVon et al. | Jan 2008 | B2 |
7329244 | Otsubo | Feb 2008 | B2 |
7329246 | Kinoshita | Feb 2008 | B2 |
7335810 | Yoshimasa et al. | Feb 2008 | B2 |
7377914 | LaVon | May 2008 | B2 |
7429689 | Chen | Sep 2008 | B2 |
7435244 | Schroer et al. | Oct 2008 | B2 |
7465373 | Graef | Dec 2008 | B2 |
7500969 | Mishima | Mar 2009 | B2 |
7504552 | Tamura | Mar 2009 | B2 |
7521109 | Suzuki et al. | Apr 2009 | B2 |
7521587 | Busam et al. | Apr 2009 | B2 |
7537832 | Carlucci et al. | May 2009 | B2 |
7547815 | Ohashi | Jun 2009 | B2 |
7550646 | Tamura | Jun 2009 | B2 |
7563257 | Nakajima | Jul 2009 | B2 |
7588561 | Kenmochi | Sep 2009 | B2 |
7594904 | Rosenfeld | Sep 2009 | B2 |
7598428 | Gustavsson et al. | Oct 2009 | B2 |
7625363 | Yoshimasa | Dec 2009 | B2 |
7641642 | Murai et al. | Jan 2010 | B2 |
7648490 | Kuroda | Jan 2010 | B2 |
7652111 | Hermeling et al. | Jan 2010 | B2 |
7666173 | Mishima | Feb 2010 | B2 |
7666174 | Kawakami et al. | Feb 2010 | B2 |
7686790 | Rasmussen et al. | Mar 2010 | B2 |
7687596 | Hermeling et al. | Mar 2010 | B2 |
7695461 | Rosenfeld | Apr 2010 | B2 |
7696402 | Nishikawa | Apr 2010 | B2 |
7708725 | Tamagawa | May 2010 | B2 |
7717150 | Manabe | May 2010 | B2 |
7718844 | Olson | May 2010 | B2 |
7722587 | Suzuki et al. | May 2010 | B2 |
7722590 | Tsuji | May 2010 | B2 |
7727217 | Hancock-Cooke | Jun 2010 | B2 |
7736351 | Nigam | Jun 2010 | B2 |
7737324 | LaVon et al. | Jun 2010 | B2 |
7744576 | Busam et al. | Jun 2010 | B2 |
7744578 | Tanio et al. | Jun 2010 | B2 |
7750203 | Busam et al. | Jul 2010 | B2 |
7754822 | Daniel et al. | Jul 2010 | B2 |
7754940 | Brisebois | Jul 2010 | B2 |
7759540 | Litvay et al. | Jul 2010 | B2 |
7763004 | Beck | Jul 2010 | B2 |
7767875 | Olson | Aug 2010 | B2 |
7767876 | Davis et al. | Aug 2010 | B2 |
7767878 | Suzuki | Aug 2010 | B2 |
7772420 | Hermeling et al. | Aug 2010 | B2 |
7786341 | Schneider et al. | Aug 2010 | B2 |
7795492 | Vartiainen | Sep 2010 | B2 |
7803145 | Rosenfeld | Sep 2010 | B2 |
7825291 | Elfsberg et al. | Nov 2010 | B2 |
7838722 | Blessing et al. | Nov 2010 | B2 |
7850672 | Guidotti et al. | Dec 2010 | B2 |
7851667 | Becker et al. | Dec 2010 | B2 |
7855314 | Hanao | Dec 2010 | B2 |
7857797 | Kudo | Dec 2010 | B2 |
7858842 | Komatsu | Dec 2010 | B2 |
7884259 | Hanao | Feb 2011 | B2 |
7888549 | Jansson et al. | Feb 2011 | B2 |
7910797 | Nandrea | Mar 2011 | B2 |
7931636 | La Von et al. | Apr 2011 | B2 |
7935207 | Zhao | May 2011 | B2 |
7935861 | Suzuki | May 2011 | B2 |
7938813 | Wang et al. | May 2011 | B2 |
7942858 | Francoeur | May 2011 | B2 |
7951126 | Nanjyo | May 2011 | B2 |
7959620 | Miura et al. | Jun 2011 | B2 |
7982091 | Konawa | Jul 2011 | B2 |
7993319 | Sperl | Aug 2011 | B2 |
8017827 | Hundorf et al. | Sep 2011 | B2 |
8029486 | Nakajima | Oct 2011 | B2 |
8030536 | Ponomarenko et al. | Oct 2011 | B2 |
8034991 | Bruzadin et al. | Oct 2011 | B2 |
8039684 | Guidotti et al. | Oct 2011 | B2 |
8052454 | Polnyi | Nov 2011 | B2 |
8057620 | Perego et al. | Nov 2011 | B2 |
8109915 | Shimoe | Feb 2012 | B2 |
8124828 | Kline et al. | Feb 2012 | B2 |
8133212 | Takada | Mar 2012 | B2 |
8148598 | Tsang et al. | Apr 2012 | B2 |
8163124 | Moriura et al. | Apr 2012 | B2 |
8167862 | Digiacomantonio et al. | May 2012 | B2 |
8173858 | Kuroda | May 2012 | B2 |
8178747 | Venturino et al. | May 2012 | B2 |
8183430 | Hakansson et al. | May 2012 | B2 |
8186296 | Brown et al. | May 2012 | B2 |
8187239 | LaVon et al. | May 2012 | B2 |
8187240 | Busam et al. | May 2012 | B2 |
8198506 | Venturino et al. | Jun 2012 | B2 |
8211815 | Baker | Jul 2012 | B2 |
8236715 | Schmidt et al. | Aug 2012 | B2 |
8237012 | Miyama | Aug 2012 | B2 |
8246594 | Sperl | Aug 2012 | B2 |
8258367 | Lawson et al. | Sep 2012 | B2 |
8268424 | Suzuki | Sep 2012 | B1 |
8273943 | Noda | Sep 2012 | B2 |
8282617 | Kaneda | Oct 2012 | B2 |
8283516 | Litvay | Oct 2012 | B2 |
8317766 | Naoto | Nov 2012 | B2 |
8317768 | Larsson | Nov 2012 | B2 |
8319005 | Becker et al. | Nov 2012 | B2 |
8343123 | Noda | Jan 2013 | B2 |
8343296 | Blessing et al. | Jan 2013 | B2 |
8360977 | Marttila | Jan 2013 | B2 |
8361047 | Mukai | Jan 2013 | B2 |
8377025 | Nakajima | Feb 2013 | B2 |
8388590 | Mason et al. | Mar 2013 | B2 |
8450555 | Nahn et al. | May 2013 | B2 |
8496637 | Hundorf et al. | Jul 2013 | B2 |
8519213 | Venturino et al. | Aug 2013 | B2 |
8524355 | Nakaoka | Sep 2013 | B2 |
8552252 | Hundorf et al. | Oct 2013 | B2 |
8568566 | Jackets et al. | Oct 2013 | B2 |
8569571 | Kline et al. | Oct 2013 | B2 |
8581019 | Carlucci et al. | Nov 2013 | B2 |
8603058 | Sprerl et al. | Dec 2013 | B2 |
8604270 | Venturino et al. | Dec 2013 | B2 |
8633347 | Bianco et al. | Jan 2014 | B2 |
8664468 | Lawson et al. | Mar 2014 | B2 |
8674170 | Busam et al. | Mar 2014 | B2 |
8734417 | LaVon et al. | May 2014 | B2 |
8766031 | Becker et al. | Jul 2014 | B2 |
8772570 | Kawakami et al. | Jul 2014 | B2 |
8784594 | Blessing et al. | Jul 2014 | B2 |
8785715 | Wright et al. | Jul 2014 | B2 |
8791318 | Becker et al. | Jul 2014 | B2 |
8936584 | Zander et al. | Jan 2015 | B2 |
9056034 | Akiyama | Jun 2015 | B2 |
9289330 | Mason et al. | Mar 2016 | B2 |
9326896 | Schaefer et al. | May 2016 | B2 |
9375358 | Ehrnsperger et al. | Jun 2016 | B2 |
9532910 | Rosati et al. | Jan 2017 | B2 |
20010007065 | Blanchard | Jul 2001 | A1 |
20010008964 | Kurata et al. | Jul 2001 | A1 |
20010016548 | Kugler et al. | Aug 2001 | A1 |
20010020157 | Mizutani | Sep 2001 | A1 |
20010037101 | Allan et al. | Nov 2001 | A1 |
20010044610 | Kim | Nov 2001 | A1 |
20020007167 | Dan | Jan 2002 | A1 |
20020007169 | Graef et al. | Jan 2002 | A1 |
20020016122 | Curro et al. | Feb 2002 | A1 |
20020016579 | Stenberg | Feb 2002 | A1 |
20020045881 | Kusibojoska et al. | Apr 2002 | A1 |
20020056516 | Ochi | May 2002 | A1 |
20020058919 | Hamilton et al. | May 2002 | A1 |
20020062112 | Mizutani | May 2002 | A1 |
20020062115 | Wada et al. | May 2002 | A1 |
20020062116 | Mizutani et al. | May 2002 | A1 |
20020065498 | Ohashi | May 2002 | A1 |
20020072471 | Ikeuchi et al. | Jun 2002 | A1 |
20020082575 | Dan | Jun 2002 | A1 |
20020087139 | Popp et al. | Jul 2002 | A1 |
20020095127 | Fish et al. | Jul 2002 | A1 |
20020102392 | Fish et al. | Aug 2002 | A1 |
20020115969 | Maeda et al. | Aug 2002 | A1 |
20020123728 | Graef et al. | Sep 2002 | A1 |
20020123848 | Schneiderman et al. | Sep 2002 | A1 |
20020151634 | Rohrbaugh et al. | Oct 2002 | A1 |
20020151861 | Klemp et al. | Oct 2002 | A1 |
20020173767 | Popp et al. | Nov 2002 | A1 |
20020192366 | Cramer et al. | Dec 2002 | A1 |
20020197695 | Glucksmann et al. | Dec 2002 | A1 |
20030036741 | Abba et al. | Feb 2003 | A1 |
20030078553 | Wada | Apr 2003 | A1 |
20030084983 | Rangachari et al. | May 2003 | A1 |
20030088223 | Vogt et al. | May 2003 | A1 |
20030105190 | Diehl et al. | Jun 2003 | A1 |
20030109839 | Costae et al. | Jun 2003 | A1 |
20030114811 | Christen et al. | Jun 2003 | A1 |
20030114816 | Underhill | Jun 2003 | A1 |
20030114818 | Benecke et al. | Jun 2003 | A1 |
20030115969 | Koyano et al. | Jun 2003 | A1 |
20030120235 | Boulanger | Jun 2003 | A1 |
20030120249 | Wulz et al. | Jun 2003 | A1 |
20030135176 | Delzer et al. | Jul 2003 | A1 |
20030135181 | Chen et al. | Jul 2003 | A1 |
20030135182 | Woon et al. | Jul 2003 | A1 |
20030139712 | Dodge | Jul 2003 | A1 |
20030139715 | Dodge | Jul 2003 | A1 |
20030139718 | Graef | Jul 2003 | A1 |
20030144642 | Dopps | Jul 2003 | A1 |
20030144644 | Murai et al. | Jul 2003 | A1 |
20030148684 | Cramer et al. | Aug 2003 | A1 |
20030148694 | Ghiam | Aug 2003 | A1 |
20030158530 | Diehl et al. | Aug 2003 | A1 |
20030158531 | Chmielewski | Aug 2003 | A1 |
20030158532 | Magee et al. | Aug 2003 | A1 |
20030167045 | Graef | Sep 2003 | A1 |
20030171727 | Graef | Sep 2003 | A1 |
20030208175 | Gross | Nov 2003 | A1 |
20030225385 | Glaug | Dec 2003 | A1 |
20030233082 | Kline et al. | Dec 2003 | A1 |
20030236512 | Baker | Dec 2003 | A1 |
20040019338 | Litvay et al. | Jan 2004 | A1 |
20040022998 | Miyamoto et al. | Feb 2004 | A1 |
20040033750 | Everett | Feb 2004 | A1 |
20040063367 | Dodge | Apr 2004 | A1 |
20040064113 | Erdman | Apr 2004 | A1 |
20040064115 | Arora | Apr 2004 | A1 |
20040064116 | Arora | Apr 2004 | A1 |
20040064125 | Justmann et al. | Apr 2004 | A1 |
20040065420 | Graef | Apr 2004 | A1 |
20040082928 | Pesce et al. | Apr 2004 | A1 |
20040097895 | Busam et al. | May 2004 | A1 |
20040122411 | Hancock-Cooke | Jun 2004 | A1 |
20040127131 | Potnis | Jul 2004 | A1 |
20040127871 | Odorzynski | Jul 2004 | A1 |
20040127872 | Petryk | Jul 2004 | A1 |
20040134596 | Rosati et al. | Jul 2004 | A1 |
20040138633 | Mishima et al. | Jul 2004 | A1 |
20040147890 | Nakahata et al. | Jul 2004 | A1 |
20040158212 | Ponomarenko et al. | Aug 2004 | A1 |
20040162536 | Busam et al. | Aug 2004 | A1 |
20040167486 | Busam et al. | Aug 2004 | A1 |
20040167489 | Kellenberger et al. | Aug 2004 | A1 |
20040170813 | Digiacomantonio et al. | Sep 2004 | A1 |
20040193127 | Hansson | Sep 2004 | A1 |
20040215160 | Chmielewski | Oct 2004 | A1 |
20040220541 | Suzuki et al. | Nov 2004 | A1 |
20040225271 | Datta et al. | Nov 2004 | A1 |
20040231065 | Daniel et al. | Nov 2004 | A1 |
20040236299 | Tsang et al. | Nov 2004 | A1 |
20040236455 | Woltman et al. | Nov 2004 | A1 |
20040249355 | Tanio et al. | Dec 2004 | A1 |
20040260259 | Baker | Dec 2004 | A1 |
20040265544 | DiSalvo et al. | Dec 2004 | A1 |
20050001929 | Waksmundzki et al. | Jan 2005 | A1 |
20050004543 | Schroer et al. | Jan 2005 | A1 |
20050004548 | Otsubo et al. | Jan 2005 | A1 |
20050008839 | Cramer et al. | Jan 2005 | A1 |
20050018258 | Miyagi | Jan 2005 | A1 |
20050038401 | Suzuki et al. | Feb 2005 | A1 |
20050070867 | Beruda et al. | Mar 2005 | A1 |
20050085784 | LeMinh et al. | Apr 2005 | A1 |
20050090789 | Graef | Apr 2005 | A1 |
20050101929 | Waksmundzki et al. | May 2005 | A1 |
20050148258 | Chakravarty | Jul 2005 | A1 |
20050148961 | Sosalla et al. | Jul 2005 | A1 |
20050148990 | Shimoe | Jul 2005 | A1 |
20050154363 | Minato | Jul 2005 | A1 |
20050159720 | Gentilcore | Jul 2005 | A1 |
20050165208 | Popp et al. | Jul 2005 | A1 |
20050171499 | Nigam et al. | Aug 2005 | A1 |
20050176910 | Jaworek et al. | Aug 2005 | A1 |
20050203475 | LaVon et al. | Sep 2005 | A1 |
20050215752 | Popp et al. | Sep 2005 | A1 |
20050217791 | Costello et al. | Oct 2005 | A1 |
20050229543 | Tippey | Oct 2005 | A1 |
20050234414 | Liu et al. | Oct 2005 | A1 |
20050245684 | Daniel et al. | Nov 2005 | A1 |
20050288645 | LaVon | Dec 2005 | A1 |
20050288646 | LaVon | Dec 2005 | A1 |
20060004334 | Schlinz et al. | Jan 2006 | A1 |
20060021695 | Blessing et al. | Feb 2006 | A1 |
20060024433 | Blessing et al. | Feb 2006 | A1 |
20060069367 | Waksmundzki et al. | Mar 2006 | A1 |
20060069371 | Ohashi et al. | Mar 2006 | A1 |
20060073969 | Torli et al. | Apr 2006 | A1 |
20060081348 | Graef | Apr 2006 | A1 |
20060129114 | Mason et al. | Jun 2006 | A1 |
20060142724 | Watanabe | Jun 2006 | A1 |
20060155057 | Hermeling et al. | Jul 2006 | A1 |
20060155254 | Sanz et al. | Jul 2006 | A1 |
20060167215 | Hermeling et al. | Jul 2006 | A1 |
20060177647 | Schmidt et al. | Aug 2006 | A1 |
20060178071 | Schmidt et al. | Aug 2006 | A1 |
20060184146 | Suzuki | Aug 2006 | A1 |
20060184149 | Kasai et al. | Aug 2006 | A1 |
20060189954 | Kudo | Aug 2006 | A1 |
20060202380 | Bentley | Sep 2006 | A1 |
20060206091 | Cole | Sep 2006 | A1 |
20060211828 | Daniel et al. | Sep 2006 | A1 |
20060240229 | Ehrnsperger et al. | Oct 2006 | A1 |
20060264860 | Beck | Nov 2006 | A1 |
20060264861 | Lavon et al. | Nov 2006 | A1 |
20060271010 | LaVon et al. | Nov 2006 | A1 |
20070049892 | Lord et al. | Jan 2007 | A1 |
20070027436 | Nakagawa et al. | Feb 2007 | A1 |
20070043191 | Hermeling et al. | Feb 2007 | A1 |
20070043330 | Lankhof et al. | Feb 2007 | A1 |
20070044903 | Wisneski et al. | Mar 2007 | A1 |
20070049897 | LaVon et al. | Mar 2007 | A1 |
20070073253 | Miyama | Mar 2007 | A1 |
20070078422 | Glaug | Apr 2007 | A1 |
20070088308 | Ehrnsperger et al. | Apr 2007 | A1 |
20070093164 | Nakaoka | Apr 2007 | A1 |
20070093767 | Carlucci et al. | Apr 2007 | A1 |
20070100307 | Nomoto | May 2007 | A1 |
20070118087 | Flohr et al. | May 2007 | A1 |
20070123834 | McDowall et al. | May 2007 | A1 |
20070156108 | Becker et al. | Jul 2007 | A1 |
20070167928 | Becker et al. | Jul 2007 | A1 |
20070179464 | Becker et al. | Aug 2007 | A1 |
20070179469 | Takahashi et al. | Aug 2007 | A1 |
20070191798 | Glaug | Aug 2007 | A1 |
20070219521 | Hird et al. | Sep 2007 | A1 |
20070219523 | Bruun | Sep 2007 | A1 |
20070239125 | Erdman et al. | Oct 2007 | A9 |
20070244455 | Hansson et al. | Oct 2007 | A1 |
20070246147 | Venturino et al. | Oct 2007 | A1 |
20070255245 | Asp et al. | Nov 2007 | A1 |
20070282288 | Noda | Dec 2007 | A1 |
20070282290 | Cole | Dec 2007 | A1 |
20070282291 | Cole | Dec 2007 | A1 |
20080027402 | Schmidt et al. | Jan 2008 | A1 |
20080032035 | Schmidt et al. | Feb 2008 | A1 |
20080091159 | Carlucci et al. | Apr 2008 | A1 |
20080119810 | Kuroda | May 2008 | A1 |
20080125735 | Busam et al. | May 2008 | A1 |
20080132864 | Lawson et al. | Jun 2008 | A1 |
20080208154 | Oetjen et al. | Aug 2008 | A1 |
20080221538 | Zhao | Sep 2008 | A1 |
20080221539 | Zhao | Sep 2008 | A1 |
20080228158 | Sue et al. | Sep 2008 | A1 |
20080262459 | Kamoto | Oct 2008 | A1 |
20080268194 | Kim et al. | Oct 2008 | A1 |
20080274227 | Boatman et al. | Nov 2008 | A1 |
20080281287 | Marcelo | Nov 2008 | A1 |
20080294139 | Ecker et al. | Nov 2008 | A1 |
20080312617 | Hundorf et al. | Dec 2008 | A1 |
20080312618 | Hundorf et al. | Dec 2008 | A1 |
20080312619 | Hundorf et al. | Dec 2008 | A1 |
20080312620 | Ashton et al. | Dec 2008 | A1 |
20080312621 | Hundorf et al. | Dec 2008 | A1 |
20080312622 | Hundorf et al. | Dec 2008 | A1 |
20080312623 | Hundorf et al. | Dec 2008 | A1 |
20080312624 | Hundorf et al. | Dec 2008 | A1 |
20080312625 | Hundorf et al. | Dec 2008 | A1 |
20080312627 | Takeuchi | Dec 2008 | A1 |
20080312628 | Hundorf et al. | Dec 2008 | A1 |
20090056867 | Moriura et al. | Mar 2009 | A1 |
20090062760 | Wright et al. | Mar 2009 | A1 |
20090112173 | Bissah | Apr 2009 | A1 |
20090112175 | Bissah et al. | Apr 2009 | A1 |
20090157022 | Macdonald | Jun 2009 | A1 |
20090192035 | Stueven et al. | Jul 2009 | A1 |
20090240220 | Macdonald | Sep 2009 | A1 |
20090058994 | Stueven et al. | Oct 2009 | A1 |
20090247977 | Takeuchi | Oct 2009 | A1 |
20090258994 | Stueven et al. | Oct 2009 | A1 |
20090270825 | Wciorka et al. | Oct 2009 | A1 |
20090298963 | Matsumoto et al. | Dec 2009 | A1 |
20090299312 | Macdonald | Dec 2009 | A1 |
20090306618 | Kudo | Dec 2009 | A1 |
20090318884 | Meyer et al. | Dec 2009 | A1 |
20090326494 | Uchida et al. | Dec 2009 | A1 |
20100051166 | Hundorf et al. | Mar 2010 | A1 |
20100062165 | Suzuki | Mar 2010 | A1 |
20100062934 | Suzuki | Mar 2010 | A1 |
20100063470 | Suzuki | Mar 2010 | A1 |
20100068520 | Stueven et al. | Mar 2010 | A1 |
20100100065 | Bianco | Apr 2010 | A1 |
20100115237 | Brewer et al. | May 2010 | A1 |
20100121296 | Noda | May 2010 | A1 |
20100137773 | Gross | Jun 2010 | A1 |
20100137823 | Corneliusson | Jun 2010 | A1 |
20100147722 | Datta | Jun 2010 | A1 |
20100198179 | Noda | Aug 2010 | A1 |
20100228210 | Busam et al. | Sep 2010 | A1 |
20100241096 | LaVon et al. | Sep 2010 | A1 |
20100241097 | Nigam et al. | Sep 2010 | A1 |
20100262099 | Klofta | Oct 2010 | A1 |
20100262104 | Carlucci et al. | Oct 2010 | A1 |
20100274208 | Gabrielii | Oct 2010 | A1 |
20100274210 | Noda | Oct 2010 | A1 |
20100312208 | Bond et al. | Dec 2010 | A1 |
20100324521 | Mukai | Dec 2010 | A1 |
20100324523 | Mukai | Dec 2010 | A1 |
20110041999 | Hundorf et al. | Feb 2011 | A1 |
20110060301 | Nishikawa et al. | Mar 2011 | A1 |
20110060303 | Bissah | Mar 2011 | A1 |
20110066127 | Kuwano | Mar 2011 | A1 |
20110071486 | Harada | Mar 2011 | A1 |
20110092944 | Sagisaka | Apr 2011 | A1 |
20110112498 | Nhan et al. | May 2011 | A1 |
20110125120 | Nishitani | May 2011 | A1 |
20110130732 | Jackels et al. | Jun 2011 | A1 |
20110130737 | Sagisaka | Jun 2011 | A1 |
20110137276 | Yoshikawa | Jun 2011 | A1 |
20110144602 | Long | Jun 2011 | A1 |
20110144604 | Noda | Jun 2011 | A1 |
20110144606 | Nandrea | Jun 2011 | A1 |
20110152813 | Ellingson | Jun 2011 | A1 |
20110166540 | Yang et al. | Jul 2011 | A1 |
20110172630 | Nomoto | Jul 2011 | A1 |
20110174430 | Zhao | Jul 2011 | A1 |
20110196330 | Hammons et al. | Aug 2011 | A1 |
20110208147 | Kawakami et al. | Aug 2011 | A1 |
20110250413 | Lu et al. | Oct 2011 | A1 |
20110268932 | Catalan et al. | Nov 2011 | A1 |
20110274834 | Brown et al. | Nov 2011 | A1 |
20110288513 | Hundorf et al. | Nov 2011 | A1 |
20110288514 | Kuroda | Nov 2011 | A1 |
20110295222 | Becker et al. | Dec 2011 | A1 |
20110319846 | Rinnert et al. | Dec 2011 | A1 |
20110319848 | McKiernan et al. | Dec 2011 | A1 |
20110319851 | Kudo | Dec 2011 | A1 |
20120004633 | R Marcelo | Jan 2012 | A1 |
20120016326 | Brennan et al. | Jan 2012 | A1 |
20120022479 | Cotton | Jan 2012 | A1 |
20120035566 | Sagisaka | Feb 2012 | A1 |
20120035576 | Ichikawa | Feb 2012 | A1 |
20120064792 | Bauduin | Mar 2012 | A1 |
20120071848 | Zhang | Mar 2012 | A1 |
20120165771 | Ruman et al. | Jun 2012 | A1 |
20120165776 | Rinnert et al. | Jun 2012 | A1 |
20120175056 | Tsang | Jul 2012 | A1 |
20120184934 | Venturino | Jul 2012 | A1 |
20120220972 | Kawamura et al. | Aug 2012 | A1 |
20120232514 | Baker | Sep 2012 | A1 |
20120238977 | Oku | Sep 2012 | A1 |
20120253306 | Otsubo | Oct 2012 | A1 |
20120256750 | Novak | Oct 2012 | A1 |
20120271262 | Venturino | Oct 2012 | A1 |
20120170779 | Rosati et al. | Dec 2012 | A1 |
20120312491 | Jackels et al. | Dec 2012 | A1 |
20120316046 | Jackels et al. | Dec 2012 | A1 |
20120316523 | Hippe et al. | Dec 2012 | A1 |
20120316526 | Rosati et al. | Dec 2012 | A1 |
20120316527 | Rosati et al. | Dec 2012 | A1 |
20120316528 | Kreuzer et al. | Dec 2012 | A1 |
20120316529 | Kreuzer et al. | Dec 2012 | A1 |
20120323195 | Ehrnsperger et al. | Dec 2012 | A1 |
20120323201 | Bissah | Dec 2012 | A1 |
20120323202 | Bissah | Dec 2012 | A1 |
20130035656 | Moriya et al. | Feb 2013 | A1 |
20130041334 | Prioleau | Feb 2013 | A1 |
20130178811 | Kikuchi et al. | Jul 2013 | A1 |
20130211354 | Tsuji et al. | Aug 2013 | A1 |
20130211358 | Kikkawa et al. | Aug 2013 | A1 |
20130218115 | Katsuragawa et al. | Aug 2013 | A1 |
20130226119 | Katsuragawa et al. | Aug 2013 | A1 |
20130226120 | Van De Maele | Aug 2013 | A1 |
20130310784 | Bryant et al. | Nov 2013 | A1 |
20140005622 | Wirtz et al. | Jan 2014 | A1 |
20140005623 | Wirtz et al. | Jan 2014 | A1 |
20140027066 | Jackels et al. | Jan 2014 | A1 |
20140039437 | Van De Maele | Feb 2014 | A1 |
20140102183 | Agami et al. | Apr 2014 | A1 |
20140121623 | Kirby et al. | May 2014 | A1 |
20140135726 | Busam et al. | May 2014 | A1 |
20140142531 | Sasayama et al. | May 2014 | A1 |
20140163500 | Roe et al. | Jun 2014 | A1 |
20140163501 | Ehrnsperger et al. | Jun 2014 | A1 |
20140163502 | Arizti et al. | Jun 2014 | A1 |
20140163503 | Arizti et al. | Jun 2014 | A1 |
20140163506 | Roe et al. | Jun 2014 | A1 |
20140163511 | Roe et al. | Jun 2014 | A1 |
20140171893 | Lawson et al. | Jun 2014 | A1 |
20140318694 | Blessing et al. | Oct 2014 | A1 |
20140324007 | Hundorf et al. | Oct 2014 | A1 |
20140324008 | Hundorf et al. | Oct 2014 | A1 |
20150065975 | Roe et al. | Mar 2015 | A1 |
20150065981 | Roe et al. | Mar 2015 | A1 |
20150065986 | Blessing et al. | Mar 2015 | A1 |
20150073366 | Ehrnsperger et al. | Mar 2015 | A1 |
20150080837 | Rosati et al. | Mar 2015 | A1 |
20150080839 | Tapp et al. | Mar 2015 | A1 |
20150173967 | Kreuzer et al. | Jun 2015 | A1 |
20150173968 | Joseph | Jun 2015 | A1 |
20150250662 | Isele et al. | Sep 2015 | A1 |
20170020739 | Mason et al. | Jan 2017 | A1 |
20170020745 | Mason et al. | Jan 2017 | A1 |
20170065465 | Rosati et al. | Mar 2017 | A1 |
20170081862 | Gu Bilmez | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2001370 | Apr 1990 | CA |
2291997 | Jun 2000 | CA |
2308961 | Nov 2000 | CA |
2487027 | Dec 2003 | CA |
2561521 | Mar 2007 | CA |
2630713 | Nov 2008 | CA |
2636673 | Jan 2009 | CA |
2712563 | Aug 2010 | CA |
2702001 | Oct 2010 | CA |
1238171 | Dec 1999 | CN |
2362468 | Feb 2000 | CN |
1371671 | Feb 2001 | CN |
2527254 | Dec 2002 | CN |
2535020 | Feb 2003 | CN |
2548609 | May 2003 | CN |
1539391 | Oct 2004 | CN |
1939242 | Apr 2007 | CN |
101292930 | Oct 2008 | CN |
101422405 | May 2009 | CN |
201263750 | Jul 2009 | CN |
201591689 | Sep 2010 | CN |
201855366 | Jun 2011 | CN |
3205931 | Sep 1983 | DE |
3608114 | Sep 1987 | DE |
19732499 | Feb 1999 | DE |
10204937 | Aug 2003 | DE |
083022 | Jul 1983 | EP |
149880 | Jul 1985 | EP |
0149880 | Jul 1985 | EP |
203289 | Dec 1986 | EP |
0203289 | Dec 1986 | EP |
0206208 | Dec 1986 | EP |
209561 | Jan 1987 | EP |
297411 | Jan 1989 | EP |
304957 | Mar 1989 | EP |
374542 | Jun 1990 | EP |
394274 | Oct 1990 | EP |
0403832 | Dec 1990 | EP |
481322 | Apr 1992 | EP |
530438 | Mar 1993 | EP |
547847 | Jun 1993 | EP |
555346 | Aug 1993 | EP |
559476 | Sep 1993 | EP |
591647 | Apr 1994 | EP |
597273 | May 1994 | EP |
601610 | Jun 1994 | EP |
632068 | Jan 1995 | EP |
0640330 | Mar 1995 | EP |
0668066 | Sep 1995 | EP |
685214 | Dec 1995 | EP |
687453 | Dec 1995 | EP |
0689817 | Jan 1996 | EP |
0691133 | Jan 1996 | EP |
0700673 | Mar 1996 | EP |
0394274 | Jul 1996 | EP |
724418 | Aug 1996 | EP |
725613 | Aug 1996 | EP |
725615 | Aug 1996 | EP |
725616 | Aug 1996 | EP |
758543 | Feb 1997 | EP |
0761194 | Mar 1997 | EP |
769284 | Apr 1997 | EP |
0781537 | Jul 1997 | EP |
783877 | Jul 1997 | EP |
787472 | Aug 1997 | EP |
788874 | Aug 1997 | EP |
796068 | Sep 1997 | EP |
799004 | Oct 1997 | EP |
822794 | Feb 1998 | EP |
826351 | Mar 1998 | EP |
844861 | Jun 1998 | EP |
0737055 | Aug 1998 | EP |
863733 | Sep 1998 | EP |
971751 | Sep 1998 | EP |
0875224 | Nov 1998 | EP |
875224 | Nov 1998 | EP |
880955 | Dec 1998 | EP |
891758 | Jan 1999 | EP |
0893115 | Jan 1999 | EP |
0724418 | Mar 1999 | EP |
0725613 | Mar 1999 | EP |
0725616 | Mar 1999 | EP |
904755 | Mar 1999 | EP |
0916327 | May 1999 | EP |
925769 | Jun 1999 | EP |
933074 | Aug 1999 | EP |
937736 | Aug 1999 | EP |
941157 | Sep 1999 | EP |
947549 | Oct 1999 | EP |
951887 | Oct 1999 | EP |
0951890 | Oct 1999 | EP |
2295493 | Oct 1999 | EP |
2305749 | Oct 1999 | EP |
2330152 | Oct 1999 | EP |
953326 | Nov 1999 | EP |
0978263 | Feb 2000 | EP |
985397 | Mar 2000 | EP |
0778762 | Apr 2000 | EP |
1005847 | Jun 2000 | EP |
1008333 | Jun 2000 | EP |
1013252 | Jun 2000 | EP |
1018999 | Jul 2000 | EP |
1019002 | Jul 2000 | EP |
1019003 | Jul 2000 | EP |
1022008 | Jul 2000 | EP |
1023884 | Aug 2000 | EP |
1053729 | Nov 2000 | EP |
1059072 | Dec 2000 | EP |
1063954 | Jan 2001 | EP |
1071388 | Jan 2001 | EP |
1078618 | Feb 2001 | EP |
1088537 | Apr 2001 | EP |
0796068 | May 2001 | EP |
752892 | Jul 2001 | EP |
1116479 | Jul 2001 | EP |
0790839 | Aug 2001 | EP |
1132069 | Sep 2001 | EP |
1173128 | Jan 2002 | EP |
1175194 | Jan 2002 | EP |
1184018 | Mar 2002 | EP |
1192312 | Apr 2002 | EP |
1196122 | Apr 2002 | EP |
1199059 | Apr 2002 | EP |
1199327 | Apr 2002 | EP |
1208824 | May 2002 | EP |
0793469 | Jun 2002 | EP |
1210925 | Jun 2002 | EP |
1224922 | Jul 2002 | EP |
1225857 | Jul 2002 | EP |
1253231 | Oct 2002 | EP |
1262531 | Dec 2002 | EP |
1263374 | Dec 2002 | EP |
0737056 | Jan 2003 | EP |
1275358 | Jan 2003 | EP |
1275361 | Jan 2003 | EP |
1293187 | Mar 2003 | EP |
1304986 | May 2003 | EP |
1332742 | Aug 2003 | EP |
1339368 | Sep 2003 | EP |
1374817 | Jan 2004 | EP |
1388334 | Feb 2004 | EP |
1402863 | Mar 2004 | EP |
962208 | Aug 2004 | EP |
1447066 | Aug 2004 | EP |
1447067 | Aug 2004 | EP |
1460987 | Sep 2004 | EP |
963749 | Nov 2004 | EP |
1495739 | Jan 2005 | EP |
1524955 | Apr 2005 | EP |
1920743 | Apr 2005 | EP |
1541103 | Jun 2005 | EP |
1551344 | Jul 2005 | EP |
1586289 | Oct 2005 | EP |
1588723 | Oct 2005 | EP |
1605882 | Dec 2005 | EP |
1609448 | Dec 2005 | EP |
1621166 | Feb 2006 | EP |
1621167 | Feb 2006 | EP |
1632206 | Mar 2006 | EP |
1642556 | Apr 2006 | EP |
1403419 | May 2006 | EP |
1656162 | May 2006 | EP |
1669046 | Jun 2006 | EP |
1688114 | Aug 2006 | EP |
2314265 | Aug 2006 | EP |
1723939 | Nov 2006 | EP |
1738727 | Jan 2007 | EP |
1754461 | Feb 2007 | EP |
1787611 | May 2007 | EP |
1813238 | Aug 2007 | EP |
2008626 | Dec 2008 | EP |
2055279 | May 2009 | EP |
2093049 | Aug 2009 | EP |
2130522 | Dec 2009 | EP |
1621165 | Apr 2010 | EP |
2444046 | Apr 2012 | EP |
2532328 | Dec 2012 | EP |
2532329 | Dec 2012 | EP |
2532332 | Dec 2012 | EP |
2679210 | Jan 2014 | EP |
2740449 | Jun 2014 | EP |
2740450 | Jun 2014 | EP |
2740452 | Jun 2014 | EP |
2213491 | Aug 2004 | ES |
2566631 | Jan 1986 | FR |
2583377 | Dec 1986 | FR |
2612770 | Sep 1988 | FR |
2810234 | Dec 2001 | FR |
1333081 | Aug 1971 | GB |
1307441 | Feb 1973 | GB |
1513055 | Jun 1978 | GB |
2101468 | Jan 1983 | GB |
2170108 | Jul 1986 | GB |
2262873 | Jul 1993 | GB |
2288540 | Jun 1994 | GB |
2354449 | Mar 2001 | GB |
2452260 | Oct 2007 | GB |
851769 | Nov 1985 | GR |
0984KOL1999 | Oct 2005 | IN |
212479 | Mar 2007 | IN |
208543 | Aug 2007 | IN |
0980MUM2009 | Jun 2009 | IN |
5572928 | May 1980 | JP |
598322 | Jan 1984 | JP |
630148323 | Sep 1988 | JP |
2107250 | Apr 1990 | JP |
03224481 | Oct 1991 | JP |
04122256 | Apr 1992 | JP |
04341368 | Nov 1992 | JP |
06191505 | Jul 1994 | JP |
06269475 | Sep 1994 | JP |
07124193 | May 1995 | JP |
08215629 | Aug 1996 | JP |
H10295728 | Nov 1998 | JP |
10328232 | Dec 1998 | JP |
11033056 | Feb 1999 | JP |
11318980 | Nov 1999 | JP |
11320742 | Nov 1999 | JP |
2000232985 | Aug 2000 | JP |
2000238161 | Sep 2000 | JP |
2001037810 | Feb 2001 | JP |
2001046435 | Feb 2001 | JP |
2001120597 | May 2001 | JP |
2001158074 | Jun 2001 | JP |
2001178768 | Jul 2001 | JP |
2001198157 | Jul 2001 | JP |
2001224626 | Aug 2001 | JP |
2001277394 | Oct 2001 | JP |
03420481 | Nov 2001 | JP |
2001321397 | Nov 2001 | JP |
2001353174 | Dec 2001 | JP |
2002052042 | Feb 2002 | JP |
2002065718 | Mar 2002 | JP |
2002113800 | Apr 2002 | JP |
2002165832 | Jun 2002 | JP |
2002165836 | Jun 2002 | JP |
2002178429 | Jun 2002 | JP |
2002272769 | Sep 2002 | JP |
2002320641 | Nov 2002 | JP |
2002325792 | Nov 2002 | JP |
2002325799 | Nov 2002 | JP |
2002369841 | Dec 2002 | JP |
2003126140 | May 2003 | JP |
2003153955 | May 2003 | JP |
2003265523 | Sep 2003 | JP |
2003265524 | Sep 2003 | JP |
2003275237 | Sep 2003 | JP |
2003325563 | Nov 2003 | JP |
2004089269 | Mar 2004 | JP |
03566012 | Jun 2004 | JP |
03568146 | Jun 2004 | JP |
03616077 | Nov 2004 | JP |
2004337314 | Dec 2004 | JP |
2004337385 | Dec 2004 | JP |
2004350864 | Dec 2004 | JP |
03640475 | Jan 2005 | JP |
2005000312 | Jan 2005 | JP |
03660816 | Mar 2005 | JP |
03676219 | May 2005 | JP |
03688403 | Jun 2005 | JP |
03705943 | Aug 2005 | JP |
03719819 | Sep 2005 | JP |
03724963 | Sep 2005 | JP |
03725008 | Sep 2005 | JP |
03737376 | Nov 2005 | JP |
2006014792 | Jan 2006 | JP |
03781617 | Mar 2006 | JP |
2006110329 | Apr 2006 | JP |
2006513824 | Apr 2006 | JP |
03801449 | May 2006 | JP |
2006116036 | May 2006 | JP |
03850102 | Sep 2006 | JP |
03850207 | Sep 2006 | JP |
03856941 | Sep 2006 | JP |
03868628 | Oct 2006 | JP |
03874499 | Nov 2006 | JP |
03877702 | Nov 2006 | JP |
2006325639 | Dec 2006 | JP |
2006346021 | Dec 2006 | JP |
03904356 | Jan 2007 | JP |
2007007455 | Jan 2007 | JP |
2007007456 | Jan 2007 | JP |
03926042 | Mar 2007 | JP |
03934855 | Mar 2007 | JP |
2007089906 | Apr 2007 | JP |
2007105198 | Apr 2007 | JP |
2007152033 | Jun 2007 | JP |
03986210 | Jul 2007 | JP |
03986222 | Jul 2007 | JP |
2007167453 | Jul 2007 | JP |
2007175515 | Jul 2007 | JP |
2007195665 | Aug 2007 | JP |
2007267763 | Oct 2007 | JP |
2007275491 | Oct 2007 | JP |
04035341 | Nov 2007 | JP |
04058281 | Dec 2007 | JP |
04061086 | Dec 2007 | JP |
04092319 | Mar 2008 | JP |
2008080150 | Apr 2008 | JP |
2008093289 | Apr 2008 | JP |
04124322 | May 2008 | JP |
2008119081 | May 2008 | JP |
2008136739 | Jun 2008 | JP |
2008136877 | Jun 2008 | JP |
04148594 | Jul 2008 | JP |
04148620 | Jul 2008 | JP |
2008154606 | Jul 2008 | JP |
04162609 | Aug 2008 | JP |
04162637 | Aug 2008 | JP |
04166923 | Aug 2008 | JP |
04167406 | Aug 2008 | JP |
04173723 | Aug 2008 | JP |
04190675 | Sep 2008 | JP |
04190693 | Sep 2008 | JP |
04208338 | Oct 2008 | JP |
2008246089 | Oct 2008 | JP |
4177770 | Nov 2008 | JP |
04230971 | Dec 2008 | JP |
2008295475 | Dec 2008 | JP |
2008295713 | Dec 2008 | JP |
04261593 | Feb 2009 | JP |
2009112590 | May 2009 | JP |
04322228 | Jun 2009 | JP |
2009136601 | Jun 2009 | JP |
2009142401 | Jul 2009 | JP |
2009201878 | Sep 2009 | JP |
04392936 | Oct 2009 | JP |
2009232987 | Oct 2009 | JP |
2009261777 | Nov 2009 | JP |
2009291473 | Dec 2009 | JP |
2009297048 | Dec 2009 | JP |
2010017342 | Jan 2010 | JP |
04458702 | Feb 2010 | JP |
04459013 | Feb 2010 | JP |
2010022560 | Feb 2010 | JP |
04481325 | Mar 2010 | JP |
2010051654 | Mar 2010 | JP |
2010063814 | Mar 2010 | JP |
2010063944 | Mar 2010 | JP |
04492957 | Apr 2010 | JP |
2010068954 | Apr 2010 | JP |
2010075462 | Apr 2010 | JP |
2010082059 | Apr 2010 | JP |
2010104545 | May 2010 | JP |
2010104547 | May 2010 | JP |
2010110535 | May 2010 | JP |
2010119454 | Jun 2010 | JP |
2010119605 | Jun 2010 | JP |
2010119743 | Jun 2010 | JP |
2010131131 | Jun 2010 | JP |
2010131132 | Jun 2010 | JP |
2010131206 | Jun 2010 | JP |
2010131297 | Jun 2010 | JP |
2010136917 | Jun 2010 | JP |
2010136973 | Jun 2010 | JP |
04540563 | Jul 2010 | JP |
04587947 | Sep 2010 | JP |
2010194124 | Sep 2010 | JP |
2010201093 | Sep 2010 | JP |
2010221067 | Oct 2010 | JP |
4577766 | Nov 2010 | JP |
04620299 | Nov 2010 | JP |
04627472 | Nov 2010 | JP |
04627473 | Nov 2010 | JP |
04638087 | Dec 2010 | JP |
04652626 | Dec 2010 | JP |
2010273842 | Dec 2010 | JP |
2010284418 | Dec 2010 | JP |
2011000480 | Jan 2011 | JP |
2011030700 | Feb 2011 | JP |
04693574 | Mar 2011 | JP |
2011067484 | Apr 2011 | JP |
2011072720 | Apr 2011 | JP |
2011104014 | Jun 2011 | JP |
2011104122 | Jun 2011 | JP |
2011120661 | Jun 2011 | JP |
2011125360 | Jun 2011 | JP |
2011125537 | Jun 2011 | JP |
04776516 | Jul 2011 | JP |
2011130797 | Jul 2011 | JP |
2011130799 | Jul 2011 | JP |
2011156032 | Aug 2011 | JP |
2011156070 | Aug 2011 | JP |
2011156254 | Aug 2011 | JP |
04824882 | Sep 2011 | JP |
4850272 | Oct 2011 | JP |
04855533 | Nov 2011 | JP |
2011239858 | Dec 2011 | JP |
2011240050 | Dec 2011 | JP |
04931572 | Feb 2012 | JP |
04937225 | Mar 2012 | JP |
04953618 | Mar 2012 | JP |
04969437 | Apr 2012 | JP |
04969640 | Apr 2012 | JP |
4971491 | Apr 2012 | JP |
04974524 | Apr 2012 | JP |
04979780 | Apr 2012 | JP |
05016020 | Jun 2012 | JP |
05027364 | Jun 2012 | JP |
2012115378 | Jun 2012 | JP |
05031082 | Jul 2012 | JP |
05042351 | Jul 2012 | JP |
05043569 | Jul 2012 | JP |
05043591 | Jul 2012 | JP |
05046488 | Jul 2012 | JP |
2012125452 | Jul 2012 | JP |
2012125625 | Jul 2012 | JP |
05053765 | Aug 2012 | JP |
05070275 | Aug 2012 | JP |
05079931 | Sep 2012 | JP |
05080189 | Sep 2012 | JP |
05084442 | Sep 2012 | JP |
05084476 | Sep 2012 | JP |
5085770 | Sep 2012 | JP |
05089269 | Sep 2012 | JP |
2012179286 | Sep 2012 | JP |
05113146 | Oct 2012 | JP |
05129536 | Nov 2012 | JP |
2012223231 | Nov 2012 | JP |
05105884 | Dec 2012 | JP |
5715806 | May 2015 | JP |
20010005620 | Jan 2001 | KR |
20020035634 | May 2002 | KR |
20080028771 | Apr 2008 | KR |
9400916 | Mar 1994 | SE |
9704893 | Dec 1997 | SE |
WO9015830 | Dec 1990 | WO |
WO9219198 | Nov 1992 | WO |
WO9321237 | Oct 1993 | WO |
WO9321879 | Nov 1993 | WO |
WO9510996 | Apr 1995 | WO |
WO9511652 | May 1995 | WO |
WO9516746 | Jun 1995 | WO |
WO9514453 | Jun 1995 | WO |
WO9515139 | Jun 1995 | WO |
WO9516424 | Jun 1995 | WO |
WO9519753 | Jul 1995 | WO |
WO9521596 | Aug 1995 | WO |
WO9524173 | Sep 1995 | WO |
WO9526209 | Oct 1995 | WO |
WO9529657 | Nov 1995 | WO |
WO9534329 | Dec 1995 | WO |
WO9532698 | Dec 1995 | WO |
WO9616624 | Jun 1996 | WO |
WO9619173 | Jun 1996 | WO |
WO96029967 | Oct 1996 | WO |
WO9711659 | Apr 1997 | WO |
WO9717922 | May 1997 | WO |
WO9724096 | Jul 1997 | WO |
WO9816179 | Apr 1998 | WO |
WO9816180 | Apr 1998 | WO |
WO9843684 | Oct 1998 | WO |
WO9913813 | Mar 1999 | WO |
WO9934841 | Jul 1999 | WO |
WO9951178 | Oct 1999 | WO |
WO200000235 | Jan 2000 | WO |
WO200032145 | Jun 2000 | WO |
WO200059430 | Oct 2000 | WO |
WO200115647 | Mar 2001 | WO |
WO200126596 | Apr 2001 | WO |
WO0135886 | May 2001 | WO |
WO200207663 | Jan 2002 | WO |
WO200232962 | Apr 2002 | WO |
WO2002064877 | Aug 2002 | WO |
WO2002067809 | Sep 2002 | WO |
WO2003009794 | Feb 2003 | WO |
WO2003039402 | May 2003 | WO |
WO2003053297 | Jul 2003 | WO |
WO03079946 | Oct 2003 | WO |
WO03101622 | Dec 2003 | WO |
WO2003105738 | Dec 2003 | WO |
WO2004021946 | Mar 2004 | WO |
WO2004049995 | Jun 2004 | WO |
WO2004071539 | Aug 2004 | WO |
WO2004084784 | Oct 2004 | WO |
WO2004105664 | Dec 2004 | WO |
WO2005018694 | Mar 2005 | WO |
WO2005087164 | Sep 2005 | WO |
WO2005102237 | Nov 2005 | WO |
WO2006104024 | May 2006 | WO |
WO2006059922 | Jun 2006 | WO |
WO2006062258 | Jun 2006 | WO |
WO2006066029 | Jun 2006 | WO |
WO2006083584 | Aug 2006 | WO |
WO2006134904 | Dec 2006 | WO |
WO2006134906 | Dec 2006 | WO |
WO2007000315 | Jan 2007 | WO |
WO2007046052 | Apr 2007 | WO |
WO2007047598 | Apr 2007 | WO |
WO2007049725 | May 2007 | WO |
WO2007061035 | May 2007 | WO |
WO2007141744 | Dec 2007 | WO |
WO2007142145 | Dec 2007 | WO |
WO2007148502 | Dec 2007 | WO |
WO2008018922 | Feb 2008 | WO |
WO2008065945 | Jun 2008 | WO |
WO2008146749 | Dec 2008 | WO |
WO2008155699 | Dec 2008 | WO |
WO2009004941 | Jan 2009 | WO |
WO2009005431 | Jan 2009 | WO |
WO2009139248 | Jan 2009 | WO |
WO2009139255 | Jan 2009 | WO |
WO2009041223 | Apr 2009 | WO |
WO2009096108 | Aug 2009 | WO |
WO2009107435 | Sep 2009 | WO |
WO2009122830 | Oct 2009 | WO |
WO2009152018 | Dec 2009 | WO |
WO2009155264 | Dec 2009 | WO |
WO2009155265 | Dec 2009 | WO |
WO2010071508 | Jun 2010 | WO |
WO2010074319 | Jul 2010 | WO |
WO2010107096 | Sep 2010 | WO |
WO2010114052 | Oct 2010 | WO |
WO2010117015 | Oct 2010 | WO |
WO2010118272 | Oct 2010 | WO |
WO201153044 | May 2011 | WO |
WO2011118725 | Sep 2011 | WO |
WO2011118842 | Sep 2011 | WO |
WO2011145653 | Nov 2011 | WO |
WO2011150955 | Dec 2011 | WO |
WO2011163582 | Dec 2011 | WO |
WO2012002252 | Jan 2012 | WO |
WO2012014436 | Feb 2012 | WO |
WO2012052172 | Apr 2012 | WO |
WO2012042908 | Apr 2012 | WO |
WO2012043077 | Apr 2012 | WO |
WO2012043078 | Apr 2012 | WO |
WO2012043082 | May 2012 | WO |
WO2012067216 | May 2012 | WO |
WO2012073499 | Jun 2012 | WO |
WO2012074466 | Jun 2012 | WO |
WO201291016 | Jul 2012 | WO |
WO2012090508 | Jul 2012 | WO |
WO2012101934 | Aug 2012 | WO |
WO2012102034 | Aug 2012 | WO |
WO2012117764 | Sep 2012 | WO |
WO2012117824 | Sep 2012 | WO |
WO2012132460 | Oct 2012 | WO |
WO2012170778 | Dec 2012 | WO |
WO2012170779 | Dec 2012 | WO |
WO2012170781 | Dec 2012 | WO |
WO2012170808 | Dec 2012 | WO |
WO2012174026 | Dec 2012 | WO |
WO2012177400 | Dec 2012 | WO |
WO2013001788 | Jan 2013 | WO |
WO2013046701 | Apr 2013 | WO |
WO2013060733 | May 2013 | WO |
WO2014073636 | May 2014 | WO |
WO2014078247 | May 2014 | WO |
Entry |
---|
Robert F. Gould American Chemical Society,“American Chemical Society publication entitled Contact Angle, Wettability AndAdhesion”, Advances in Chemistry Series 43, Chapter 7, edited by Robert F. Gould, dated 1964. |
All Office Actions; U.S. Appl. No. 14/077,355. |
All Office Actions; U.S. Appl. No. 15/354,017. |
All Office Actions; U.S. Appl. No. 15/824,002. |
F.L. Buchholz et al. Modern Superabsorbent, “Modern Superabsorbent Polymer Technology” , F.L. Buchholz, A.T. Graham, Wiley, dated 1998, pp. 30. |
International Search Report and Written Opinion; Application Ser. No. PCT/US2013/069521; dated Oct. 8, 2014, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20190201251 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
61878206 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15354017 | Nov 2016 | US |
Child | 16295012 | US | |
Parent | 14077355 | Nov 2013 | US |
Child | 15354017 | US |