The present disclosure relates to absorbent articles, and more particularly, to absorbent articles having front and/or back waist regions including one or more frangible pathways.
Some absorbent articles have components that include elastomeric laminates. Such elastomeric laminates may include an elastic material bonded to one or more nonwovens. The elastic material may include an elastic film and/or elastic strands. In some laminates, a plurality of elastic strands are joined to a nonwoven while the plurality of strands are in a stretched condition so that when the elastic strands relax, the nonwoven gathers, and in turn, forms corrugations and rugosities. The resulting elastomeric laminate is stretchable to the extent that the corrugations allow the elastic strands to elongate.
Absorbent articles in the form of diaper pants may also be configured with an absorbent chassis connected with front and back elastic belts, wherein opposing end regions of the front and back belts are connected with each other at side seams. In some instances, the elasticity of the front and back belts is removed in regions where the chassis connects with the belts. Thus, in some converting configurations adapted to assemble such diaper pants, stretched elastic strands are glued between two continuous nonwoven webs to form an elastic laminate. Regions of the elastic strands may then be intermittently deactivated along the length of the elastic laminate by cutting the elastic strands in areas to be connected with the chassis, sometimes referred to as tummy elastic cutting.
Some caregivers of older incontinent babies or toddlers may prefer a closed, pant-style disposable absorbent article to enable application to, and removal from, a child while the child is in a standing position. One disadvantage of this product form is that the removal and disposal of feces-containing products may be unhygienic and inconvenient. For example, pulling the product down could cause feces to smear down the legs of a user. In other examples, a caregiver may tear open the bonded sides using force. In turn, the force used can lead to a rapid release of energy from the diaper, causing the caregiver to lose control of the product and allowing feces to spill out. In contrast, removal and disposal of traditional open or taped diaper forms with fasteners may be readily accomplished while the child is laying on their back. In this case, the fasteners are opened, the diaper is removed from under the child, rolled into a roughly cylindrical shape, and then the fasteners are secured around the rolled, soiled diaper, closing the leg openings for hygienic disposal.
In order to avoid having to remove soiled diaper pants from a wearer by sliding the soiled diaper pant down the wearer's legs or tearing bonded side seams, some diaper pants may be configured with tear lines in the front belt or back belt. Such tear lines may include perforations that allow a caregiver to more easily separate the belt along the perforation lines. Once the belt is separated, the diaper pant can be more easily removed from the wearer without having to slide the diaper pant down the wearer's legs, in a similar manner as a traditional open taped diaper form. However, due to the position of the wearer, the caregiver may not be in a position to tear along such tear lines so that the belt is severed along the tear line. Thus, the caregiver may tear the belt in an unintended manner causing the belt to tear not along the perforation line but in other locations. This can lead to more difficulty in removing the product. For example, difficulty in removing the diaper may require a caregiver to utilize both hands to start and complete the tearing operation. For example, some tear lines may require a caregiver to grasp the belt on opposing sides of the tear line and pull in opposite directions to initiate and complete the tearing process. As a result, the necessity of tearing such a belt with both hands can add difficulty to the process of removing a diaper pant from baby or child that is moving or attempting to move during the diaper removal process.
Consequently, it would be beneficial to create pant-style articles that provide the caregiver the ability to remove and dispose soiled products in a similar manner to traditional open diaper forms. In addition, it would be beneficial to provide diaper pants with frangible pathways configured such that the tearing operation can be initiated and completed such that the belt separates only along the frangible pathway and not in other locations of the diaper.
In one form, an absorbent article comprises: a first belt comprising an inner wearer facing surface and an outer garment facing surface, the first belt further comprising a laterally extending inner edge and a laterally extending outer edge, the outer edge positioned longitudinally outward of the inner edge; a second belt, wherein laterally opposing end portions of the second belt are connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt, wherein a portion of the chassis overlaps the inner wearer facing surface of the first belt to define a chassis overlap region; and a frangible pathway in the first belt extending between the inner edge and the outer edge of the first belt, wherein the first belt has a belt tear strength according to the Material Tear Strength test method, wherein the frangible pathway has a pathway tear strength according to the Pathway Tear Strength test method, and wherein the pathway tear strength of the frangible pathway is less than the belt tear strength of the first belt.
In another form, an absorbent article comprises: a first belt comprising an inner wearer facing surface, an outer garment facing surface, a laterally extending inner edge, a laterally extending outer edge, and a lateral centerline, wherein the outer edge is positioned longitudinally outward of the inner edge; a second belt comprising laterally opposing end portions connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt; and a frangible pathway in the first belt extending between the inner edge and the outer edge of the first belt, the frangible pathway comprising a first tear zone and a second tear zone, wherein a portion of the first tear zone extends at a first angle of less than about 90 degrees from the lateral centerline of the first belt, wherein a portion of the second tear zone extends at a second angle of less than about 90 degrees from the lateral centerline of the first belt, wherein a portion of the chassis overlaps the inner wearer facing surface of the first belt to define a chassis overlap region, wherein a portion of the frangible pathway extends within the chassis overlap region, wherein the frangible pathway is configured to tear along the first tear zone and the second tear zone resulting in a pathway tear strength according to the Pathway Tear Strength test method, and wherein the pathway tear strength to tear along the frangible pathway including the first tear zone and the second tear zone is from about 2N to about 16N.
In yet another form, an absorbent article comprises: a first belt comprising an inner wearer facing surface and an outer garment facing surface, the first belt comprising a laterally extending inner edge and a laterally extending outer edge, wherein the outer edge is positioned longitudinally outward of the inner edge; a second belt, wherein laterally opposing end portions of the second belt are connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt, wherein a portion of the chassis overlaps the inner wearer facing surface of the first belt to define a chassis overlap region; a fastener component disposed on the first belt; and a first frangible pathway in the first belt, wherein the first frangible pathway comprises a first tear zone and a second tear zone, wherein the first tear zone comprises a first initial tear zone and a first secondary tear zone, the first initial tear zone extending from a first transition zone toward the fastener component, and the first secondary tear zone extending from the first transition zone toward the laterally extending outer edge, wherein the second tear zone comprises a second initial tear zone and a second secondary tear zone, the second initial tear zone extending from a second transition zone toward the fastener component, and the second secondary tear zone extending from the second transition zone toward the laterally extending inner edge, wherein each of the frangible pathway including the first tear zone and the second tear zone has a pathway tear strength according to the Pathway Tear Strength test method, wherein the first tear zone and the second tear zone tear substantially simultaneously, and wherein the pathway tear strength is from about 2N to about 16 N.
In yet another form, an absorbent article comprises: a first belt comprising an inner wearer facing surface and an outer garment facing surface, the first belt further comprising a laterally extending inner edge and a laterally extending outer edge, the outer edge positioned longitudinally outward of the inner edge; a second belt, wherein laterally opposing end portions of the second belt are connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt, wherein a portion of the chassis overlaps the inner wearer facing surface of the first belt to define a chassis overlap region; and a frangible pathway in the first belt extending between the inner edge and the outer edge of the first belt, wherein the first belt has a belt tear strength according to the Material Tear Strength test method, and wherein the frangible pathway has a pathway tear strength according to the Pathway Tear Strength test method, and wherein the difference between the pathway tear strength and the belt tear strength is more than about 8N.
In yet another form, an absorbent article comprises: a first belt comprising an inner wearer facing surface, an outer garment facing surface, a laterally extending inner edge, a laterally extending outer edge, and a lateral centerline, wherein the outer edge is positioned longitudinally outward of the inner edge; a second belt, wherein laterally opposing end portions of the second belt are connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt; and a frangible pathway in the first belt extending between the inner edge and the outer edge of the first belt, wherein the frangible pathway comprises a first tear zone and a second tear zone, wherein the frangible pathway is configured to tear along the first tear zone and the second tear zone, wherein the first belt has a belt tear strength and a belt standard deviation according to the Material Tear Strength test method, wherein the frangible pathway has a pathway tear strength and a pathway standard deviation according to the Pathway Tear Strength test method, and wherein the belt tear strength minus a standard deviation factor multiplied by the belt standard deviation is greater than the pathway tear strength plus the standard deviation factor multiplied by the pathway standard deviation, and wherein the standard deviation factor is at least 2.
FIG. 3A1 is a cross-sectional detailed view of another example configuration wherein the first belt is provided with panel layers wherein one panel layer is folded over another panel layer.
FIG. 3A2 is a cross-sectional detailed view of another example configuration wherein the first belt is provided with panel layers wherein one panel layer is folded over another panel layer.
The following term explanations may be useful in understanding the present disclosure:
“Absorbent article” refers to devices, which absorb and contain body exudates and, more specifically, refers to devices, which are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body. Exemplary absorbent articles include diapers, training pants, pull-on pant-type diapers (i.e., a diaper having a pre-formed waist opening and leg openings such as illustrated in U.S. Pat. No. 6,120,487), refastenable diapers or pant-type diapers, incontinence briefs and undergarments, diaper holders and liners, feminine hygiene garments such as panty liners, absorbent inserts, menstrual pads and the like.
“Body-facing” and “garment-facing” refer respectively to the relative location of an element or a surface of an element or group of elements. “Body-facing” implies the element or surface is nearer to the wearer during wear than some other element or surface. “Garment-facing” implies the element or surface is more remote from the wearer during wear than some other element or surface (i.e., element or surface is proximate to the wearer's garments that may be worn over the disposable absorbent article).
The terms “elastic,” “elastomer” or “elastomeric” refers to materials exhibiting elastic properties, which include any material that upon application of a force to its relaxed, initial length can stretch or elongate to an elongated length more than 10% greater than its initial length and will substantially recover back to about its initial length upon release of the applied force. Elastomeric materials may include elastomeric films, scrims, nonwovens, ribbons, strands, and other sheet-like structures.
As used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
As used herein, the term “distal” is used to describe a position situated away from a center of a body or from a point of attachment, and the term “proximal” is used to describe a position situated nearer to a center of a body or a point of attachment.
The term “substrate” is used herein to describe a material which is primarily two-dimensional (i.e., in an XY plane) and whose thickness (in a Z direction) is relatively small (i.e., 1/10 or less) in comparison to its length (in an X direction) and width (in a Y direction). Non-limiting examples of substrates include a web, layer or layers or fibrous materials, nonwovens, films, and foils such as polymeric films or metallic foils. These materials may be used alone or may comprise two or more layers laminated together. As such, a web is a substrate.
The term “nonwoven” refers herein to a material made from continuous (long) filaments (fibers) and/or discontinuous (short) filaments (fibers) by processes such as spunbonding, meltblowing, carding, and the like. Nonwovens do not have a woven or knitted filament pattern.
The term “machine direction” (MD) is used herein to refer to the direction of material flow through a process. In addition, relative placement and movement of material can be described as flowing in the machine direction through a process from upstream in the process to downstream in the process.
The term “cross direction” (CD) is used herein to refer to a direction that is generally perpendicular to the machine direction.
“Pre-strain” refers to the strain imposed on an elastic or elastomeric material prior to combining it with another element of the elastomeric laminate or the absorbent article. Pre-strain is determined by the following equation Pre-strain=((extended length of the elastic-relaxed length of the elastic)/relaxed length of the elastic)*100.
“Decitex” also known as Dtex is a measurement used in the textile industry used for measuring yarns or filaments. 1 Decitex=1 gram per 10,000 meters. In other words, if 10,000 linear meters of a yarn or filament weights 500 grams that yarn or filament would have a decitex of 500.
The term “taped diaper” (also referred to as “open diaper”) refers to disposable absorbent articles having an initial front waist region and an initial back waist region that are not fastened, pre-fastened, or connected to each other as packaged, prior to being applied to the wearer. A taped diaper may be folded about the lateral centerline with the interior of one waist region in surface to surface contact with the interior of the opposing waist region without fastening or joining the waist regions together. Example taped diapers are disclosed in various suitable configurations U.S. Pat. Nos. 5,167,897, 5,360,420, 5,599,335, 5,643,588, 5,674,216, 5,702,551, 5,968,025, 6,107,537, 6,118,041, 6,153,209, 6,410,129, 6,426,444, 6,586,652, 6,627,787, 6,617,016, 6,825,393, and 6,861,571; and U.S. Patent Publication Nos. 2013/0072887 A1; 2013/0211356 A1; and 2013/0306226 A1, all of which are incorporated by reference herein.
The term “pant” (also referred to as “training pant,” “pre-closed diaper,” “diaper pant,” “pant diaper,” and “pull-on diaper”) refers herein to disposable absorbent articles having a continuous perimeter waist opening and continuous perimeter leg openings designed for infant or adult wearers. A pant can be configured with a continuous or closed waist opening and at least one continuous, closed, leg opening prior to the article being applied to the wearer. A pant can be preformed or pre-fastened by various techniques including, but not limited to, joining together portions of the article using any refastenable and/or permanent closure member (e.g., seams, heat bonds, pressure welds, adhesives, cohesive bonds, mechanical fasteners, etc.). A pant can be preformed anywhere along the circumference of the article in the waist region (e.g., side fastened or seamed, front waist fastened or seamed, back waist fastened or seamed). Example diaper pants in various configurations are disclosed in U.S. Pat. Nos. 4,940,464; 5,092,861; 5,246,433; 5,897,545; 5,957,908; 6,120,487; 6,120,489; 7,569,039 and U.S. Patent Publication Nos. 2003/0233082 A1; 2005/0107764 A1, 2012/0061016 A1, 2012/0061015 A1; 2013/0255861 A1; 2013/0255862 A1; 2013/0255863 A1; 2013/0255864 A1; and 2013/0255865 A1, all of which are incorporated by reference herein.
“Closed-form” means opposing waist regions are joined, as packaged, either permanently or refastenably to form a continuous waist opening and leg openings.
“Open-form” means opposing waist regions are not initially joined to form a continuous waist opening and leg openings but comprise a closure means such as a fastening system to join the waist regions to form the waist and leg openings before or during application to a wearer of the article.
The present disclosure relates to absorbent articles including elastic laminates, and more particularly, to absorbent articles having elastic laminates in front and/or back waist regions with one or more frangible pathway. In some configurations, an absorbent article may comprise: a first belt and a second belt, each belt comprising a first end region and a second end region laterally separated from the first end region by a central region. The first end region of the first belt is connected with the first end region of the second belt and the second end region of the first belt is connected with the second end region of the second belt to form a waist opening. The absorbent article may further comprise a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet. The chassis may further comprise a first end region and a second end region longitudinally separated from the first end region by a crotch region. The first end region of the chassis may be connected with the central region of the first belt and the second end region of the chassis may be connected with the central region of the second belt. The first belt may further comprise a laterally extending inner edge and a laterally extending outer edge, the outer edge positioned longitudinally outward of the inner edge.
As discussed in more detail below, the first belt and/or the second belt may comprise one or more frangible pathways. For example, a frangible pathway in the first and/or second belt may extend between the inner edge of the first belt and the outer edge of the first belt. The frangible pathway may extend to a proximal terminus on the inner edge and a distal terminus on the outer edge of the first belt. In turn, the frangible pathway may comprise a single tear zone or a first tear zone extending to the distal terminus and a second tear zone extending to the proximal terminus. Such frangible pathway configurations provide a feature that allows an elastic belt of a diaper pant to be relatively easily torn along the frangible pathway when removing the diaper pant from a wearer, avoiding the need to remove the diaper pant by sliding the diaper pant over a wearer's legs. The tear strength needed to tear along the frangible pathway may be significantly less than the tear strength to tear the belt so that the tear only propagates along the frangible pathway and not into other areas of the belt. In addition, the frangible pathway may be configured to allow a caregiver or wearer to initiate and/or completely tear the first belt with one hand when removing a diaper pant from a wearer.
With continued reference to
As shown in
As shown in
As previously mentioned, the diaper pant 100P may include a backsheet 136. The backsheet 136 may also define the outer, garment facing surface 134 of the chassis 102. The backsheet 136 may also comprise a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material. The backsheet may also comprise an elastomeric film. An example backsheet 136 may be a polyethylene film having a thickness of from about mm (0.5 mils) to about 0.051 mm (2.0 mils). Further, the backsheet 136 may permit vapors to escape from the absorbent core (i.e., the backsheet is breathable) while still preventing exudates from passing through the backsheet 136.
Also described above, the diaper pant 100P may include a topsheet 138. The topsheet 138 may also define all or part of the inner, wearer facing surface 132 of the chassis 102. The topsheet 138 may be liquid pervious, permitting liquids (e.g., menses, urine, and/or runny feces) to penetrate through its thickness. A topsheet 138 may be manufactured from a wide range of materials such as woven and nonwoven materials; apertured or hydroformed thermoplastic films; apertured nonwovens, porous foams; reticulated foams; reticulated thermoplastic films; and thermoplastic scrims. Woven and nonwoven materials may comprise natural fibers such as wood or cotton fibers; synthetic fibers such as polyester, polypropylene, or polyethylene fibers; or combinations thereof. If the topsheet 138 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art. Topsheets 138 may be selected from high loft nonwoven topsheets, apertured film topsheets and apertured nonwoven topsheets. Exemplary apertured films may include those described in U.S. Pat. Nos. 5,628,097; 5,916,661; 6,545,197; and 6,107,539, all of which are incorporated by reference herein.
As mentioned above, the diaper pant 100P may also include an absorbent assembly 140 that is joined to the chassis 102. As shown in
Some absorbent core embodiments may comprise fluid storage cores that contain reduced amounts of cellulosic airfelt material. For instance, such cores may comprise less than about 40%, 30%, 20%, 10%, 5%, or even 1% of cellulosic airfelt material. Such a core may comprise primarily absorbent gelling material in amounts of at least about 60%, 70%, 80%, 85%, 90%, 95%, or even about 100%, where the remainder of the core comprises a microfiber glue (if applicable). Such cores, microfiber glues, and absorbent gelling materials are described in U.S. Pat. Nos. 5,562,646; 5,669,894; and 6,790,798 as well as U.S. Patent Publication Nos. 2004/0158212 A1 and 2004/0097895 A1, all of which are incorporated by reference herein.
As previously mentioned, the diaper 100P may also include elasticized leg cuffs 156. It is to be appreciated that the leg cuffs 156 can be and are sometimes also referred to as leg bands, side flaps, barrier cuffs, elastic cuffs or gasketing cuffs. The elasticized leg cuffs 156 may be configured in various ways to help reduce the leakage of body exudates in the leg regions. Example leg cuffs 156 may include those described in U.S. Pat. Nos. 3,860,003; 4,909,803; 4,695,278; 4,795,454; 4,704,115; 4,909,803; and U.S. Patent Publication No. 2009/0312730 A1, all of which are incorporated by reference herein.
As mentioned above, diaper pants may be manufactured with a ring-like elastic belt 104 and provided to consumers in a configuration wherein the front waist region 116 and the back waist region 118 are connected to each other as packaged, prior to being applied to the wearer. As such, diaper pants may have a continuous perimeter waist opening 110 and continuous perimeter leg openings 112 such as shown in
As previously mentioned, the ring-like elastic belt 104 may be defined by a first elastic belt 106 connected with a second elastic belt 108. As shown in
As shown in
It is to be appreciated that the first elastic belt 106 and the second elastic belt 108 may define different sizes and shapes. In some configurations, the first elastic belt 106 and/or second elastic belt 108 may define curved contours. For example, the inner lateral edges 107b, 109b of the first and/or second elastic belts 106, 108 may include non-linear or curved portions in the first and second opposing end regions. Such curved contours may help define desired shapes to leg opening 112, such as for example, relatively rounded leg openings. In addition to having curved contours, the elastic belts 106, 108 may include elastic strands 168 that extend along non-linear or curved paths that may correspond with the curved contours of the inner lateral edges 107b, 109b.
In some configurations, at least one of the first elastic belt 106 and the second elastic belt 108 may comprise lateral edges having different lengths. For example,
In some configurations, both the first elastic belt 106 and the second elastic belt 108 may comprise lateral edges having different lengths. For example,
With reference to
With reference to
It is also to be appreciated that the first substrate 162 and/or the second substrate 164 may extend continuously from the first belt 106 to the second belt 108. For example, the first substrate 162 may be configured to define a continuous outer cover 162′ that extends contiguously from the first waist edge 121 to the second waist edge 122, such as shown in
It is to be appreciated that the first substrate 162 and the second substrate 164 may define various lateral widths that may or may not be equal. For example, as shown in
In some configurations, the proximal edge 162b of the first substrate 162 and/or the proximal edge 164b of the second substrate 164 may extend laterally across the backsheet 136. As shown in
In some configurations, the first elastic belt 106 and/or the second elastic belt 108 may include a folded portion of at least the first substrate 162 and/or the second substrate 164. For example, as shown in
It is to be appreciated that the first elastic belt 106 and the second elastic belt 108 may comprise the same materials and/or may have the same structure. In some embodiments, the first elastic belt 106 and the second elastic belt may comprise different materials and/or may have different structures. It should also be appreciated that components of the first elastic belt 106 and the second elastic belt 108, such as the first substrate 162, and/or second substrate 164 may be constructed from various materials. For example, the first and/or second belts may include a first substrate 162, and/or second substrate 164 that may be manufactured from materials such as plastic films; apertured plastic films; woven or nonwoven webs of natural materials (e.g., wood or cotton fibers), synthetic fibers (e.g., polyolefins, polyamides, polyester, polyethylene, or polypropylene fibers) or a combination of natural and/or synthetic fibers; or coated woven or nonwoven webs. In some configurations, the first and/or second belts may include a first substrate 162, and/or second substrate 164 comprising a nonwoven web of synthetic fibers and may include a stretchable nonwoven. In some configurations, the first and second elastic belts may include an inner hydrophobic, non-stretchable nonwoven material and an outer hydrophobic, non-stretchable nonwoven material. It is to be appreciated that the belts may configured in various ways, such as disclosed for example, in U.S. Patent Publication No. 2022/0142828 A1 and Chinese Patent Application No. CN2021/077843, which are both incorporated by reference herein.
One or more substrates of the belt may include fibers. The characteristics of these fibers may be the same or different in the outer garment facing surface and the inner wearer facing surface of the belt. Further, the characteristics of these fibers may be present in one or more the substrate layers forming the belt. Those fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, hydrojetted, or otherwise processed as is known in the art. The nonwoven may be a composite material such as a spunbond-meltblown-spunbond (SMS) material. For example, at least one of the outer garment facing surface and the inner wearer facing surface of the substrate may comprise a carded nonwoven material. At least one of the outer garment facing surface and the inner wearer facing surface of the belt may comprise a substrate having a plurality of fibers that are hydroentangled or have undergone a hydrojetting process. Additionally, the substrate may include a plurality of fibers having a denier or less than about 1.5 or less than about 1.3 or less than about 1.2 or less than about 1, specifically reciting all 0.1 increments within the above recited range and all ranges formed therein or thereby.
The fibers of the substrates of the present disclosure may comprise mono-component fibers or multi-component fibers, such as bi-component fibers or tri-component fibers, for example. Multi-component fibers, as used herein, means fibers comprising more than one chemical species or material (i.e., multi-constituent fibers). The fibers may comprise petroleum sourced resins, recycled resins, and/or bio-sourced resins, such as polylactic acid from Nature Works, polyethylene and/or polypropylene from Braskem, and polybutylene terephthalate from Lanxess. The fibers may have round, triangular, tri-lobal, or otherwise shaped cross-sections, for example. Often, the different polymer components have different melting temperatures, viscosities, glass transition temperatures, crystallinities, and/or crystallization rates. The multi-component fibers, such as bi-component fibers, may comprise sheath/core, side-by-side, islands in the sea, and/or eccentric configurations or may have other configurations. As an example, in the context of bi-component fibers, fibers comprising a core/sheath configuration may be comprised of a first polymer forming the core of the fiber, and a second polymer partially or completely surrounding the first polymer and forming the sheath of the fiber. For example, the substrate may comprise a polypropylene-polyethylene side by side bicomponent fibers.
The fibers of the substrates of the present disclosure may comprise crimped fibers. These crimped fibers may be included in at least one of the outer garment facing surface and the inner wearer facing surface of the belt. Crimped fibers may result when the different polymer components of multi-component fibers have different melting temperatures, viscosities, glass transition temperatures, crystallinities, and/or crystallization rates, and are disposed in an eccentric sheath/core or side-by-side configuration within the fibers. As the multi-component fibers cool after formation, a first polymer component may solidify and/or shrink at a faster rate than a second polymer component while the second polymer component may have sufficient rigidity to resist compression along a longitudinal fiber axis. The continuous fibers may deform and curl up when strain on the fiber is relieved, thereby causing what is known as “crimp” in the fibers. Crimp of the fibers aids in the softness and loft of a nonwoven web, which is consumer desirable. Additional details for fibers suitable for inclusion in the substrates discussed herein is disclosed in U.S. Patent Publication No. 2020/0337910, which is incorporated by reference herein.
Elastic material 167 may be positioned between the wearer facing surface 162d of the first substrate 162 and the garment facing surface 164c of the second substrate 164. It is to be appreciated that the elastic material 167 may include one or more elastic elements such as strands, ribbons, elastic films, or panels extending along the lengths of the elastic belts. As shown in
It is also to be appreciated that the first substrate 162, second substrate 164, and/or elastic material 167 of the first elastic belt 106 and/or second elastic belt 108 may be bonded together and/or with other components, such as the chassis 102, with adhesive and/or mechanical bonds. It is to be appreciated that adhesive and mechanical bonding methods may be utilized alone or in combination with each other.
In some configurations, adhesive may be applied to at least one of the first substrate 162, second substrate 164, and/or elastic material 167 when being combined to form the first elastic belt 106 and/or second elastic belt 108. In some configurations, mechanical bonding devices may apply mechanical bonds to the to at least one of the first substrate 162, second substrate 164, and/or elastic material 167 when being combined to form the first elastic belt 106 and/or second elastic belt 108. Such mechanical bonds may be applied with heat, pressure, and/or ultrasonic devices. In some configurations, mechanical bonding devices may apply bonds that bond the first substrate 162, second substrate 164, and/or elastic material 167 together and/or may act to trap or immobilize discrete lengths of the contracted elastic strands in the first elastic belt 106 and/or second elastic belt 108.
It is also to be appreciated that the first substrate 162, second substrate 164, and/or elastic material 167 may be bonded together with various methods and apparatuses to create various elastomeric laminates, such as described in U.S. Patent Publication Nos. 2018/0168878 A1; 2018/0168877 A1; 2018/0168880 A1; 2018/0170027 A1; 2018/0169964 A1; 2018/0168879 A1; 2018/0170026 A1; 2018/0168889 A1; 2018/0168874 A1; 2018/0168875 A1; 2018/0168890 A1; 2018/0168887 A1; 2018/0168892 A1; 2018/0168876 A1; 2018/0168891 A1; 2019/0070042 A1; 2019/0070041 A1; 2021/0282797 A1; and 2021/0275362 A1, and combinations thereof, all of which are incorporated herein by reference.
It is to be appreciated that components of the first elastic belt 106 and/or the second elastic belt 108 may be assembled in various ways and various combinations to create various desirable features that may differ along the lateral width and/or longitudinal length of the first elastic belt 106 and/or the second elastic belt 108. Such features may include, for example, Dtex values, bond patterns, aperture arrangements, elastic positioning, Average Dtex values, Average Pre-Strain values, rugosity frequencies, rugosity wavelengths, height values, and/or contact area. It is to be appreciated that differing features may be imparted to various components, such as for example, the first substrate 162, second substrate 164, and elastic material 167 before and/or during stages of assembly of the first elastic belt 106 and/or the second elastic belt 108.
It is to be appreciated that the first elastic belt 106 and/or the second elastic belt 108 may include various configurations of belt elastic materials 167 arranged in relation to each other and to the first substrate 162, and the second substrate 164. As discussed above, the elastic material 167 may include configurations of one or more elastic elements such as strands, ribbons, films, or panels positioned in various arrangements. In some configurations, the elastic material 167 may comprise various elastics, elastic features and arrangements, and processes for assembly, such as described in 2018/0168889 A1; 2018/0168874 A1; 2018/0168875 A1; 2018/0168890 A1; 2018/0168887 A1; 2018/0168892 A1; 2018/0168876 A1; 2018/0168891 A1; 2019/0298586 A1; 2019/0070042 A1; 2018/0168878 A1; 2018/0168877 A1; 2018/0168880 A1; 2018/0170027 A1; 2018/0169964 A1; 2018/0168879 A1; 2018/0170026 A1; 2019/0070041 A1; 2021/0282797A1; and 2021/0275362 A1, which are all incorporated by reference. It is also to be appreciated the elastic materials 167 herein may be configured with identical or different colors in various different locations on the first elastic belt 106 and/or the second elastic belt 108.
In some configurations, the elastic material 167 may be configured as elastic strands 168 disposed at a constant interval in the longitudinal direction. In other embodiments, the elastic strands 168 may be disposed at different intervals in the longitudinal direction. In some configurations, the Dtex values of the elastic strands 168 may be constant or varied along the longitudinal direction. In some configurations, the elastic material 167 in a stretched condition may be interposed and joined between uncontracted substrate layers. When the elastic material 167 is relaxed, the elastic material 167 returns to an unstretched condition and contracts the substrate layers. The elastic material 167 may provide a desired variation of contraction force in the area of the ring-like elastic belt. It is to be appreciated that the chassis 102 and elastic belts 106, 108 may be configured in different ways other than as depicted in attached Figures. It is also to be appreciated that the elastic material 167 may be joined to the substrates continuously or intermittently along the interface between the elastic material 167 and the substrates. In some configurations, the elastic strands 168 may be in the form of extruded elastic strands, which may also be bonded with the first substrate 162 and/or second substrate 164 in a pre-corrugated configuration, such as disclosed for example in U.S. Pat. No. 5,681,302, which is incorporated by reference herein.
As discussed above for example with reference to
In some configurations, a first plurality of elastic strands may comprise a first Average-Pre-Strain from about 75% to about 300%, and a second plurality of elastic strands may comprise a second Average-Pre-Strain that is greater than first Average-Pre-Strain. In some configurations, a first plurality of elastic strands comprises an Average-Strand-Spacing from about 0.25 mm to about 4 mm and an Average-Dtex from about 10 to about 500; and a second plurality of elastic strands may comprise an Average-Strand-Spacing greater than about 4 mm and an Average-Dtex greater than about 450.
In some configurations, such as shown in
As shown in
As discussed above, the diaper pants 100P described with reference to
As discussed in more detail below, the frangible pathways 700 may comprise a plurality of lines of weakness 704 configured such that all elastic strands 168 in the first elastic belt 106 are severed at least once in the frangible pathway 700. Severing the elastic strands 168 in the frangible pathway 700 helps make it relatively easier to tear the first elastic belt 106 along the frangible pathway 700. For example, when the elastic strands 168 are severed, the first substrate 162 and second substrate 164 of the first elastic belt 106 need only need to be torn without having to also tear uncut elastic strands 168. It is to be appreciated that the diaper pant 100P may include various quantities of frangible pathways 700 that may be: positioned in various locations; define various shapes; and extend for various lengths. For example, the first elastic belt 106 may comprise a first belt length defined by a longitudinal distance between the proximal edge 107b and the distal edge 107a, and the frangible pathway 700 may extend for a total length from an outermost edge of a line of weakness 704 nearest the proximal edge 107b of the first belt 106 to an outermost edge of a line of weakness 704 nearest the distal edge 107a of the first belt 106. In some configurations, the frangible pathway 700 may extend for a total length that is greater than, equal to, or less than the first belt length. In some configurations, the lines of weakness 704 may extend for a length from a first end to a second end, and a sum of the all the lengths of lines of weakness 704 in the frangible pathway 700 may be greater than the frangible pathway total length.
In some configurations, diaper pants 100P may be configured such that one or both of the first elastic belt 106 and the second elastic belt 108 include one or more frangible pathways 700. The frangible pathways 700 may be positioned in various locations on the first and second elastic belts 106, 108. For example, such as shown in
In some configurations, the frangible pathways 700 may be configured and/or positioned to provide access to and/or function with other features, such as disposal features. For example, the diaper pant 100P shown in
It is also to be appreciated that the fastener component 707 may be configured in various ways, such as hooks, loops, and/or adhesive. For example, the fastener component 707 may comprise hook elements or adhesive adapted to refastenably connect with another surface of the diaper pant 100P. In some configurations, the fastener component 707 may comprise loop elements adapted to refastenably connect with hook surface on the diaper pant 100P. The fastener component 707 may be a separate element connected with the elastic belt 106 in various ways, such as mechanical bonding, adhesive bonding, or both. In some configurations, the fastener component 707 may be integrally formed from materials of the elastic belt 106, 108. In some configurations, the fastener component 707 may be printed and/or comprise materials of various different colors such that the fastener component 707 may be visible from outside the diaper pant 100P.
As previously mentioned, the fastener component 707 may comprise a hook material that can refastenably engage with substrates, such as nonwovens for example, on an exterior surface of the diaper pant 100P. For example, the fastener component 707 may comprise a substrate comprising hooks, with the substrate bonded to the elastic belt 106, 108, such as the second substrate 164, which may be in the form of a nonwoven. It is to be appreciated that the substrate may be bonded to the elastic belt 106, 108 in various ways, such as for example, with mechanical bonds, thermal bonds, ultrasonic bonds, and/or adhesive bonds or combinations thereof. In some configurations, hooks may be integrally formed from the second substrate 164, which may be in the form of a nonwoven. The fastener component 707 may comprise one material or a combination of two or more materials arranged in at least partially overlapping configuration. In some configurations, the fastener component 707 may comprise other fastener types as known in the art.
It is to be appreciated that the fastener component 707 may comprise any of a wide variety of shapes, including rectangles or other polygons, circles, ovals, shapes having exterior convexities or concavities or combinations thereof, or one or a plurality of lines or geometric shapes forming an array. It is to be appreciated that the fastener component 707 may comprise various sizes. For example, in some configurations, the fastener component 707 may have a lateral width of between about 5 mm and about 100 mm, specifically reciting all 0.1 mm increments within the above-recited range and all ranges formed therein or thereby. In some configurations, the fastener component 707 may have a longitudinal length of between about 10 mm and about 100 mm, specifically reciting all 0.1 mm increments within the above-recited range and all ranges formed therein or thereby. The fastener component 707 may be aligned parallel the lateral centerline 126a, 126b of the elastic belt 106, 108 or may be oriented at an angle relative the longitudinal centerline 126a, 126 of the elastic belt 106, 108 of between 0 and 90 degrees. The fastener component 707 may comprise an array of two or more spaced-apart fastening elements. The fastener component 707 may have a color that is visible through any layers of the elastic belt 106, 108 on which the fastener component 707 is located. The elastic belt 106, 108 and/or chassis 102 may include printing or other indicia highlighting to a caregiver the location, function, and/or usage of the fastener component 707. The bond, or bond pattern, attaching the fastener component 707 to the elastic belt 106, 108 may be visually or tactilely distinct from the surrounding belt material in order to provide the caregiver a signal or a mechanical grip advantage.
It is also to be appreciated that the frangible pathways 700 may comprise lines of weakness 704 that are: configured in various ways; positioned in various locations and orientations relative to each other; defined by various shapes; and extending for various lengths. For example, in some configurations, the lines of weakness 704 may comprise discrete cut lines that penetrate through some or all the layers of the elastic belt 106. In some configurations, the lines of weakness 704 comprise discrete bonds wherein materials of the first substrate and the second substrate are fused together. In some configurations, the lines of weakness 704 may be linear, curvilinear, or have a regular or irregular geometry and may comprise one or more of a perforation, a bond, an aperture, or a mechanically thinned region of a material such as a nonwoven, or a combination thereof. It is also to be appreciated that the lines of weakness 704 can be formed with different lengths and spacings to achieve different separation forces.
As discussed above, absorbent articles 100, such as diaper pants 100P, may be configured with frangible pathways 700 comprising lines of weakness 704 arranged in various ways to help improve a caregiver's ability to remove a soiled diaper pant 100P from a wearer without having to remove a soiled diaper pant from a wearer by sliding the soiled diaper pant down the wearer's legs. As discussed above, the frangible pathways 700 may be configured to allow the first elastic belt 106 and/or the second elastic belt 108 to be relatively easily torn along the frangible pathway 700, such as when removing the diaper pant 100P from a wearer. In addition, the frangible pathways 700 may also be configured to provide access to fastener components 707 that may be used to help hold a soiled product in a disposal configuration. The following provides a discussion of example implementations of frangible pathways 700 on diaper pants 100P in the context of the above description of various details of absorbent articles 100, fastener components 707, frangible pathways 700, and lines weakness 704. It is to be appreciated that discussions of frangible pathways 700 in the first elastic belt 106 herein may also apply to frangible pathways 700 in the second elastic belt 108.
It is to be appreciated that frangible pathways 700 may be positioned in various locations and/or orientations relative to other components of the absorbent article 100 and/or may be configured to function in various ways to help facilitate removal of diaper pant from a wearer. For example, the diaper pant 100P shown in
It is to be appreciated that the first distal terminus 808a and the second distal terminus 808b may be located in various lateral positions on the outer edge 107a of the first belt 106. For example, in some configurations, the first distal terminus 808a and/or the second distal terminus 808b may be positioned in the central region 106c of the first belt 106. In some configurations, the first distal terminus 808a and/or the second distal terminus 808b may be positioned laterally between the first longitudinal edge 128 and the second longitudinal edge 130 of the chassis 102. In some configurations, the first distal terminus 808a and/or the second distal terminus 808b may be positioned in the first end region 106a and/or the second end region 106b of the first belt 106. In some configurations, the first distal terminus 808a and/or the second distal terminus 808b may be positioned laterally outboard of the first longitudinal edge 128 and the second longitudinal edge 130 of the chassis 102. In some configurations, the first distal terminus 808a and/or the second distal terminus 808b may be positioned laterally between the first longitudinal edge 128 of the chassis 102 and the first side seam 178 and/or may be positioned laterally between the second longitudinal edge 130 of the chassis 102 and the second side seam 180. In some configurations, the first distal terminus 808a may be laterally aligned with the first longitudinal edge 128 of the chassis 102 or the first longitudinal side edge 111a of the first belt 106. In some configurations, the first distal terminus 808a may be positioned laterally between the first longitudinal edge 128 of the chassis 102 and the first longitudinal side edge 111a of the first belt 106. In some configurations, the second distal terminus 808b may be laterally aligned with the second longitudinal edge 130 of the chassis 102 or the second longitudinal side edge 111b of the first belt 106. In some configurations, the second distal terminus 808b may be positioned laterally between the second longitudinal edge 130 of the chassis 102 and the second longitudinal side edge 111b of the first belt 106.
It is also to be appreciated that the first proximal terminus 810a and the second proximal terminus 810b may be located in various lateral positions on the inner edge 107b of the first belt 106. For example, in some configurations, the first proximal terminus 810a and/or the second proximal terminus 810b may be positioned in the central region 106c of the first belt 106. In some configurations, the first proximal terminus 810a and/or the second distal terminus 810b may be positioned laterally between the first longitudinal edge 128 and the second longitudinal edge 130 of the chassis 102. In some configurations, the first proximal terminus 810a and/or the second proximal terminus 810b may be positioned in the first end region 106a and/or the second end region 106b of the first belt 106. In some configurations, the first proximal terminus 810a and/or the second proximal terminus 810b may be positioned laterally outboard of the first longitudinal edge 128 and the second longitudinal edge 130 of the chassis 102. In some configurations, the first proximal terminus 810a and/or the second proximal terminus 810b may be positioned laterally between the first longitudinal edge 128 of the chassis 102 and the first side seam 178 and/or may be positioned laterally between the second longitudinal edge 130 of the chassis 102 and the second side seam 180. In some configurations, the first proximal terminus 810a may be laterally aligned with the first longitudinal edge 128 of the chassis 102 or the first longitudinal side edge 111a of the first belt 106. In some configurations, the first proximal terminus 810a may be positioned laterally between the first longitudinal edge 128 of the chassis 102 and the first longitudinal side edge 111a of the first belt 106. In some configurations, the second proximal terminus 810b may be laterally aligned with the second longitudinal edge 130 of the chassis 102 or the second longitudinal side edge 111b of the first belt 106. In some configurations, the second proximal terminus 810b may be positioned laterally between the second longitudinal edge 130 of the chassis 102 and the second longitudinal side edge 111b of the first belt 106.
It is to be appreciated that the first distal terminus 808a and the second distal terminus 808b may be located in various longitudinal positions between the outer edge 107a and the inner edge 107b of the first belt 106. And the first proximal terminus 810a and the second proximal terminus 810b may be located in various longitudinal positions between the outer edge 107a and the inner edge 107b of the first belt 106. For example, in some configurations, the first distal terminus 808a and/or the first proximal terminus 810a may be located on the first side seam 178 at positions longitudinally inboard of the outer edge 107a and longitudinally outboard of the inner edge 107b of the first belt 106. Also, the second distal terminus 808b and/or the second proximal terminus 810b may be located on the second side seam 180 at positions longitudinally inboard of the outer edge 107a and longitudinally outboard of the inner edge 107b of the first belt 106. As such, completing the tearing process of the first belt 106 may also require tearing portions of the first and/or second side seams 178, 180.
With continued reference to
As shown in
It is to be appreciated that the frangible pathways 700 may comprise one or more functional zones. In turn, the frangible pathways may comprise transition zones that may operatively connect such zones to help facilitate propagation of a tear along the frangible pathway 700 from one zone to another zone. The lines of weakness in the transition zones may be of particular lengths and/or angles relative to lateral centerlines and row spacing to help provide desired propagation of material failure when, for example, removing a product from a wearer. It is to be appreciated that the lengths, angles, and spacings in transition zones may be different from those in adjacent lines of weakness.
As shown in
The accessibility opening 802 may help provide a caregiver or wearer access to and/or to grasp the fastener component 707 in the grip region 801 with a finger or thumb. The caregiver or user may then pull on grip region 801 to begin tearing the first belt 106 on the frangible pathway 700. In some configurations, tear lines may simultaneously propagate along the first tear zone 813a and the second tear zone 813b laterally outward from the central region 106c of the first belt 106 toward the distal terminus 808 and the proximal terminus 810. As discussed in more detail below, the diaper pant 100P may also be configured such that a tear line propagating along the first tear zone 813a and a tear line propagating along the second tear zone 813b may reach the distal terminus 808 and the proximal terminus 810, respectively, simultaneously or approximately simultaneously. It is also to be appreciated that some diaper pants 100P herein may be configured to include a frangible pathway 700 that extends through or around the fastener component 707 without an accessibility opening. In turn, a user may pinch and/or pull the belt where the frangible pathway 700 is located at or adjacent the fastener component 707 to initiate the tearing process along the frangible pathway 700.
As shown in
As discussed above, the first elastic belt 106 and/or the second belt 108 may be relatively easily torn along the frangible pathway 700, such as when removing the diaper pant 100P from a wearer. In addition, the first belt 106 may be separable along the first frangible pathway 700a and the second frangible pathway 700b to define a first belt zone 831, a second belt zone 832, and a third belt zone 833 positioned laterally between the first and second belt zones 831, 832.
Referring now to
With continued reference to
In some configurations, the first tear line 705a may propagate from the first accessibility opening 802a along the first initial tear zone 815a of the first frangible pathway 700a to the first transition zone 817a. From the first transition zone 817a, the first tear line 705a may then propagate along the first secondary tear zone 819a to the first distal terminus 808a. In addition, the second tear line 705b may propagate from the first accessibility opening 802a along the second initial tear zone 815b of the first frangible pathway 700a to the second transition zone 817b. From the second transition zone 817b, the second tear line 705b may then propagate along the second secondary tear zone 819b to the first proximal terminus 810a. As discussed in more detail below, the first frangible pathway 700a may be configured such that the first tear line 705a and the second tear line 705b may reach first distal terminus 808a and the first proximal terminus 810a, respectively, at the same time or about the same time.
As shown in
With the first belt zone 831 being defined by tearing the first belt 106 along the first frangible pathway 700a, a user may proceed to define the second belt zone 832 by tearing the first belt 106 along the second frangible pathway 700b. Referring now to
With continued reference to
In some configurations, the first tear line 705a may propagate from the second accessibility opening 802b along the first initial tear zone 815a of the second frangible pathway 700b to the first transition zone 817a. From the first transition zone 817a, the first tear line 705a may then propagate along the first secondary tear zone 819a to the second distal terminus 808b. In addition, the second tear line 705b may propagate from the second accessibility opening 802b along the second initial tear zone 815b of the second frangible pathway 700b to the second transition zone 817b. From the second transition zone 817b, the second tear line 705b may then propagate along the second secondary tear zone 819b to the second proximal terminus 810b. As discussed in more detail below, the second frangible pathway 700b may be configured such that the first tear line 705a and the second tear line 705b may reach second distal terminus 808b and the second proximal terminus 810b, respectively, at the same time or about the same time.
As shown in
Although the tearing process is described above with reference to
Once the first belt 106 is torn along the frangible pathways 700 to define the first belt zone 831, the second belt zone 832, and the third belt zone 833, the diaper pant 100P may be removed from a wearer in a manner similar to that of a conventional taped diaper. After being removed from a wearer, the diaper pant 100P may be placed in a disposal configuration.
As described above, frangible pathways 700 may be configured such that the first tear line 705a and the second tear line 705b may propagate to reach the distal terminus 808 and the proximal terminus 810, respectively, simultaneously or approximately simultaneously. Such simultaneous tear propagation and tear termination may help provide a caregiver with a convenient and confident diaper pant removal experience. As mentioned above, on occasions when one of the first tear line 705a or the second tear line propagates through the distal terminus 808 or the proximal terminus 810, respectively, significantly in advance of the other tear line, the pulling force needed to complete the tearing may be reduced. In turn, the reduction of force may cause the caregiver to believe the tearing is completed and to stop the tearing process before completion. As such, the caregiver may need to initiate a second tearing motion to complete the tearing process.
As discussed above, the frangible pathways 700 may comprise individual lines of weakness 704. In some configurations, a sum of the lengths of the lines of weakness 704 of the first tear zone 813a may be equal to or substantially equal to a sum of the lengths of the lines of weakness 704 of the second tear zone 813b. In some configurations, a sum of the lengths of the lines of weakness 704 of the first tear zone 813a may be different from a sum of the lengths of the lines of weakness 704 of the second tear zone 813b. The sum of the lengths of the lines of weakness 704 of the first tear zone 813a may be different from a sum of the lengths of the lines of weakness 704 of the second tear zone 813b by from about 1% to about 10%.
As discussed above, frangible pathways 700 may be configured with first and second tear zones 813a, 813b wherein first and second tear lines 705a, 705b propagate through the distal terminus 808 and the proximal terminus 810, respectively. In some configurations, frangible pathways 700 may be configured with first and second tear zones 813a, 813b wherein the first tear line 705a or the second tear line 705b may propagate through the distal terminus 808 or the proximal terminus 810, respectively, before the other.
It is to be appreciated that frangible pathways 700 may be configured with an accessibility opening 802, a first tear zone 813a, and a second tear zone 813b arranged such that the lengths of the first and second tear zones may not be equal or substantially equal, such as shown for example in
Referring now to
With reference to
As previously discussed, with reference to
Referring to
To avoid tearing in the belt and/or one or more layers of the substrate in an unintended tear direction, it has been found that the tear strength of the belt should be greater than the tear strength of the frangible pathway. The difference between the tear strength of the belt and the tear strength of the frangible pathway are such that the tear remains on the frangible pathway.
The characteristics of the belt determine the belt tear strength. The belt 106, 108 may comprise one or more substrates, such as a first substrate 162, and/or second substrate 164, and may be constructed from various materials. For example, the first and/or second belts may include a first substrate 162, and/or second substrate 164 that may be manufactured from materials such as plastic films; apertured plastic films; woven or nonwoven webs of natural materials (e.g., wood or cotton fibers), synthetic fibers (e.g., polyolefins, polyamides, polyester, polyethylene, or polypropylene fibers) or a combination of natural and/or synthetic fibers; or coated woven or nonwoven webs. In some configurations, the first and/or second belts may include a first substrate 162, and/or second substrate 164 comprising a nonwoven web of synthetic fibers and may include a stretchable nonwoven. The type of materials used for the one or more substrates of the belt influences the belt tear strength.
Further, nonwoven belts are manufactured using various techniques in which, generally, fibers are laid down onto a carrier and one or more bond patterns may be used to secure of the fibers of the substrate. The direction in which the carrier is moving, the machine direction MD, into which the fibers are laid down is the direction in which the majority of the fibers of the substrate are oriented, referred to herein as a fiber orientation direction. The shape and density of bonds throughout the substrate also influences the strength of the belt. Thus, the belt may be stronger along certain axes given the fiber orientation direction and the characteristics of the bond pattern. Example bond patterns in various configurations are described in U.S. Patent Publication Nos. 2017/0000663; 2014/0088535; 2016/0324698; and 2016/0101003; and U.S. Pat. Nos. 9,993,369; 10,028,866; and 9,408,761, all of which are incorporated by reference herein. Generally, the larger the open areas, areas devoid of bonds, the lower the material strength. The substrate, which may be an outer garment facing surface, an inner wearer facing surface, or an intermediate layer of the belt, may include a plurality of fibers having a denier of less than about 1.5 or less than about 1.2 or less than about 1. specifically reciting all 0.1 increments within the above recited range and all ranges formed therein or thereby.
Further still, the belt and, individually, the one or more substrates forming the belt may have a basis weight. Generally, the higher the basis weight of the substrate and/or the belt, the greater the tear strength of the belt and/or substrate. The basis weight of the one or more substrates may be optimized so that the desired tear strength is reached without sacrificing too much softness. Stated another way, the higher the basis weight of the one or more substrates, the greater the stiffness of the one or more substrates. Thus, the basis weight may be selected such that it provides the necessary strength to the substrate while being soft against the wearer's skin during use. The basis weight of the belt may be less than about 60 gsm or less than about 50 gsm less than about gsm or less than about 40 gsm or less than about 35 gsm or less than about 30 gsm or less than about 25 gsm or less than about 20 gsm, specifically reciting all 0.1 gsm increments within the above recited range and all ranges formed therein or thereby. The basis weight of the belt is the sum of the basis weight for each substrate layer used to form the belt, which may be one or more substrates. The substrate may have a basis weight of less than about 30 gsm, or less than about 25 gsm, or less than about 20 gsm or less than about 15 gsm or less than about 10 gsm or less than about 8 gsm or from about 6 gsm to about 30 gsm or from about 8 gsm or about 20 gsm or from about 8 gsm to about 11 gsm, specifically reciting all 0.1 gsm increments within the above recited range and all ranges formed therein or thereby.
It is to be appreciated that the substrate may include a softness enhancer additive to increase the softness of the substrate. Thus, a higher basis weight material may be used to achieve greater strength and a softness enhancer additive may be used to impart softness to the substrate. The softness enhancer additive may be added to the composition in neat form, diluted, and/or as a masterbatch in, for example, polyolefin polymers such as polypropylene, polystyrene, low density polyethylene, high density polyethylene, or propylene-alpha-olefin copolymers. A composition suitable to make fibers as described herein contains one or more softness enhancer additive, which can be present in an amount of between 0.01% to 10%, or between 0.05% to 5%, or between 0.3% to 1%, or between 0.01% to 1%, or between 0.2% to 0.5% by weight of the fibers, specifically reciting all 0.1% increments within the above recited range and all ranges formed therein or thereby. Example softness enhancer additives in various configurations are disclosed in U.S. Pat. No. 9,993,369, which is incorporated by reference herein. The softness enhancer additive may be on a single side, such as the garment facing surface or the wearer facing surface of the belt. The softness enhance additive may be present in different amounts on each of the garment facing surface of the belt and the wearer facing surface of the belt.
At least a portion of the frangible pathway 700 may be at a pathway angle β with respect to lateral centerline of the elastic belt 126a, 126b through which the frangible pathway may extend. The frangible pathway angle β may be less than 90 degrees or less than 85 degrees or less than 75 degrees or less than 65 degrees or less than 45 degrees or less than 35 degrees or less than 25 degrees or less than 15 degrees. The frangible pathway angle β may be from 0 degrees to 85 degrees or from about 15 degrees to about 75 degrees or from about 30 degrees to about 60 degrees or from about 30 degrees to about 45 degrees or from about 0 degrees to about 45 degrees, specifically reciting all 0.1 degree increments within the above-recited range and all ranges formed therein or thereby. For example, as illustrated in
Additionally or alternatively, at least a portion of the frangible pathway 700 may be at a pathway angle α with respect to fiber orientation direction 720 of the substrate through which the frangible pathway extends. The fiber orientation direction 720, as previously discussed, is the direction in which the majority of the fibers are oriented, which is substantially parallel to the machine direction in which the fibers are laid down during the production process. The pathway angle α may be less than 90 degrees or less than 80 degrees or less than 75 degrees or less than 65 degrees or less than 45 degrees or less than 35 degrees or less than 25 degrees or less than 15 degrees, specifically reciting all 0.1 degree increments within the above recited ranges and all ranges formed therein or thereby. The frangible pathway angle α may be from 0 degrees to 85 degrees or from about 15 degrees to about 75 degrees or from about 30 degrees to about 60 degrees or from about 30 degrees to about 45 degrees or from about 0 degrees to about 45 degrees, specifically reciting all 0.1 degree increments within the above recited ranges and all ranges formed therein or thereby. For example,
It has been found that to prevent tearing in an unintended tear direction UTD, the tear strength of the belt, referred to herein as the belt tear strength, must be greater than the tear strength of the frangible pathway, referred to herein as the pathway tear strength. Stated another way, the pathway tear strength must be less than the belt tear strength. More specifically, the difference between the pathway tear strength, according to the Pathway Tear Strength test method, and the belt tear strength, according to the Material Tear Strength test method, may be greater than about 3 N or greater than about 5 N or greater than about 8 N or greater than about 10 N or greater than about 15 N or greater than about 20 N or from about 4 N to about 30 N or from about 4 N to about N or from about 5 N to about 20 N or from about 10 N to about 20 N or from about 15 N to about 20 N, specifically reciting all 0.1 N increments within the above-recited range and all ranges formed therein or thereby. Generally, the larger the difference between the pathway tear strength and the belt tear strength the more unlikely the tear will propagate in an unintended tear direction. However, strength must be balanced with softness and other material properties so that the belt can be used comfortably against the skin of the wearer. Each of the belt tear strength and the pathway tear strength may be such that the belt maintains proper position of the absorbent article during use and the pathway tear strength maintains closure of the belt during use and ease of opening during removal of the diaper pant. The pathway tear strength may be greater than about 2 N or greater than about 3 N or greater than about 5 N or greater than about 10 N or greater than about 15 N or from about 2 N to about 20 N or from about 2 N to about 16 N or from about 5 N to about 10 N or from about 6 N to about 8 N, according to the Pathway Tear Strength test method disclosed herein, and specifically reciting all 0.1 N increments within the above-recited range and all ranges formed therein or thereby. The belt tear strength may be greater than about 4 N or greater than about 6 N or greater than about 8 N or greater than about 12 N or greater than about 20 N or greater than about 25 N or greater than about 30 N or from about 4 N to about 40 N or from about 7 N to about N or from about 8 N to about 20 N or from about 8 N to about 15 N or from about 8 N to about N, according to the Material Tear Strength test method disclosed herein, and specifically reciting all 0.1 N increments within the above-recited range and all ranges formed therein or thereby. It is to be appreciated that the frangible pathway may include a first tear zone and a second tear zone, as previously discussed.
The difference between the belt tear strength and the pathway tear strength may also be described with reference to the standard deviation. More specifically, the belt may include a belt tear strength and a belt standard deviation according to the Material Tear Strength test method. Similarly, the frangible pathway may include a pathway tear strength and a pathway standard deviation, according to the Pathway Tear Strength test method. A standard deviation factor FStDev of at least about 2 may be used to sufficiently separate the belt tear strength and the pathway tear strength. The standard deviation factor FStDev may be at least 4 or at least 6 or from about 2 to about 4 or from about 2 to about 6, specifically reciting all 0.1 increments within the above-recited range and all ranges formed therein or thereby. The belt tear strength minus the standard deviation factor FStDev multiplied by the belt standard deviation is greater than the pathway tear strength plus the standard deviation factor FStDev multiplied by the pathway standard deviation.
In addition to having sufficient tear strength, the belt may also be softness so that the diaper pant is comfortable for wearing. The belt may comprise one or more surfaces which comprise an Average TS7 value of about 10 dB V2 rms or less, or about 7 dB V2 rms or less, or about 5 dB V2 rms or less, or from about 1 dB V2 rms to about 10 dB V2 rms, or from about 2 dB V2 rms to about 8 dB V2 rms according to the Softness Test Method herein, specifically reciting all 0.1 dB V2 rms increments within the above-recited range and all ranges formed therein or thereby. Additionally or alternatively, the belt may comprise one or more surfaces with an Average TS750 value of about dB V2 rms or less, or about 50 dB V2 rms or less, or about 25 dB V2 rms or less, or about 15 dB V2 rms or less, or from about 10 dB V2 rms to about 100 dB V2 rms, or from about 10 dB V2 rms to about 80 dB V2 rms, or from about 15 dB V2 rms to about 75 dB V2 rms according to the Softness Test Method herein, specifically reciting all 0.1 dB V2 rms increments within the above-recited range and all ranges formed therein or thereby. A substrate of the belt may comprise one or more surfaces with an Average TS750 value of about 11 dB V2 rms or less, or about 10 dB V2 rms or less, or about 5 dB V2 rms or less, or from about 1 dB V2 rms to about 11 dB V2 rms, or from about 1.5 dB V2 rms to about 6 dB V2 rms, or from about 2 dB V2 rms to about 4 dB V2 rms according to the Softness Test Method herein, reciting for each range every 0.1 dB V2 rms increment therein. Lower TS7 and TS750 values indicate greater softness, which is highly desirable in absorbent articles. Consumers might find absorbent articles with high TS7 and TS750 values uncomfortable and/or scratchy or otherwise undesirable.
The following are several example embodiments. Data for Examples 1-6 is included in Tables 1 and 2 below. Additionally,
Examples 1-3 include belts comprising a first and second substrate each having a basis weight and the combined basis weight for each of Examples 1-3 is different. The frangible pathway for each of Examples 1-3 is the same, having a pathway angle at 35 degrees. Thus, for Examples 1-3 the basis weight is different and the pathway angle is the same. As outlined in Table 1 and as illustrated in
Examples 4-6 include belts comprising a first and second substrate each having a basis weight and the combined basis weight for each of Examples 4-6 is the same. The frangible pathway for each of Examples 4-6 is different, the pathway angle varies from 30 degrees to 40 degrees. In summary, for Examples 4-6 the basis weight is the same and the pathway angle is different. As outlined in the Table 1 and as illustrated in
As previously discussed, the standard deviation is another way to analyze a belt comprising a frangible pathway to determine whether the tear will propagate along the frangible pathway and be deterred from propagating in an unintended tear direction. For each of Examples 1-6 the standard deviation was determine using the Pathway Tear Strength and the Material Test Strength test methods disclosed herein. As stated above, for Examples 1-3 the basis weight is varied while having a constant pathway angle, and for Examples 4-6 the basis weight is constant, and the pathway angle is varied. As previously discussed, a standard deviation factor may be used to determine the difference between the pathway tear strength and the belt tear strength and ensure there is sufficient difference between these tear strengths. The Delta Tear Strength & FStDev data is determined by the following equation: (belt tear strength−(FStDev×belt standard deviation))−(pathway tear strength+(FStDev×pathway standard deviation)), which is directed to the difference between the belt tear strength and the pathway tear strength using the standard deviation. As previously discussed, the belt tear strength must be greater than the pathway tear strength to prevent tearing in an unintended tear direction along the frangible pathway. As outlined in Table 2, the belt of Example 1 has a sufficient difference between the belt tear strength and the pathway tear strength at FStDev of 1, 2 and 3. However, for Example 1, the difference between the belt tear strength and the pathway tear strength at FStDev of 4 is insufficient and the belt will be prone to tearing in an unintended tear direction. For Example 2, the belt tear strength is greater than the pathway tear strength at FStDev of 1-4, and thus, the tear will be inclined to propagate along the frangible pathway of belt and not in an unintended tear direction. For Example 3, the difference between the belt tear strength and the pathway tear strength at FStDev of 1-4 are insufficient, and thus, the belt will be prone to tearing in an unintended tear direction. The belt of Example 4, the belt tear strength is greater than the pathway tear strength at FStDev of 1-4. The belt of Example 5 has a sufficient difference between the belt tear strength and the pathway tear strength at FStDev of 1-3. However, for Example 5, the difference between the belt tear strength and the pathway tear strength at FStDev of 4 is insufficient, and the belt will be prone to tearing in an unintended tear direction. The belt of Example 6 has a sufficient difference between the belt tear strength and the pathway tear strength at FStDev of 1 and 2. However, for Example 6, the difference between the belt tear strength and the pathway tear strength at FStDev of 3 and 4 is insufficient, and the belt will be prone to tearing in an unintended tear direction. Generally, the greater the difference between the belt tear strength and the pathway tear strength, the more inclined the tear will remain on the frangible pathway when tearing and the less likely the tear will propagate in an unintended tear direction.
With reference to various aspects of the Figures described above, it is to be appreciated that grip regions 801 and accessibility openings 802 may be located in various positions in the first end region 106a, the second end region 106b, and/or the central region 106c of the first belt 106. Grip regions 801 and accessibility openings 802 may be positioned between the first longitudinal side edge 111a, the second longitudinal side edge 111b, the outer edge 107a, and the inner edge 107b of the first belt 106. For example, the first accessibility opening 802a and/or the second accessibility 802b may be entirely laterally positioned between the first longitudinal edge 128 and the second longitudinal edge 130 of the chassis 102. In some configurations, the first accessibility opening 802a may be positioned laterally between the first longitudinal side edge 128 of the chassis 102 and the first longitudinal side edge 111a of the first belt 106 and/or first side seam 178. In some configurations, the second accessibility opening 802b may be positioned laterally between the second longitudinal side edge 130 of the chassis 102 and the second longitudinal side edge 111b of the first belt 106 and/or second side seam 180. In some configurations, the first accessibility opening 802a and/or the second accessibility opening 802b may be positioned longitudinally between the first lateral edge 144 of the chassis 102 and the inner edge 107b of the first belt 106 and/or may be positioned longitudinally between the first lateral edge 144 of the chassis 102 and the outer edge 107a of the first belt 106. In some configurations, the first accessibility opening 802a may extend across the first longitudinal edge 128 and/or the first lateral edge 144 of the chassis 102, and/or the second accessibility opening 802b may extend across the second longitudinal edge 130 and/or the first lateral edge 144 of the chassis 102.
It is also be appreciated that accessibility openings 802 may be located in various positions relative to fastener components 707. For example, in some configurations, the accessibility opening 802 may be positioned longitudinally between the fastener component 707 and the outer edge 107a of the first belt 106. In some configurations, the accessibility opening 802 may be positioned longitudinally between the fastener component 707 and the inner edge 107b of the first belt 106. In some configurations, the accessibility opening 802 may be positioned laterally inboard of the fastener component 707. It is also to be appreciated that more than one accessibility opening 802 may be located adjacent a fastener component 707. As discussed in more detail below, the accessibility opening 802 may also be configured to extend partially or entirely through a fastener component 707 and may divide a fastener component 707 into two or more parts.
As mentioned above, the accessibility opening 802 may comprise slits and/or openings in the first belt 106 and may be curved and/or straight. It is to be appreciated that the accessibility openings 802 may also be oriented in various ways. For example, the accessibility opening 802 may be generally oriented perpendicularly relative to the outer edge 107a and/or the inner edge 107b of the first belt 106. In some configurations, the accessibility opening 802 may be generally oriented parallel relative to the outer edge 107a and/or the inner edge 107b of the first belt 106. In some configurations, the accessibility opening 802 may comprise a slit that extends along a line in a lateral direction to define an angle from about 0 degrees to about 45 degrees with respect to the outer edge 107a and/or the inner edge 107b of the first belt 106, specifically reciting all 1 degree increments within the above-recited range and all ranges formed therein or thereby. In some configurations, the accessibility opening 802 may define a length dimension in the range of about mm to about 50 mm, specifically reciting all 0.1 mm increments within the above-recited range and all ranges formed therein or thereby.
As discussed above, the diaper pant 100P may include one or more fastener components 707 adapted to refastenably connect with at least one other component of the diaper pant 100P in a disposal configuration. It is to be appreciated that the fastener components 707 may be configured in various shapes and sizes and may be located in various positions relative to other components of the diaper pant 100P. As shown in
Components of the absorbent articles described herein may at least partially be comprised of bio-based content as described in U.S. Pat. Appl. No. 2007/0219521A1. For example, the superabsorbent polymer component may be bio-based via their derivation from bio-based acrylic acid. Bio-based acrylic acid and methods of production are further described in U.S. Pat. Appl. Pub. No. 2007/0219521 and U.S. Pat. Nos. 8,703,450; 9,630,901 and 9,822,197. Other components, for example nonwoven and film components, may comprise bio-based polyolefin materials. Bio-based polyolefins are further discussed in U.S. Pat. Appl. Pub. Nos. 2011/0139657, 2011/0139658, 2011/0152812, and 2016/0206774, and U.S. Pat. No. 9,169,366. Example bio-based polyolefins for use in the present disclosure comprise polymers available under the designations SHA7260 ™, SHE150 ™, or SGM9450F™ (all available from Braskem S.A.).
An absorbent article component may comprise a bio-based content value from about 10% to about 100%, from about 25% to about 100%, from about 40% to about 100%, from about 50% to about 100%, from about 75% to about 100%, or from about 90% to about 100%, for example, using ASTM D6866-10, method B.
Components of the absorbent articles described herein may be recycled for other uses, whether they are formed, at least in part, from recyclable materials. Examples of absorbent article materials that may be recycled are nonwovens, films, fluff pulp, and superabsorbent polymers. The recycling process may use an autoclave for sterilizing the absorbent articles, after which the absorbent articles may be shredded and separated into different byproduct streams. Example byproduct streams may comprise plastic, superabsorbent polymer, and cellulose fiber, such as pulp. These byproduct streams may be used in the production of fertilizers, plastic articles of manufacture, paper products, viscose, construction materials, absorbent pads for pets or on hospital beds, and/or for other uses. Further details regarding absorbent articles that aid in recycling, designs of recycle friendly diapers, and designs of recycle friendly and bio-based component diapers, are disclosed in U.S. Pat. Appl. Publ. No. 2019/0192723, published on Jun. 27, 2019.
In the Pathway Tear Strength Test Method, a belt material sample containing a frangible pathway is torn along the frangible pathway using a constant rate of extension tensile tester, and the load during tearing is measured. Material is preconditioned to 23±1° C. and 50±2% RH for at least two hours prior to testing, and all sample preparation and testing is carried out under these same conditions.
Belts side seams are separated by hand. Belts containing frangible path way(s) are not separated from finished articles. Any cuts, tabs, or other features present along the frangible pathway to facilitate tearing of the frangible pathway are noted, as such features will be used in the tensile pull. If no such features are present along the frangible path, the frangible path is separated in the mm span at the center of the belt width, and if necessary, a tab lead for pulling (such as hooked material or tape with tenacious adhesive) is affixed so as to enable a tensile pull without the separation of the tab. As used in this method, the term “laminate width” corresponds to the dimension of the belt that would be in the longitudinal direction in its orientation on a finished article.
At least three specimen replicates are prepared. It is acceptable for pairs of specimens to be performed on the same belt portion, particularly if two frangible paths exist together on either the front or back belt of a finished article.
A constant rate of extension tensile tester is configured as follows. A 50 or 100 N load cell is used. A pneumatic lower grip at least 6 inches wide is used. A pneumatic upper grip at least 1 inch wide is used. Grip faces are chosen so as to minimize slippage and may be faced with rubber or sandpaper. The tensile tester crosshead speed is 8.5 mm/s. The default initial crosshead separation is 55 mm, though this may be adjusted as necessary to securely grip the specimen and facilitate the intended pull. The tensile tester is programmed for extension travel of 250 mm. Data are recorded at a frequency of at least 50 Hz.
Each specimen is mounted in the tensile tester with the full belt laminate width in the lower grip of the tensile tester. The belt is mounted such that the tear propagates in the direction of the frangible path. The one or more tabs, grip features, or affixed lead to facilitate tearing are clamped in the upper grip so as to minimize slack but not to impart tension. The load cell is then zeroed. The tensile test is then run to an extension of 250 mm at a rate of 8.5 mm/s and data are captured at a frequency of at least 50 Hz, as specified above.
Data from each of the tensile pulls from each specimen are plotted with load in Newtons (N) on the vertical axis and extension (mm) on the horizontal axis. Plots generally show an increase from low load as the pull begins, a load plateau over which load, while fluctuating, is overall unchanging, and may exhibit a breakage in which the load rapidly falls. For each specimen, the load is averaged (taking the arithmetic mean) and standard deviation calculated in the load plateau region and recorded as the average load and standard deviation for that specimen, respectively, in N. In turn, the average (arithmetic mean) of the specimen plateau averages is calculated and is reported to the nearest 0.01 N as the Pathway Tear Strength of the belt. The average (arithmetic mean) of the specimen plateau standard deviations is calculated and reported to the nearest 0.01 N as the Pathway Standard Deviation.
In the Material Tear Strength Test Method, a belt material sample lacking a frangible pathway is torn using a constant rate of extension tensile tester. The method intent is to measure an average tear strength of the belt that results when a belt lacking a frangible path is torn in the same manner as is intended for a finished belt with a frangible pathway and often including a pull tab or some other element to initiate a tear. Material is preconditioned to 23±1° C. and 50±2% RH for at least two hours prior to testing, and all sample preparation and testing is carried out under these same conditions.
In many cases, only one of the front and rear belt contain a frangible pathway. In this instance, it is most preferred to use the belt (front or rear) lacking a frangible path for this method. Alternatively, belt portions are taken from belt laminate roll stock. If roll stock is not available, it is acceptable as a final alternative to perform this method on a region of the belt most distal from the frangible pathway(s).
Belts side seams are separated by hand. Belts both containing and lacking frangible pathways are excised from like finished articles. To prepare a specimen for testing, the belt containing a frangible pathway is stretched flat next to the belt lacking a frangible pathway with the same longitudinal and lateral orientation. Any cuts, tabs, or other features present along the frangible pathway to facilitate tearing of the frangible pathway are replicated in the belt lacking a frangible pathway, which is the specimen to be tested. If no such features are present along the frangible path, a simple tab (to enable tensile tester grip) 25 mm by 25 mm is cut centered in the laminate width. As used in this method, the term “laminate width” corresponds to the dimension of the belt that would be in the longitudinal direction in its orientation on a finished article.
At least three specimen replicates are prepared. It is acceptable for pairs of specimens to be performed on the same belt portion, particularly if two frangible pathways exist together on either the front or back belt of a finished article.
A constant rate of extension tensile tester is configured as follows. A 50 or 100 N load cell is used. A pneumatic lower grip at least 6 inches wide is used. A pneumatic upper grip at least 1 inch wide is used. Grip faces are chosen so as to minimize slippage and may be faced with rubber or sandpaper. The tensile tester crosshead speed is 8.5 mm/s. The default initial crosshead separation is 15 mm, though this may be adjusted as necessary to securely grip the specimen and facilitate the intended pull. The tensile tester is programmed for extension travel of 250 mm. Data are recorded at a frequency of at least 50 Hz.
Each specimen is mounted in the tensile tester with the full laminate width in the lower grip of the tensile tester. The laminate is mounted such that the tear propagates generally from the center of the belt toward one of the side seams of the belt. The one or more tabs or grip features to facilitate tearing are clamped in the upper grip so as to minimize slack but not to impart tension. The load cell is then zeroed. The tensile test is then run to an extension of 250 mm at a rate of 8.5 mm/s and data are captured at a frequency of at least 50 Hz, as specified above.
Data from each of the tensile pulls (corresponding to each specimen) are plotted with load in Newtons (N) on the vertical axis and extension (mm) on the horizontal axis. Plots generally show an increase from low load as the pull begins, a load plateau over which load, while fluctuating, is overall unchanging, and may exhibit a breakage in which the load rapidly falls. For each specimen, the load is averaged (taking the arithmetic mean) and standard deviation calculated in the load plateau region and recorded as the average load and standard deviation for that specimen, respectively, in N. In turn, the average (arithmetic mean) of the specimen plateau averages is calculated and is reported to the nearest 0.01 N as the Belt Tear Strength of the belt. The average (arithmetic mean) of the specimen plateau standard deviations is calculated and reported to the nearest 0.01 N as the Belt Standard Deviation.
TS7 and TS750 values are measured using an EMTEC Tissue Softness Analyzer (“Emtec TSA”) (Emtec Electronic GmbH, Leipzig, Germany) interfaced with a computer running Emtec TSA software (version 3.19 or equivalent). According to Emtec, the TS7 value correlates with the real material softness, while the TS750 value correlates with the felt smoothness/roughness of the material. The Emtec TSA comprises a rotor with vertical blades which rotate on the test sample at a defined and calibrated rotational speed (set by manufacturer) and contact force of 100 mN. Contact between the vertical blades and the test piece creates vibrations, which create sound that is recorded by a microphone within the instrument. The recorded sound file is then analyzed by the Emtec TSA software.
Substrates and laminates are generally excised as belts from finished articles. Side seams are first separated by hand, and belt portions are then separated from the chassis, optionally using a separation aid such as cryogenic freeze spray. Constituent substrates may be further excised from laminates via an additional step in which the substrate layers of a laminate and any elastics or other elements present are separated, again optionally using a separation aid such as cryogenic freeze spray. In some cases, substrates and laminates, either with or without frangible pathways, available as roll stock may be tested directly. Test samples are prepared by cutting square or circular samples from a finished product. Test samples are cut to a length and width (or diameter if circular) of about 90 mm, and no greater than about 120 mm, in dimension. If the finished product has a discrete section of elastic region (i.e. elastic region is shorter in one or more dimensions than nonwoven facing-layers), a set of rectilinear specimens 76 mm±3 mm long in the primary stretch direction, and 100 mm±3 mm wide in the perpendicular direction is cut from the product part, with the elastic region centered in the rectilinear specimen where applicable. Test samples are selected to avoid creases or folds within the testing region, unless inherent to the sample such as corrugations. Prepare 8 substantially similar replicate samples for testing. Equilibrate all samples at TAPPI standard temperature and relative humidity conditions (23° C.±2 C.° and 50%±2%) for at least 1 hour prior to conducting the TSA testing, which is also conducted under TAPPI conditions.
Calibrate the instrument according to the manufacturer's instructions using the 1-point calibration method with Emtec reference standards (“ref.2 samples”). If these reference samples are no longer available, use the appropriate reference samples provided by the manufacturer. Calibrate the instrument according to the manufacturer's recommendation and instruction, so that the results will be comparable to those obtained when using the 1-point calibration method with Emtec reference standards (“ref.2 samples”).
Mount the test sample into the instrument and ensure the sample is clamped into the TSA instrument properly with its first surface facing upwards. For samples with a discrete section of elastic region, ensure that the elastic region is centered below the Emtec vertical blades, and then perform the test according to the manufacturer's instructions. When complete, the software displays values for TS7 and TS750. Record each of these values to the nearest 0.01 dB V2 rms.
The test piece is then removed from the instrument and discarded. This testing is performed individually on the first surface of four of the replicate samples, and on the second surface of the other four replicate samples.
The four test result values for TS7 and TS750 from the first surface are averaged (using a simple numerical average); the same is done for the four test result values for TS7 and TS750 from the second surface. Report the individual average values and standard deviation of TS7 and TS750 for both the first and second surfaces on a particular test sample to the nearest 0.01 dB V2 rms.
The Average Decitex Method is used to calculate the Average-Dtex on a length-weighted basis for elastic fibers present in an entire article, or in a specimen of interest extracted from an article. The decitex value is the mass in grams of a fiber present in 10,000 meters of that material in the relaxed state. The decitex value of elastic fibers or elastic laminates containing elastic fibers is often reported by manufacturers as part of a specification for an elastic fiber or an elastic laminate including elastic fibers. The Average-Dtex is to be calculated from these specifications if available. Alternatively, if these specified values are not known, the decitex value of an individual elastic fiber is measured by determining the cross-sectional area of a fiber in a relaxed state via a suitable microscopy technique such as scanning electron microscopy (SEM), determining the composition of the fiber via Fourier Transform Infrared (FT-IR) spectroscopy, and then using a literature value for density of the composition to calculate the mass in grams of the fiber present in 10,000 meters of the fiber. The manufacturer-provided or experimentally measured decitex values for the individual elastic fibers removed from an entire article, or specimen extracted from an article, are used in the expression below in which the length-weighted average of decitex value among elastic fibers present is determined.
The lengths of elastic fibers present in an article or specimen extracted from an article is calculated from overall dimensions of and the elastic fiber pre-strain ratio associated with components of the article with these or the specimen, respectively, if known. Alternatively, dimensions and/or elastic fiber pre-strain ratios are not known, an absorbent article or specimen extracted from an absorbent article is disassembled and all elastic fibers are removed. This disassembly can be done, for example, with gentle heating to soften adhesives, with a cryogenic spray (e.g., Quick-Freeze, Miller-Stephenson Company, Danbury, CT), or with an appropriate solvent that will remove adhesive but not swell, alter, or destroy elastic fibers. The length of each elastic fiber in its relaxed state is measured and recorded in millimeters (mm) to the nearest mm.
For each of the individual elastic fibers fi of relaxed length Li and fiber decitex value di (obtained either from the manufacturer's specifications or measured experimentally) present in an absorbent article, or specimen extracted from an absorbent article, the Average-Dtex for that absorbent article or specimen extracted from an absorbent article is defined as:
where n is the total number of elastic fibers present in an absorbent article or specimen extracted from an absorbent article. The Average-Dtex is reported to the nearest integer value of decitex (grams per 10 000 m).
If the decitex value of any individual fiber is not known from specifications, it is experimentally determined as described below, and the resulting fiber decitex value(s) are used in the above equation to determine Average-Dtex.
Experimental Determination of Decitex Value for a Fiber
For each of the elastic fibers removed from an absorbent article or specimen extracted from an absorbent article according to the procedure described above, the length of each elastic fiber Lk in its relaxed state is measured and recorded in millimeters (mm) to the nearest mm. Each elastic fiber is analyzed via FT-IR spectroscopy to determine its composition, and its density ρk is determined from available literature values. Finally, each fiber is analyzed via SEM. The fiber is cut in three approximately equal locations perpendicularly along its length with a sharp blade to create a clean cross-section for SEM analysis. Three fiber segments with these cross sections exposed are mounted on an SEM sample holder in a relaxed state, sputter coated with gold, introduced into an SEM for analysis, and imaged at a resolution sufficient to clearly elucidate fiber cross sections. Fiber cross sections are oriented as perpendicular as possible to the detector to minimize any oblique distortion in the measured cross sections. Fiber cross sections may vary in shape, and some fibers may consist of a plurality of individual filaments. Regardless, the area of each of the three fiber cross sections is determined (for example, using diameters for round fibers, major and minor axes for elliptical fibers, and image analysis for more complicated shapes), and the average of the three areas ak for the elastic fiber, in units of micrometers squared (μm2), is recorded to the nearest 0.1 μm2. The decitex dk of the kth elastic fiber measured is calculated by:
d
k=10000 m×αk×rk×10−6
where dk is in units of grams (per calculated 10,000 meter length), ak is in units of μm2, and ρk is in units of grams per cubic centimeter (g/cm 3). For any elastic fiber analyzed, the experimentally determined Lk and dk values are subsequently used in the expression above for Average-Dtex.
Using a ruler calibrated against a certified NIST ruler and accurate to 0.5 mm, measure the distance between the two distal strands within a section to the nearest 0.5 mm, and then divide by the number of strands in that section−1
Average-Strand-Spacing=d/(n−1) where n>1
The Average-Pre-Strain of a specimen are measured on a constant rate of extension tensile tester (a suitable instrument is the MTS Insight using Testworks 4.0 Software, as available from MTS Systems Corp., Eden Prairie, MN) using a load cell for which the forces measured are within 1% to 90% of the limit of the cell. Articles are conditioned at 23° C.±2 C.° and 50%±2% relative humidity for 2 hours prior to analysis and then tested under the same environmental conditions.
Program the tensile tester to perform an elongation to break after an initial gage length adjustment. First raise the cross head at 10 mm/min up to a force of 0.05N. Set the current gage to the adjusted gage length. Raise the crosshead at a rate of 100 mm/min until the specimen breaks (force drops 20% after maximum peak force). Return the cross head to its original position. Force and extension data is acquired at a rate of 100 Hz throughout the experiment.
Set the nominal gage length to 40 mm using a calibrated caliper block and zero the crosshead. Insert the specimen into the upper grip such that the middle of the test strip is positioned 20 mm below the grip. The specimen may be folded perpendicular to the pull axis and placed in the grip to achieve this position. After the grip is closed the excess material can be trimmed. Insert the specimen into the lower grips and close. Once again, the strip can be folded, and then trimmed after the grip is closed. Zero the load cell. The specimen should have a minimal slack but less than 0.05 N of force on the load cell. Start the test program.
From the data construct a Force (N) verses Extension (mm). The Average-Pre-Strain is calculated from the bend in the curve corresponding to the extension at which the nonwovens in the elastic are engaged. Plot two lines, corresponding to the region of the curve before the bend (primarily the elastics), and the region after the bend (primarily the nonwovens). Read the extension at which these two lines intersect and calculate the % Pre-Strain from the extension and the corrected gage length. Record as % Pre-strain 0.1%. Calculate the arithmetic mean of three replicate samples for each elastomeric laminate and Average-Pre-Strain to the nearest 0.1%.
A1. An absorbent article comprising: a first belt comprising an inner wearer facing surface and an outer garment facing surface, the first belt further comprising a laterally extending inner edge and a laterally extending outer edge, the outer edge positioned longitudinally outward of the inner edge; a second belt, wherein laterally opposing end portions of the second belt are connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt; wherein a portion of the chassis overlaps the inner wearer facing surface of the first belt to define a chassis overlap region; a frangible pathway in the first belt extending between the inner edge and the outer edge of the first belt, wherein the first belt has a belt tear strength according to Material Tear Strength test method, and wherein the frangible pathway has a pathway tear strength according to Pathway Tear Strength test method, and wherein the pathway tear strength of the frangible pathway is less than the belt tear strength of the first belt.
A2. The absorbent article of according to paragraph A1, wherein the frangible pathway in first belt extends between a proximal terminus and a distal terminus.
A3. The absorbent article according to either of paragraphs A1 or A2, comprising an accessibility opening in the first belt positioned in the overlap region.
A4. The absorbent article according to paragraph A3, wherein the frangible pathway comprising a first tear zone extending for a first length from the accessibility opening to the distal terminus, and a second tear zone extending for a second length from the accessibility opening to the proximal terminus; and wherein the difference between the first length and the second length is less than about 10%.
A5. The absorbent article according to paragraph A2, wherein the distal terminus and the proximal terminus are positioned laterally between the first side edge of the chassis and the first side seam.
A6. The absorbent article according to any one of the preceding paragraphs, comprising a fastener component positioned between the inner wearer facing surface of the first belt and the backsheet.
A7. The absorbent article according to paragraph A6, wherein the first belt is separable along the frangible pathway to define a first belt zone and a second belt zone, and wherein the fastener component is adapted to refastenably connect at least one of the first belt zone and the second belt zone with at least one other component of the absorbent article in a disposal configuration.
A8. The absorbent article according to any one of the preceding paragraphs, wherein at least a portion of the frangible pathway is nonlinear.
B9. An absorbent article comprising: a first belt comprising an inner wearer facing surface, an outer garment facing surface, a laterally extending inner edge, a laterally extending outer edge, and a lateral centerline, wherein the outer edge is positioned longitudinally outward of the inner edge; a second belt comprising laterally opposing end portions connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt; a frangible pathway in the first belt extending between the inner edge and the outer edge of the first belt, the frangible pathway comprising a first tear zone and a second tear zone; wherein a portion of the first tear zone extends at a first angle of less than about 90 degrees from the lateral centerline of the first belt, wherein a portion of the second tear zone extends at a second angle of less than about 90 degrees from the lateral centerline of the first belt, wherein a portion of the chassis overlaps the inner wearer facing surface of the first belt to define a chassis overlap region; wherein a portion of the frangible pathway extends within the chassis overlap region, wherein the frangible pathway is configured to tear along the first tear zone and the second tear zone resulting in a pathway tear strength according to Pathway Tear Strength test method, and wherein the pathway tear strength to tear along the frangible pathway including the first tear zone and the second tear zone is from about 2N to about 16N.
B10. The absorbent article according to paragraph B9, wherein the first belt has a belt tear strength according to the Material Tear Strength test method, and wherein the belt tear strength is greater than the pathway tear strength.
B11. The absorbent article according to any of the preceding paragraphs, comprising an accessibility opening in the first belt positioned between the outer edge and the inner edge.
B12. The absorbent article according to any of the preceding paragraphs, wherein the frangible pathway extends between a proximal terminus on the inner edge and a distal terminus on the outer edge of the first belt.
B13. The absorbent article according to paragraph B9, wherein the first angle is from 0 degrees to about 45 degrees from the lateral centerline of the first belt.
B14. The absorbent article according to paragraph B9, wherein the second angle is from 0 degrees to about 45 degrees from the lateral centerline of the first belt.
B15. The absorbent article according to any one of the preceding paragraphs, wherein the pathway tear strength of the frangible pathway including each of the first tear zone and the second tear zone is from about 5N to about 10N.
B16. The absorbent article according to paragraph B11, comprising a fastener component disposed adjacent to the accessibility opening.
C17. An absorbent article comprising: a first belt comprising an inner wearer facing surface and an outer garment facing surface, the first belt comprising a laterally extending inner edge and a laterally extending outer edge, wherein the outer edge is positioned longitudinally outward of the inner edge; a second belt, wherein laterally opposing end portions of the second belt are connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt; wherein a portion of the chassis overlaps the inner wearer facing surface of the first belt to define a chassis overlap region; a fastener component disposed on the first belt; a first frangible pathway in the first belt, wherein the first frangible pathway comprises a first tear zone and a second tear zone; wherein the first tear zone comprises a first initial tear zone and a first secondary tear zone, the first initial tear zone extending from a first transition zone toward the fastener component, and the first secondary tear zone extending from the first transition zone toward the laterally extending outer edge; wherein the second tear zone comprises a second initial tear zone and a second secondary tear zone, the second initial tear zone extending from a second transition zone toward the fastener component, and the second secondary tear zone extending from the second transition zone toward the laterally extending inner edge, wherein each of the frangible pathway including the first tear zone and the second tear zone has a pathway tear strength according to the Pathway Tear Strength test method, wherein the first tear zone and the second tear zone tear substantially simultaneously, and wherein the pathway tear strength is from about 2N to about 16 N.
C18. The absorbent article according to paragraph C17, wherein the fastener component is positioned between the inner wearer facing surface of the first belt and the backsheet.
C19. The absorbent article according to any one of the preceding claims, wherein the pathway tear strength of the frangible pathway including each of the first tear zone and the second tear zone is from about 5N to about 10N.
C20. The absorbent article according to any one of the preceding claims, comprising an accessibility opening in the first belt positioned in the overlap region.
C21. The absorbent article according to paragraph C20, wherein the first initial tear zone extends from the accessibility opening to the first transition zone, and wherein the second initial tear zone extends from the accessibility opening to the second transition zone.
D22. An absorbent article comprising: a first belt comprising an inner wearer facing surface and an outer garment facing surface, the first belt further comprising a laterally extending inner edge and a laterally extending outer edge, the outer edge positioned longitudinally outward of the inner edge; a second belt, wherein laterally opposing end portions of the second belt are connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt; wherein a portion of the chassis overlaps the inner wearer facing surface of the first belt to define a chassis overlap region; a frangible pathway in the first belt extending between the inner edge and the outer edge of the first belt, wherein the first belt has a belt tear strength according to the Material Tear Strength test method, and wherein the frangible pathway has a pathway tear strength according to the Pathway Tear Strength test method, and wherein the difference between the pathway tear strength and the belt tear strength is more than about 8N.
D23. The absorbent article according to paragraph D22, wherein the difference between the pathway tear strength and the belt tear strength is more than about 15N.
D24. The absorbent article according to paragraph D22, wherein the difference between the pathway tear strength and the belt tear strength is from about 10N to about 30N.
D25. The absorbent article according to paragraph D22, wherein the difference between the pathway tear strength and the belt tear strength of the first belt is from about 15N to about 25N.
E26. An absorbent article comprising: a first belt comprising an inner wearer facing surface, an outer garment facing surface, a laterally extending inner edge, a laterally extending outer edge, and a lateral centerline, wherein the outer edge is positioned longitudinally outward of the inner edge; a second belt, wherein laterally opposing end portions of the second belt are connected with laterally opposing end portions of the first belt at a first side seam and a second side seam to form a waist opening; a chassis comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, the chassis comprising a longitudinally extending first side edge and a longitudinally extending second side edge laterally separated from the first side edge by a first end edge and a second end edge longitudinally separate from the first end edge, and wherein longitudinally opposing end regions of the chassis are connected with the first belt and the second belt; and a frangible pathway in the first belt extending between the inner edge and the outer edge of the first belt, wherein the frangible pathway comprises a first tear zone and a second tear zone, wherein the frangible pathway is configured to tear along the first tear zone and the second tear zone, wherein the first belt has a belt tear strength and a belt standard deviation according to Material Tear Strength test method, wherein the frangible pathway has a pathway tear strength and a pathway standard deviation according to Pathway Tear Strength test method, and wherein the belt tear strength minus a standard deviation factor multiplied by the belt standard deviation is greater than the pathway tear strength plus the standard deviation factor multiplied by the pathway standard deviation, and wherein the standard deviation factor is at least 2.
E27. The absorbent article according to paragraph E26, wherein the standard deviation factor is from about 2 to about 4.
E28. The absorbent article according to paragraph E26, wherein the standard deviation factor is from about 2 to about 6.
E29. The absorbent article according to any one of the preceding paragraphs, wherein the first belt comprises one or more elastic strands, and wherein the one or more elastic strands are deactivated along the frangible pathway.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests, or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application claims the benefit, under 35 USC 119(e), of U.S. Provisional Patent Application No. 63/357,043, filed on Jun. 30, 2022; U.S. Provisional Patent Application No. 63/432,400, filed on Dec. 14, 2022; U.S. Provisional Patent Application No. 63/432,401, filed on Dec. 14, 2022; U.S. Provisional Patent Application No. 63/432,402, filed on Dec. 14, 2022; U.S. Provisional Patent Application No. 63/432,403, filed on Dec. 14, 2022; U.S. Provisional Patent Application No. 63/432,404, filed on Dec. 14, 2022; U.S. Provisional Patent Application No. 63/432,406, filed on Dec. 14, 2022; U.S. Provisional Patent Application No. 63/432,410, filed on Dec. 14, 2022; and U.S. Provisional Patent Application No. 63/432,413, filed on Dec. 14, 2022, each of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63432413 | Dec 2022 | US | |
63432410 | Dec 2022 | US | |
63432406 | Dec 2022 | US | |
63432404 | Dec 2022 | US | |
63432403 | Dec 2022 | US | |
63432402 | Dec 2022 | US | |
63432401 | Dec 2022 | US | |
63432400 | Dec 2022 | US | |
63357043 | Jun 2022 | US |