Absorbent articles with improved strength

Information

  • Patent Grant
  • 10507144
  • Patent Number
    10,507,144
  • Date Filed
    Tuesday, March 15, 2016
    8 years ago
  • Date Issued
    Tuesday, December 17, 2019
    4 years ago
Abstract
An absorbent structure for an absorbent article, comprising a first substrate and an absorbent layer supported thereon, said absorbent layer comprising an absorbent material comprising a superabsorbent polymer material; wherein said absorbent structure comprises a fiberized net structure to at least partially immobilize said absorbent layer onto said first substrate, and whereby said fiberized net structure has a storage modulus (G′) at 21° C. of greater than about 1.2×106 Pa.
Description
FIELD OF THE INVENTION

The present invention generally relates to an absorbent core for use in an absorbent article, and more particularly to an absorbent core with absorbent particulate polymer material.


BACKGROUND OF THE INVENTION

Disposable absorbent articles for receiving and retaining bodily discharges such as urine or feces are generally known in the art. Examples of these include disposable diapers, training pants and adult incontinence articles. Typically, disposable diapers comprise a liquid pervious topsheet that faces the wearer's body, a liquid impervious backsheet that faces the wearer's clothing and an absorbent core interposed between the liquid pervious topsheet and the backsheet. Since their introduction into the market place, disposable diapers have continued to improve regarding comfort, fit and functionalities.


An important component of disposable absorbent articles is the absorbent core structure. The absorbent core structure typically includes absorbent polymer material, such as hydrogel-forming polymer material, also referred to as absorbent gelling material, AGM, or super-absorbent polymer, SAP. This absorbent polymer material ensures that large amounts of bodily fluids, e.g. urine, can be absorbed by the absorbent article during its use and be locked away, thus providing low rewet and good skin dryness.


Traditionally, the absorbent polymer material is incorporated into the absorbent core structure with cellulose or cellulosic fibres. However, over the past years, significant effort has been spent to make thinner absorbent core structures which can still acquire and store large quantities of discharged body fluids, in particular urine. Hereto, it has been proposed to reduce or eliminate these cellulose fibres from the absorbent core structures. To maintain the mechanical stability of the absorbent core structures, small quantities of a fiberized net structure may be added to stabilize the absorbent polymer material.


To reduce stiffness in the absorbent core, the core may also comprise channels, areas substantially free of absorbent polymer particles or absorbent polymer material. The channels provide improved liquid transport, and hence faster acquisition, and more efficient liquid absorbency over the whole absorbent structure. The stiffness of an adhesive may be measured by its G′, or storage modulus. While an adhesive with a low G′ would have the benefit of being less stiff, an adhesive with a relatively high G′ may be relatively less dense, thus providing more volume at the same basis weight.


Therefore, there is a continuing need for core adhesives that have a relatively high G′ while still being not too stiff to work as a fiberized net structure or a hot melt adhesive in absorbent articles.


SUMMARY OF THE INVENTION

An absorbent structure for an absorbent article, comprising a first substrate and an absorbent layer supported thereon, said absorbent layer comprising an absorbent material comprising a superabsorbent polymer material; wherein said absorbent structure comprises a fiberized net structure to at least partially immobilize said absorbent layer onto said first substrate, and whereby said fiberized net structure has a storage modulus (G′) at 21° C. of greater than about 1.2×106 Pa.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a plan view of a diaper in accordance with an embodiment of the present invention.



FIG. 2 is a cross sectional view of the diaper shown in FIG. 1 taken along the sectional line 2-2 of FIG. 1.



FIG. 3 is a partial cross sectional view of an absorbent core layer in accordance with an embodiment of this invention.



FIG. 4 is a partial cross sectional view of an absorbent core layer in accordance with another embodiment of this invention.



FIG. 5 is a plan view of the absorbent core layer illustrated in FIG. 3.



FIG. 6 is a plan view of a second absorbent core layer in accordance with an embodiment of this invention.



FIG. 7a is a partial sectional view of an absorbent core comprising a combination of the first and second absorbent core layers illustrated in FIGS. 5 and 6.



FIG. 7b is a partial sectional view of an absorbent core comprising a combination of the first and second absorbent core layers illustrated in FIGS. 5 and 6.



FIG. 8 is a plan view of the absorbent core illustrated in FIGS. 7a and 7b.



FIG. 9 shows a perspective view of an absorbent structure.



FIG. 10 shows a cross sectional view of an alternative absorbent core.



FIG. 11 is a schematic illustration of a process for making an absorbent core in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION
Definitions

“Absorbent article” refers to devices that absorb and contain body exudates, and, more specifically, refers to devices that are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body. Absorbent articles may include diapers, training pants, adult incontinence undergarments, feminine hygiene products, breast pads, care mats, bibs, wound dressing products, and the like. As used herein, the term “body fluids” or “body exudates” includes, but is not limited to, urine, blood, vaginal discharges, breast milk, sweat and fecal matter.


“Absorbent core” or “absorbent structure” means a structure typically disposed between a topsheet and backsheet of an absorbent article for absorbing and containing liquid received by the absorbent article and may comprise one or more substrates, absorbent polymer material disposed on the one or more substrates, and a thermoplastic composition on the absorbent particulate polymer material and at least a portion of the one or more substrates for immobilizing the absorbent particulate polymer material on the one or more substrates. In a multilayer absorbent core, the absorbent core may also include a cover layer. The one or more substrates and the cover layer may comprise a nonwoven. Further, the absorbent core may be substantially cellulose free. The absorbent core does not include an acquisition system, a topsheet, or a backsheet of the absorbent article. In a certain embodiment, the absorbent core may consist essentially of the one or more substrates, the absorbent polymer material, the fiberized net structure, and optionally the cover layer.


“Absorbent polymer material,” “absorbent gelling material,” “AGM,” “superabsorbent,” “superabsorbent polymer material”, and “superabsorbent material” are used herein interchangeably and refer to cross linked polymeric materials that can absorb at least 5 times their weight of an aqueous 0.9% saline solution as measured using the Centrifuge Retention Capacity test (Edana 441.2-01).


“Absorbent particulate polymer material” is used herein to refer to an absorbent polymer material which is in particulate form so as to be flowable in the dry state.


“Absorbent particulate polymer material area”, “superabsorbent polymer material area” or “absorbent material deposition area” as used herein refers to the area of the core wherein the first substrate and second substrate are separated by a multiplicity of superabsorbent particles. In FIG. 8, the boundary of the absorbent particulate polymer material area is defined by the perimeter of the overlapping circles. There may be some extraneous superabsorbent particles outside of this perimeter between the first substrate and second substrate.


“Airfelt” is used herein to refer to comminuted wood pulp, which is a form of cellulosic fiber.


“Comprise,” “comprising,” and “comprises” are open ended terms, each specifies the presence of what follows, e.g., a component, but does not preclude the presence of other features, e.g., elements, steps, components known in the art, or disclosed herein.


“Consisting essentially of” is used herein to limit the scope of subject matter, such as that in a claim, to the specified materials or steps and those that do not materially affect the basic and novel characteristics of the subject matter.


“Disposable” is used in its ordinary sense to mean an article that is disposed or discarded after a limited number of usage events over varying lengths of time, for example, less than about 20 events, less than about 10 events, less than about 5 events, or less than about 2 events.


“Diaper” refers to an absorbent article generally worn by infants and incontinent persons about the lower torso so as to encircle the waist and legs of the wearer and that is specifically adapted to receive and contain urinary and fecal waste. As used herein, term “diaper” also includes “pants” which is defined below.


“Fiber” and “filament” are used interchangeably.


“Fiberized net structure” as used herein is understood to comprise a polymer composition from which strands or a net structure is formed and applied to the superabsorbent material with the intent to immobilize the superabsorbent material in both the dry and wet state. The fiberized net structure of the present invention forms a fibrous network over the superabsorbent material.


A “nonwoven” is a manufactured sheet, web or batt of directionally or randomly orientated fibers, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet-milling, whether or not additionally needled. The fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ. Commercially available fibers have diameters ranging from less than about 0.001 mm to more than about 0.2 mm and they come in several different forms: short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yarn). Nonwoven fabrics can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, and carding. The basis weight of nonwoven fabrics is usually expressed in grams per square meter (gsm).


“Pant” or “training pant”, as used herein, refer to disposable garments having a waist opening and leg openings designed for infant or adult wearers. A pant may be placed in position on the wearer by inserting the wearer's legs into the leg openings and sliding the pant into position about a wearer's lower torso. A pant may be preformed by any suitable technique including, but not limited to, joining together portions of the article using refastenable and/or non-refastenable bonds (e.g., seam, weld, adhesive, cohesive bond, fastener, etc.). A pant may be preformed anywhere along the circumference of the article (e.g., side fastened, front waist fastened). While the terms “pant” or “pants” are used herein, pants are also commonly referred to as “closed diapers,” “prefastened diapers,” “pull-on diapers,” “training pants,” and “diaper-pants”. Suitable pants are disclosed in U.S. Pat. No. 5,246,433, issued to Hasse, et al. on Sep. 21, 1993; U.S. Pat. No. 5,569,234, issued to Buell et al. on Oct. 29, 1996; U.S. Pat. No. 6,120,487, issued to Ashton on Sep. 19, 2000; U.S. Pat. No. 6,120,489, issued to Johnson et al. on Sep. 19, 2000; U.S. Pat. No. 4,940,464, issued to Van Gompel et al. on Jul. 10, 1990; U.S. Pat. No. 5,092,861, issued to Nomura et al. on Mar. 3, 1992; U.S. Patent Publication No. 2003/0233082 A1, entitled “Highly Flexible And Low Deformation Fastening Device”, filed on Jun. 13, 2002; U.S. Pat. No. 5,897,545, issued to Kline et al. on Apr. 27, 1999; U.S. Pat. No. 5,957,908, issued to Kline et al on Sep. 28, 1999.


As used herein, the term “substantially” means generally the same or uniform but allowing for or having minor fluctuations from a defined property, definition, etc. For example, small measurable or immeasurable fluctuations in a measured property described herein, such as viscosity, melting point, etc. may result from human error or methodology precision. Other fluctuations are caused by inherent variations in the manufacturing process, thermal history of a formulation, and the like. The compositions of the present invention, nonetheless, would be said to be substantially having the property as reported.


“Substantially cellulose free” is used herein to describe an article, such as an absorbent core, that contains less than 10% by weight cellulosic fibers, less than 5% cellulosic fibers, less than 1% cellulosic fibers, no cellulosic fibers, or no more than an immaterial amount of cellulosic fibers. An immaterial amount of cellulosic material would not materially affect the thinness, flexibility, or absorbency of an absorbent core.


As used herein, the term “substrate” means any item having at least a partially or fully solidified fiber or planar surface. In some cases, a single substrate may be positioned in a way that it is referred to as two or more substrates; for example a folded film or folded non-woven, or two sides of a cardboard sheet folded over, wherein the two sides are adhesively bonded together. The substrates can be impermeable, permeable, porous or nonporous. In some cases, a substrate may be referred to as a supporting sheet.


Absorbent Core


The absorbent core 14 in FIGS. 1-8 generally is disposed between the topsheet 18 and the backsheet 20 and comprises two layers, a first absorbent layer 60 and a second absorbent layer 62. As best shown in FIG. 3, the first absorbent layer 60 of the absorbent core 14 comprises a substrate 64, an absorbent particulate polymer material (such as a superabsorbent polymer material) 66 on the substrate 64, and a thermoplastic composition (such as a fiberized net structure) 68 on the absorbent particulate polymer material 66 and at least portions of the first substrate 64 as a means for covering and immobilizing the absorbent particulate polymer material 66 on the first substrate 64. According to another embodiment illustrated in FIG. 4, the first absorbent layer 60 of the absorbent core 14 may also include a cover layer 70 on the thermoplastic composition 68.


Likewise, as best illustrated in FIG. 2, the second absorbent layer 62 of the absorbent core 14 may also include a substrate 72, an absorbent particulate polymer material (such as a superabsorbent polymer material) 74 on the second substrate 72, and a thermoplastic composition (such as a fiberized net structure) 76 on the absorbent particulate polymer material 74 and at least a portion of the second substrate 72 for immobilizing the absorbent particulate polymer material 74 on the second substrate 72. Although not illustrated, the second absorbent layer 62 may also include a cover layer such as the cover layer 70 illustrated in FIG. 4. The first and second absorbent layers may be combined together such that at least a portion of the fiberized net structure of the first absorbent layer contacts at least a portion of the fiberized net structure of the second absorbent layer.


The substrate 64 of the first absorbent layer 60 may be referred to as a dusting layer, in other embodiments a core cover, and has a first surface or outer surface 78 which faces the backsheet 20 of the diaper 10 and a second surface or inner surface 80 which faces the absorbent particulate polymer material 66. Likewise, the substrate 72 of the second absorbent layer 62 may be referred to as a core cover and has a first surface or outer surface 82 facing the topsheet 18 of the diaper 10 and a second surface or inner surface 84 facing the absorbent particulate polymer material 74. In some embodiments, the first substrate 64 and the second substrate 72 may both be core covers or core wrap material. The first and second substrates 64 and 72 may be adhered to one another with adhesive about the periphery to form an envelope about the absorbent particulate polymer materials 66 and 74 to hold the absorbent particulate polymer material 66 and 74 within the absorbent core 14. The absorbent core may then have a front edge 35, a back edge 37, and two side edges 39. The bonded periphery at the front edge 35 may form a front end seal and the bonded periphery at the back edge 37 may form a back end seal. The thermoplastic composition 68, 76 may in some embodiments be an adhesive material. Any suitable adhesive can be used for this, for example so-called hotmelt adhesives.


According to a certain embodiment, the substrates 64 and 72 of the first and second absorbent layers 60 and 62 may be a nonwoven material, such as those nonwoven materials described above. In certain embodiments, the nonwovens are porous and in one embodiment has a pore size of about 32 microns.


The thermoplastic composition 68 and 76 may serve to cover and at least partially immobilize the absorbent particulate polymer material 66 and 74. In one embodiment of the present invention, the thermoplastic composition 68 and 76 can be disposed essentially uniformly within the absorbent particulate polymer material 66 and 74, between the particles of the superabsorbent material. However, in a certain embodiment, the thermoplastic composition 68 and 76 may be provided as a fibrous net structure which is at least partially in contact with the absorbent particulate polymer material 66 and 74 and partially in contact with the substrate layers 64 and 72 of the first and second absorbent layers 60 and 62. FIGS. 3, 4, and 7 show such a structure, and in that structure, the absorbent particulate polymer material 66 and 74 is provided as a discontinuous layer, and a layer of fibrous thermoplastic composition 68 and 76 is laid down onto the layer of absorbent particulate polymer material 66 and 74, such that the thermoplastic composition 68 and 76 is in direct contact with the absorbent particulate polymer material 66 and 74, but also in direct contact with the second surfaces 80 and 84 of the substrates 64 and 72, where the substrates are not covered by the absorbent particulate polymer material 66 and 74. The fiberized net structures of each substrate, 68 and 76, may essentially be one fiberized net structure, each contacting the other. This imparts an essentially three-dimensional structure to the fibrous net structures 68 and 76, which in itself is essentially a two-dimensional structure of relatively small thickness, as compared to the dimension in length and width directions. In other words, the thermoplastic composition 68 and 76 undulates between the absorbent particulate polymer material 66 and 74 and the second surfaces of the substrates 64 and 72, forming a fiberized net structure 68 and 76.


The thermoplastic composition 68 and 76 may provide cavities to cover the absorbent particulate polymer material 66 and 74, and thereby immobilize the material. In a further aspect, the thermoplastic composition 68 and 76 may bond to the substrates 64 and 72 and thus affix the absorbent particulate polymer material 66 and 74 to the substrates 64 and 72. Thus, in accordance with certain embodiments, the thermoplastic composition 68 and 76 immobilizes the absorbent particulate polymer material 66 and 74 when wet, such that the absorbent core 14 achieves an absorbent particulate polymer material loss of no more than about 70%, 60%, 50%, 40%, 30%, 20%, 10% according to the Wet Immobilization Test described herein. Some thermoplastic compositions will also penetrate into both the absorbent particulate polymer material 66 and 74 and the substrates 64 and 72, thus providing for further immobilization and affixation. Of course, while the thermoplastic compositions disclosed herein provide a much improved wet immobilization (i.e., immobilization of absorbent material when the article is wet or at least partially loaded), these thermoplastic compositions may also provide a very good immobilization of absorbent material when the absorbent core 14 is dry. The thermoplastic adhesive material 68 and 76 may also be referred to as a hot melt adhesive. As noted above, in some embodiments, the thermoplastic composition is an adhesive, and in other embodiments, it may be a fiberized net structure, a film, nanofibers, and/or other forms.


The thermoplastic composition may function as a fibrous structure that entraps the absorbent particulate polymer 66 and prevents substantial movement. Thermoplastic compositions most useful for immobilizing the absorbent particulate polymer material 66 and 74 combine good cohesion and good flexibility to reduce the likelihood that the thermoplastic composition breaks in response to strain. Good adhesion ability may promote good contact between the thermoplastic composition 68 and 76 and the absorbent particulate polymer material 66 and 74 and the substrates 64 and 72. When the absorbent core 14 absorbs liquid, the absorbent particulate polymer material 66 and 74 swells and subjects the thermoplastic composition 68 and 76 to external forces. In certain embodiments, the thermoplastic composition 68 and 76 may allow for such swelling, without imparting too many compressive forces, which would restrain the absorbent particulate polymer material 66 and 74 from swelling. Elasticity and flexibility in the thermoplastic composition also promotes overall article flexibility and its preferred ability to conform to the wearer. The thermoplastic composition may have high G′ values, but may still be not too stiff to work as a fiberized structure in absorbent articles. A composition with a relatively high G′, such as greater than 1.2×106 Pa, means a stiffer composition. The thermoplastic compositions in the present invention may be less dense, thus providing more volume at the same basis weight. This is particularly true for compositions comprising polyolefins.


The absorbent core 14 may also comprise an auxiliary adhesive which is not illustrated in the figures. The auxiliary adhesive may be deposited on the first and second substrates 64 and 72 of the respective first and second absorbent layers 60 and 62 before application of the absorbent particulate polymer material 66 and 74 for enhancing adhesion of the absorbent particulate polymer materials 66 and 74 and the thermoplastic composition 68 and 76 to the respective substrates 64 and 72. It may be preferable to deposit the auxiliary adhesive on a nonwoven that is the most hydrophilic for improved bonding. The auxiliary glue may also aid in immobilizing the absorbent particulate polymer material 66 and 74 and may comprise the same thermoplastic composition as described hereinabove or may also comprise other or additional adhesives including but not limited to sprayable hot melt adhesives. The auxiliary glue may be applied to the substrates 64 and 72 by any suitable means, but according to certain embodiments, may be applied in about 0.5 to about 1 mm wide slots spaced about 0.5 to about 2 mm apart.


In some embodiments, the absorbent core may comprise a single thermoplastic composition that acts in some places as a fiberized net structure and in other places as a more traditional hot melt adhesive. For example, such a thermoplastic composition may provide the immobilization of the absorbent particulate polymer material 66 as discussed above, while also providing adhesive strength for the front end seal and back end seal, for the side edges of the core, and/or for the substrates 64 and 72 in general, such as discussed for the auxiliary adhesive. In some situations, no auxiliary adhesive would be necessary. In other embodiments, one thermoplastic composition may be used to provide a fiberized net structure to immobilize the absorbent particulate polymer, while an auxiliary adhesive is used in conjunction with the thermoplastic composition to adhere materials in other areas in the core.


The fiberized net structure composition and/or any hot melt adhesive may be applied in the absorbent particulate polymer material area at a basis weight of from about 2 grams/meter2 to about 7 grams/meter2 (gsm), in some embodiments from about 2 gsm to about 9 gsm, or from about 4 gsm to about 9 gsm. This may be a combined basis weight from application on a first and a second substrate, for example, 4 and 3 gsm, respectively, or 5 and 4 gsm, respectively. The auxiliary adhesive may be applied in the absorbent particulate polymer material area in any amount from 0 to about 8 gsm, in some embodiments, about 5 gsm, in other embodiments about 8 gsm. The total amount of adhesive and fiberized net structure material may be from about 2 gsm to about 15 gsm in the absorbent particulate polymer material area. The front end seal may have from about 10 gsm to about 35 gsm of adhesive. Similarly, the back end seal may have from about 10 gsm to about 35 gsm of adhesive. In some embodiments, either or both of the front and back end seals may have from about 5 gsm to 15 gsm of adhesive. In some embodiments, the amount of adhesive in an end seal may be a combination of the fiberized net structure composition, the auxiliary adhesive, and the end seal adhesive.


In certain embodiments, the thermoplastic composition 68 and 76 may comprise, in its entirety, a single thermoplastic polymer or a blend of thermoplastic polymers, having a softening point, as determined by the ASTM Method D-28-99 “Ring and Ball Softening Point”, in the range between 50° C. and 300° C., in some embodiments in the range between 75 and 150° C., or alternatively the thermoplastic composition may be a hot melt adhesive comprising at least one thermoplastic polymer in combination with other thermoplastic diluents such as tackifying resins, plasticizers and additives such as antioxidants. In certain embodiments, the thermoplastic polymer composition has typically a molecular weight (Mw) of more than 10,000 and a glass transition temperature (Tg) usually below room temperature or −20° C.>Tg<18° C. In certain embodiments, typical concentrations of the polymer in a hot melt are in the range of about 10 to about 60% by weight. In certain embodiments, thermoplastic polymers may be water insensitive.


Suitable thermoplastic polymers that may be employed are metallocene polyolefins, such as ethylene polymers prepared using single-site or metallocene catalysts. Therein, at least one comonomer can be polymerized with ethylene to make a copolymer, terpolymer or higher order polymer. Also applicable are amorphous polyolefins or amorphous polyalphaolefins (APAO) which are homopolymers, copolymers or terpolymers of C2 to C8 alpha olefins. Also suitable thermoplastic polymers may include styrenic block copolymers, such as SIS, SEBS, and SBS, combinations of styrenic block copolymers, and combinations of styrenic block copolymers and polyolefins.


Also suitable, for example, is NW1414 available from H.B. Fuller Company. Also appropriate are propylene-based polymers. The thermoplastic polymers, thermoplastic composition, and/or any auxiliary adhesive may be exemplified by the materials described in U.S. 2014/0358100. The material may include two different propylene-based polymers. The propylene-based polymers may be propylene homopolymers, or one or more of the two different propylene-based polymers may be copolymers with one or more other monomers (e.g., ethylene, butene, pentene, octene, etc.). The propylene-based polymers may be based entirely on olefins, i.e., do not contain any functional groups. The propylene-based polymers may comprise greater than about 75% by weight propylene or even greater than about 80% by weight propylene. The propylene-based polymers may have a polydispersity (Mw/Mn) of less than about 5, less than about 3, or even about 2. Propylene-based polymers may have a density of no greater than about 0.89, or no greater than about 0.88. The thermoplastic composition and/or adhesives may comprise a first propylene-based polymer that has a Mw (molecular weight) of at most about 75,000, at most about 60,000, at most about 50,000, or between about 30,000 and about 70,000, wherein the first propylene-based polymer may be present in the overall composition in an amount of at least about 20%, 25%, or 30% by weight, or from about 15% to about 50% by weight, or from about 25% to about 45% by weight. Exemplary first polymers may include LICOCENE PP1602 and LICOCENE PP2602 both available from Clariant International Ltd. (Muttenz, Switzerland) and L-MODU X400S and L-MODU X600S available from Idemitsu Kosan Co., Ltd. (Japan). The composition may also comprise a second propylene-based polymer that has a Mw of at least about 100,000, at least about 125,000, at least about 150,000, or between about 125,000 and about 400,000, or between about 150,000 and about 250,000. The second propylene-based polymer may be present in the composition in an amount of at most about 20% by weight, at most about 15%, by weight, at most about 8% by weight, or from about 2% by weight to about 15% by weight, or from about 3% by weight to about 10% by weight. Exemplary second polymers may include VISTAMAXX 6202 and VISTAMAXX 6102 available from ExxonMobil Chemical (Houston, Tex.) and VERSIFY 3300 available from Dow Chemical Company (Houston, Tex.). The total propylene-based polymer content of a composition may be at least about 20% by weight, at least about 25% by weight, at least about 30% by weight, at least about 35% by weight, or from about 35% by weight to about 50% by weight. The composition may include a third polymer, such as a styrenic block copolymer, which may be hydrogenated. Useful hydrogenated styrene block copolymers include, e.g., styrene-ethylene/butadiene-styrene block copolymer, styrene-ethylene/propylene-styrene block copolymer, styrene-ethylene/ethylene-propylene-styrene block copolymer, and combinations thereof. The styrenic block copolymer may have a styrene content of less than about 20% by weight, less than about 18% by weight, or even less than about 15% by weight. The styrene block copolymer may also have a Melt Flow when tested according to ASTM 1238 (230° C., 5 kg) of less than about 25 g/10 min, less than about 20 g/10 min, less than about 10 g/10 min, or even less than about 5 g/10 min. Exemplary hydrogenated styrene block copolymers are commercially available under a variety of trade designations including, e.g., the SEPTON series of trade designations from Kuraray Co., Ltd (Houston, Tex.) including, e.g., SEPTON S2063 and S2007 hydrogenated styrene-isoprene-styrene block copolymers, the KRATON G series of trade designations from Kraton Performance Polymers Inc. (Houston, Tex.) including, e.g., KRATON G 1645M, KRATON G 1657 styrene-ethylene/butadiene-styrene block copolymers. The materials may include no greater than about 20% by weight, no greater than about 15% by weight, from about 2% to 20% by weight, or even from about 5% to 15% by weight of the third polymer. Also, the composition may include and crystalline polyethylene oxide.


In some embodiments, the tackifying resin has a Mw below 5,000 and a Tg above room temperature, with concentrations of the resin in a hot melt are in the range of about 30 to about 60%. Suitable classes of tackifying resins include, for example, aromatic, aliphatic and cycloaliphatic hydrocarbon resins, mixed aromatic and aliphatic modified hydrocarbon resins, aromatic modified aliphatic hydrocarbon resins, and hydrogenated versions thereof; terpenes, modified terpenes and hydrogenated versions thereof; natural rosins, modified rosins, rosin esters, and hydrogenated versions thereof, and combinations thereof. Suitable tackifying agents include, for example, the ESCOREZ series of trade designations from Exxon Mobil Chemical Company (Houston, Tex.) including ESCOREZ 5400 and ESCOREZ 5600, the EASTOTAC series of trade designations from Eastman Chemical (Kingsport, Tenn.) including EASTOTAC H-100R and EASTOTAC H-100L, and the WINGTACK series of trade designations from Cray Valley HSC (Exton, Pa.) including WINGTACK 86, WINGTACK EXTRA, and WINTACK 95 and the PICCOTAC and KRISTALEX series of trade designations from Eastman Chemical Company (Kingsport, Tenn.) including, e.g., PICCOTAC 8095 and KRISTALEX 3100. In some embodiments, the composition may comprise from at least about 10% by weight, at least about 20% by weight, or from about 5% by weight to about 60% by weight, or from about 10% by weight to about 40% by weight tackifying agent. In some embodiments, the thermoplastic composition, either in an adhesive form or as a fiberized net structure, may be free of any tackifying agent, or may be substantially tackifier-free.


In some embodiments, the plasticizer has a low Mw of typically less than 1,000 and a Tg below room temperature, with a typical concentration of about 0 to about 20%, in some embodiments, about 10 to about 20%. Suitable plasticizers include, for example, naphthenic oils, paraffinic oils (e.g., cycloparaffin oils), mineral oils, paraffinic adipate esters, olefin oligomers (e.g., oligomers of polypropylene, polybutene, and hydrogenated polyisoprene), polybutenes, polyisoprene, hydrogenated polyisoprene, polybutadiene, benzoate esters, animal oil, plant oils (e.g. castor oil, soybean oil), derivatives of oils, glycerol esters of fatty acids, polyesters, polyethers, lactic acid derivatives and combinations thereof. Exemplary commercially available plasticizers include CALSOL 550 oil from Calumet Specialty Products Partners, LP (Indianapolis, Ind.), KAYDOL OIL from Sonneborn (Tarrytown N.Y.) PARAPOL polybutene from Exxon Mobil Chemical Company (Houston, Tex.), OPPANOL polyisobutylene from BASF (Ludwigsjhafen, Germany), KRYSTOL 550 mineral oil from Petrochem Carless Limited (Surrey, England) and PURETOL 15 mineral oil from Petro Canada Lubricants Inc. (Mississauga, Ontario). The plasticizer may be present in an amount at most about 25% by weight, 20% by weight, 18% by weight, or from about 5% to about 30% by weight, or from about 10% to about 20% by weight. The adhesive/fiberized net structure composition may include a wax. Useful classes of wax may include, e.g., paraffin waxes, microcrystalline waxes, high density low molecular weight polyethylene waxes, by-product polyethylene waxes, polypropylene waxes, Fischer-Tropsch waxes, oxidized Fischer-Tropsch waxes, functionalized waxes such as acid, anhydride, and hydroxyl modified waxes, animal waxes, vegetable waxes (e.g., soy wax) and combinations thereof. Useful waxes are commercially available from a variety of suppliers including EPOLENE N and C series of trade designations from Westlake Chemical Corporation (Houston, Tex.) including e.g., EPOLENE N-21 and the LICOCENE series of trade designations from Clariant International Ltd. (Muttenz, Switzerland) including e.g. TP LICOCENE PP 6102. The composition may include no greater than about 10% by weight, no greater than about 5% by weight, from about 1% by weight to about 10% by weight, or even from about 1% to about 5% by weight wax. The adhesive/fiberized net structure composition may also include additional components including, e.g., stabilizers, antioxidants, additional polymers (e.g., styrenic block copolymers, amorphous poly-alpha olefins, polyethylene copolymers), adhesion promoters, ultraviolet light stabilizers, corrosion inhibitors, colorants (e.g., pigments and dyes), fillers, surfactants, wetness indicators, superabsorbents and combinations thereof. Useful antioxidants include, e.g., pentaerythritol tetrakis[3,(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 2,2′-methylene bis(4-methyl-6-tert-butylphenol), phosphites including, e.g., tris-(p-nonylphenyl)-phosphite (TNPP) and bis(2,4-di-tert-butylphenyl)4,4′-diphenylene-diphosphonite, di-stearyl-3,3′-thiodipropionate (DSTDP), and combinations thereof. Useful antioxidants are commercially available under a variety of trade designations including, e.g., the IRGANOX series of trade designations including, e.g., IRGANOX 1010, IRGANOX 565, and IRGANOX 1076 hindered phenolic antioxidants and IRGAFOS 168 phosphite antioxidant, all of which are available from BASF Corporation (Florham Park, N.J.), and ETHYL 702 4,4′-methylene bis(2,6-di-tert-butylphenol). When present, the composition preferably includes from about 0.1% by weight to about 2% by weight antioxidant.


The thermoplastic composition 68, 76 may in some embodiments be an adhesive material. Any suitable adhesive can be used for this, for example so-called hotmelt adhesive. For example, Henkel DM3800, can be used.


In certain embodiments, the thermoplastic composition 68 and 76 is present in the form of fibers. In some embodiments, the fiberized net structure will have a range of thickness from about 1 to about 90 micrometers, in some embodiments, from about 1 to about 75 micrometers, in some embodiments from about 1 to about 50 micrometers, and in still other embodiments from about 1 to about 35 micrometers, and an average maximum fiber-to-fiber distance of about 0.1 mm to about 5 mm or about 0.3 mm to about 6 mm. The average fiber thickness may be about 30 micrometers, or may be from about 15 to about 45 micrometers. To improve the adhesion of the thermoplastic composition as an adhesive material to the substrates 64 and 72 or to any other layer, in particular any other non-woven layer, such layers may be pre-treated with an auxiliary adhesive.


When the absorbent article contains channels (as discussed below), the thermoplastic composition and/or adhesive material(s) may not only help in immobilizing the absorbent material on the supporting sheet or substrate, but it may also help in maintaining the integrity of the channels in the absorbent structure absorbent core during storage and/or during use of the disposable article. The thermoplastic and/or adhesive materials may help to avoid that a significant amount of absorbent material migrates into the channels. Furthermore, when the materials are applied in the channels or on the supporting sheet portions coinciding with the channels it may thereby help to adhere the substrate of the absorbent structure to said walls, and/or to a further material, as will be described in further details below. In some embodiments, an adhesive may be a thermoplastic adhesive material. That is, in some embodiments, a thermoplastic composition may be applied as fibers, forming a fibrous network that immobilizes the absorbent material on the substrates, or supporting sheet. The thermoplastic fibers may be partially in contact with the substrate of the absorbent structure; if applied also in the channels, it (further) anchors the absorbent layer to the substrate.


The thermoplastic composition material may for example allow for such swelling, without breaking and without imparting too many compressive forces, which would restrain the absorbent polymer particles from swelling.


In certain embodiments, the thermoplastic composition 68 and 76, and/or any auxiliary adhesive, will meet at least one, or several, or all of the following parameters:


A typical parameter for a thermoplastic composition suitable for use in the present disclosure can be a loss Factortan δ at 60° C. (6.28 mrad/s) of below the value of 1, or below the value of 0.5. The loss Factortan δ at 60° C. is correlated with the cohesive character of an adhesive at elevated ambient temperatures. The lower tan δ, the more an adhesive behaves like a solid rather than a liquid, i.e. the lower its tendency to flow or to migrate and the lower the tendency of an adhesive superstructure as described herein to deteriorate or even to collapse over time. This value is hence particularly important if the absorbent article is used in a hot climate.


It may be beneficial, e.g. for process reasons and/or performance reasons, that the thermoplastic composition material has a viscosity of between 800 and 8000 mPa·s, or from 1000 mPa·s to 1400 mPa·s or from 1500 mPa·s to 7000 mPa·s or to 5000 mPa·s or to 3000 mPa·s or to 2500 mPa·s, at 163° C., as measurable by ASTM D3236-88, using spindle 27, 20 pmp, 20 minutes preheating at the temperature, and stirring for 10 min.


The thermoplastic composition may have a softening point of between 60° C. and 150° C., or between 75° C. and 135° C., or between 90° C. and 130° C., or between 100° C. and 115° C., as can be determined with ASTM E28-99 (Herzog method; using glycerine).


In one embodiment herein, the thermoplastic component may be hydrophilic, having a contact angle of less than 90°, or less than 80° or less than 75° or less than 70°, as measurable with ASTM D 5725-99.


The cover layer 70 shown in FIG. 4 may comprise the same material as the substrates 64 and 72, or may comprise a different material. In certain embodiments, suitable materials for the cover layer 70 are the non-woven materials, typically the materials described above as useful for the substrates 64 and 72. The nonwovens may be hydrophilic and/or hydrophobic.


A printing system 130 for making an absorbent core 14 in accordance with an embodiment of this invention is illustrated in FIG. 11 and may generally comprise a first printing unit 132 for forming the first absorbent layer 60 of the absorbent core 14 and a second printing unit 134 for forming the second absorbent layer 62 of the absorbent core 14.


The first printing unit 132 may comprise a first auxiliary adhesive applicator 136 for applying an auxiliary adhesive to the substrate 64, which may be a nonwoven web, a first rotatable support roll 140 for receiving the substrate 64, a hopper 142 for holding absorbent particulate polymer material 66, a printing roll 144 for transferring the absorbent particulate polymer material 66 to the substrate 64, and a thermoplastic composition material applicator 146 for applying the thermoplastic composition material 68 to the substrate 64 and the absorbent particulate polymer 66 material thereon.


The second printing unit 134 may comprise a second auxiliary adhesive applicator 148 for applying an auxiliary adhesive to the second substrate 72, a second rotatable support roll 152 for receiving the second substrate 72, a second hopper 154 for holding the absorbent particulate polymer material 74, a second printing roll 156 for transferring the absorbent particulate polymer material 74 from the hopper 154 to the second substrate 72, and a second thermoplastic composition material applicator 158 for applying the thermoplastic composition material 76 to the second substrate 72 and the absorbent particulate polymer material 74 thereon.


The printing system 130 also includes a guide roller 160 for guiding the formed absorbent core from a nip 162 between the first and second rotatable support rolls 140 and 152.


The first and second auxiliary applicators 136 and 148 and the first and second thermoplastic composition material applicators 146 and 158 may be a nozzle system which can provide a relatively thin but wide curtain of thermoplastic composition material. In some embodiments, a contact application such as a slot gun may be used, while other embodiments may be contactless (spray glue) applications. In some cases, only one of the auxiliary applicators 136 and 148 may be switched on, while in other cases both may be on at the same time, depending on the adhesive design.


As illustrated in FIGS. 1-8, the absorbent particulate polymer material 66 and 74 is deposited on the respective substrates 64 and 72 of the first and second absorbent layers 60 and 62 in clusters 90 of particles to form a grid pattern 92 comprising land areas 94 and junction areas 96 between the land areas 94. As defined herein, land areas 94 are areas where the fiberized net structure does not contact the nonwoven substrate or the auxiliary adhesive directly; junction areas 96 are areas where the thermoplastic adhesive material does contact the nonwoven substrate or the auxiliary adhesive (discussed below) directly; junction areas 96 are areas where the fiberized net structure does contact the nonwoven substrate or the auxiliary adhesive directly. The junction areas 96 in the grid pattern 92 contain little or no absorbent particulate polymer material 66 and 74. The land areas 94 and junction areas 96 can have a variety of shapes including, but not limited to, circular, oval, square, rectangular, triangular, and the like.


The grid pattern shown in FIG. 8 is a square grid with regular spacing and size of the land areas. Other grid patterns including hexagonal, rhombic, orthorhombic, parallelogram, triangular, rectangular, and combinations thereof may also be used. The spacing between the grid lines may be regular or irregular.


The size of the land areas 94 in the grid patterns 92 may vary. According to certain embodiments, the width 119 of the land areas 94 in the grid patterns 92 ranges from about 8 mm to about 12 mm. In a certain embodiment, the width of the land areas 94 is about 10 mm. The junction areas 96, on the other hand, in certain embodiments, have a width or larger span of less than about 5 mm, less than about 3 mm, less than about 2 mm, less than about 1.5 mm, less than about 1 mm, or less than about 0.5 mm.


As shown in FIG. 8, the absorbent core 14 has a longitudinal axis 100 extending from a rear end 102 to a front end 104 and a transverse axis 106 perpendicular to the longitudinal axis 100 extending from a first edge 108 to a second edge 110. The grid pattern 92 of absorbent particulate polymer material clusters 90 is arranged on the substrates 64 and 72 of the respective absorbent layers 60 and 62 such that the grid pattern 92 formed by the arrangement of land areas 94 and junction areas 96 forms a pattern angle 112. The pattern angle 112 may be 0, greater than 0, or 15 to 30 degrees, or from about 5 to about 85 degrees, or from about 10 to about 60 degrees, or from about 15 to about 30 degrees.


As best seen in FIGS. 7a, 7b, and 8, the first and second layers 60 and 62 may be combined to form the absorbent core 14. The absorbent core 14 has an absorbent particulate polymer material area 114 bounded by a pattern length 116 and a pattern width 118. The extent and shape of the absorbent particulate polymer material area 114 may vary depending on the desired application of the absorbent core 14 and the particular absorbent article in which it may be incorporated. In a certain embodiment, however, the absorbent particulate polymer material area 114 extends substantially entirely across the absorbent core 14, such as is illustrated in FIG. 8.


The first and second absorbent layers 60 and 62 may be combined together to form the absorbent core 14 such that the grid patterns 92 of the respective first and second absorbent layers 62 and 64 are offset from one another along the length and/or width of the absorbent core 14. The respective grid patterns 92 may be offset such that the absorbent particulate polymer material 66 and 74 is substantially continuously distributed across the absorbent particulate polymer area 114. In a certain embodiment, absorbent particulate polymer material 66 and 74 is substantially continuously distributed across the absorbent particulate polymer material area 114 despite the individual grid patterns 92 comprising absorbent particulate polymer material 66 and 74 discontinuously distributed across the first and second substrates 64 and 72 in clusters 90. In a certain embodiment, the grid patterns may be offset such that the land areas 94 of the first absorbent layer 60 face the junction areas 96 of the second absorbent layer 62 and the land areas of the second absorbent layer 62 face the junction areas 96 of the first absorbent layer 60. When the land areas 94 and junction areas 96 are appropriately sized and arranged, the resulting combination of absorbent particulate polymer material 66 and 74 is a substantially continuous layer of absorbent particular polymer material across the absorbent particulate polymer material area 114 of the absorbent core 14 (i.e. first and second substrates 64 and 72 do not form a plurality of pockets, each containing a cluster 90 of absorbent particulate polymer material 66 therebetween). In a certain embodiment, respective grid patterns 92 of the first and second absorbent layer 60 and 62 may be substantially the same.


In a certain embodiment as illustrated in FIG. 8, the amount of absorbent particulate polymer material 66 and 74 may vary along the length 116 of the grid pattern 92. In a certain embodiment, the grid pattern may be divided into absorbent zones 120, 122, 124, and 126, in which the amount of absorbent particulate polymer material 66 and 74 varies from zone to zone. As used herein, “absorbent zone” refers to a region of the absorbent particulate polymer material area having boundaries that are perpendicular to the longitudinal axis shown in FIG. 8. The amount of absorbent particulate polymer material 66 and 74 may, in a certain embodiment, gradually transition from one of the plurality of absorbent zones 120, 122, 124, and 126 to another. This gradual transition in amount of absorbent particulate polymer material 66 and 74 may reduce the possibility of cracks forming in the absorbent core 14.


The amount of absorbent particulate polymer material 66 and 74 present in the absorbent core 14 may vary, but in certain embodiments, is present in the absorbent core in an amount greater than about 80% by weight of the absorbent core, or greater than about 85% by weight of the absorbent core, or greater than about 90% by weight of the absorbent core, or greater than about 95% by weight of the core. In a particular embodiment, the absorbent core 14 consists essentially of the first and second substrates 64 and 72, the absorbent particulate polymer material 66 and 74, and the thermoplastic composition 68 and 76. In an embodiment, the absorbent core 14 may be substantially cellulose free.


According to certain embodiments, the weight of absorbent particulate polymer material 66 and 74 in at least one freely selected first square measuring 1 cm×1 cm may be at least about 10%, or 20%, or 30%, 40% or 50% higher than the weight of absorbent particulate polymer material 66 and 74 in at least one freely selected second square measuring 1 cm×1 cm. In a certain embodiment, the first and the second square are centered about the longitudinal axis.


The absorbent particulate polymer material area, according to an exemplary embodiment, may have a relatively narrow width in the crotch area of the absorbent article for increased wearing comfort. Hence, the absorbent particulate polymer material area, according to an embodiment, may have a width as measured along a transverse line which is positioned at equal distance to the front edge and the rear edge of the absorbent article, which is less than about 100 mm, 90 mm, 80 mm, 70 mm, 60 mm or even less than about 50 mm.


It has been found that, for most absorbent articles such as diapers, the liquid discharge occurs predominately in the front half of the diaper. The front half of the absorbent core 14 should therefore comprise most of the absorbent capacity of the core. Thus, according to certain embodiments, the front half of said absorbent core 14 may comprise more than about 60% of the superabsorbent material, or more than about 65%, 70%, 75%, 80%, 85%, or 90% of the superabsorbent material. The absorbent core of the invention may comprise a core wrap enclosing the absorbent material. In some embodiments, the core wrap may be both the first and second substrates. The core wrap may be formed by two substrates, typically nonwoven material which may be at least partially sealed along the sides of the absorbent core. The first nonwoven may substantially form the top side of the core wrap and the second nonwoven substantially the bottom side of the core wrap. The core wrap may be at least partially sealed along its front side, back side and/or two longitudinal sides to improve the containment of the absorbent material during use. A C-wrap seal may be for example provided on the longitudinal sides of the core if improved containment is desired. Exemplary C-wrap description may be found in U.S. application Ser. No. 14/560,211. Typical core wraps comprise two substrates which are attached to one another, but the core wrap may also be made of a single substrate folded around the absorbent material, or may comprises several substrates. When two substrates are used, these may be typically attached to another along at least part of the periphery of the absorbent core to form a seal. Typically neither first nor second substrates need to be shaped, so that they can be rectangularly cut for ease of production but other shapes are not excluded.


The substrates are advantageously attached to another to form a seal along all the edges of the core. Typical seals are the so-called C-wrap and sandwich wrap. In a C-wrap, one of the substrate, e.g. the first substrate, has flaps extending over the opposed edges of the core which are then folded over the other substrate. These flaps are bonded to the external surface of the other substrate, typically by adhesive. This so called C-wrap construction can provide benefits such as improved resistance to bursting in a wet loaded state compared to a sandwich seal.


The front side and back side of the core wrap may then also be sealed for example by adhering the first substrate and second substrate to another to provide complete enclosing of the absorbent material across the whole of the periphery of the core. For the front side and back side of the core, the first and second substrate may extend and be joined together in a substantially planar direction, forming a so-called sandwich construction. In the so-called sandwich seal construction, the first and second substrates both have material extension outwardly of the absorbent material deposition area which are then sealed flat along the whole or parts of the periphery of the core typically by gluing and/or heat/pressure bonding.


The terms “seal” and “enclosing” are to be understood in a broad sense. The seal does not need to be continuous along the whole periphery of the core wrap but may be discontinuous along part or the whole of it, such as formed by a series of seal points spaced on a line. Typically a seal may be formed by gluing and/or thermal bonding. The core wrap may also be formed by a single substrate which may enclose the absorbent material as in a parcel wrap and be for example sealed along the front side and back side of the core and one longitudinally extending seal.


The core wrap may be formed by any materials suitable for enclosing the absorbent material. Typical substrate materials used in the production of conventional cores may be used, in particular nonwovens but also paper, tissues, films, wovens, or laminate of any of these. The core wrap may in particular be formed by a nonwoven web, such as a carded nonwoven, a spunbond nonwoven (“S”) or a meltblown nonwoven (“M”), and laminates of any of these. For example spunmelt polypropylene nonwovens are suitable, in particular those having a laminate web SMS, or SMMS, or SSMMS, structure, and having a basis weight range of about 5 gsm to 15 gsm. Suitable materials are for example disclosed in U.S. Pat. No. 7,744,576, US2011/0268932A1, US2011/0319848A1, or US2011/0250413A1. Nonwoven materials provided from synthetic fibers may be used, such as polyethylene, Polyethylene terephthalate, and in particular polypropylene.


In certain embodiments, the absorbent core 14 may further comprise any absorbent material that is generally compressible, conformable, non-irritating to the wearer's skin, and capable of absorbing and retaining liquids such as urine and other certain body exudates. In such embodiments, the absorbent core 14 may comprise a wide variety of liquid-absorbent materials commonly used in disposable diapers and other absorbent articles such as comminuted wood pulp, which is generally referred to as airfelt, creped cellulose wadding, melt blown polymers, including co-form, chemically stiffened, modified or cross-linked cellulosic fibers, tissue, including tissue wraps and tissue laminates, absorbent foams, absorbent sponges, or any other known absorbent material or combinations of materials. The absorbent core 14 may further comprise minor amounts (typically less than about 10%) of materials, such as adhesives, waxes, oils and the like.


Exemplary absorbent structures for use as the absorbent assemblies are described in U.S. Pat. No. 4,610,678 (Weisman et al.); U.S. Pat. No. 4,834,735 (Alemany et al.); U.S. Pat. No. 4,888,231 (Angstadt); U.S. Pat. No. 5,260,345 (DesMarais et al.); U.S. Pat. No. 5,387,207 (Dyer et al.); U.S. Pat. No. 5,397,316 (LaVon et al.); and U.S. Pat. No. 5,625,222 (DesMarais et al.).


The absorbent article may further comprise at least one wetness indicator which is visible from the exterior of the article and which changes appearance when contacted with a body exudates, in particular urine. The wetness indicator (not shown) may be placed, when seen from the exterior of the article, between the two channel-forming areas 226 of FIG. 9, and/or between any of the channel-forming areas 226 and any of the lateral edge or both. The wetness indicators of the present invention may be according to any wetness indicating system known in the art. It is known that wetness indicator can provide an appearing signal, a disappearing signal or a color change signal, and combinations thereof. The wetness indicator may advantageously provide a color change signal, which may be typically obtained by a composition having a first color when dry and a second color different form the first color when wet, both colors being discernible by an external observer considering the article in a dry and a wet state.


The wetness indicator may in particular be a color change composition comprising a suitable pH indicator or another chemical substance that changes color when contacted with urine. Such compositions are for example disclosed in WO03/070138A2 or US2012/165771 (Ruman). More generally, the wetness indicator compositions of the invention may be as disclosed in WO2010/120705 (Klofta), comprising a colorant, a matrix and a stabilizer. The color change composition may be a hot-melt adhesive, which allows for an easy application of the composition on a substrate component of the article for example by a slot coating process or printed adhesive coating as disclosed e.g. in US2011274834 (Brown). The wetness indicator composition may be applied on any layer of the absorbent article using a conventional technique, for example printing, spraying or coating, during the making of the absorbent article. The layer may advantageously be the inner surface of the backsheet or the outer surface of the bottom side of the core wrap. This allows the wetness indicator to be visible from the exterior of the article by transparency through the backsheet while keeping the wetness indicator composition within the article. The wetness indicator may in particular be easily applied on a layer such a nonwoven or film by a slot-coating process especially if the composition is can be applied as a hot-melt.


Absorbent Material


The absorbent layer 217 comprises absorbent material 250, 66, and 74, that comprises superabsorbent polymer material (e.g. particles), optionally combined with cellulosic material (including for example cellulose, comminuted wood pulp in the form of fibers). The further material described above (e.g. a further, second absorbent structure (not represented) may include an absorbent material, and the following may apply thereto too.


In some embodiment, the absorbent material 250 may comprise at least 60%, or at least 70% by weight of superabsorbent polymer material, and at the most 40% or at the most 30% of cellulosic material.


In some other embodiments, the absorbent layer 217 comprises absorbent material 250 that consists substantially of absorbent polymer material, e.g. particles, e.g. less than 5% by weight (of the absorbent material 250) of cellulosic material is present; and said absorbent layer 217/absorbent structure 213, may be free of cellulosic material.


Typically, the superabsorbent polymer material is in the form of particles. Suitable for use in the absorbent layer 217 can comprise any superabsorbent polymer particles known from superabsorbent literature, for example such as described in Modern Superabsorbent Polymer Technology, F. L. Buchholz, A. T. Graham, Wiley 1998. The absorbent polymer particles may be spherical, spherical-like or irregular shaped particles, such as Vienna-sausage shaped particles, or ellipsoid shaped particles of the kind typically obtained from inverse phase suspension polymerizations. The particles can also be optionally agglomerated at least to some extent to form larger irregular particles.


In some embodiments herein, the absorbent material 250 as a whole and/or said particulate superabsorbent polymer material at least, has a high sorption capacity, e.g. having a CRC of for example at least 20 g/g, or at 30 g/g. Upper limits may for example be up to 150 g/g, or up to 100 g/g.


In some embodiments herein, the absorbent material 250 comprising or consisting of superabsorbent polymer particles that are formed from polyacrylic acid polymers/polyacrylate polymers, for example having a neutralization degree of from 60% to 90%, or about 75%, having for example sodium counter ions.


The superabsorbent polymer may be polyacrylates and polyacrylic acid polymers that are internally and/or surface cross-linked. Suitable material are described in the PCT Patent Application WO 07/047598 or for example WO 07/046052 or for example WO2009/155265 and WO2009/155264. In some embodiments, suitable superabsorbent polymer particles may be obtained by current state of the art production processes as is more particularly as described in WO 2006/083584. The superabsorbent polymers may be internally cross-linked, i.e. the polymerization is carried out in the presence of compounds having two or more polymerizable groups which can be free-radically copolymerized into the polymer network. Useful crosslinkers include for example ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane as described in EP-A 530 438, di- and triacrylates as described in EP-A 547 847, EP-A 559 476, EP-A 632 068, WO 93/21237, WO 03/104299, WO 03/104300, WO 03/104301 and in DE-A 103 31 450, mixed acrylates which, as well as acrylate groups, include further ethylenically unsaturated groups, as described in DE-A 103 31 456 and DE-A 103 55 401, or crosslinker mixtures as described for example in DE-A 195 43 368, DE-A 196 46 484, WO 90/15830 and WO 02/32962 as well as cross-linkers described in WO2009/155265. The superabsorbent polymer particles may be externally surface cross-linked, or: post cross-linked). Useful post-crosslinkers include compounds including two or more groups capable of forming covalent bonds with the carboxylate groups of the polymers. Useful compounds include for example alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds as described in EP-A 083 022, EP-A 543 303 and EP-A 937 736, polyhydric alcohols as described in DE-C 33 14 019, cyclic carbonates as described in DE-A 40 20 780, 2-oxazolidone and its derivatives, such as N-(2-hydroxyethyl)-2-oxazolidone as described in DE-A 198 07 502, bis- and poly-2-oxazolidones as described in DE-A 198 07 992, 2-oxotetrahydro-1,3-oxazine and its derivatives as described in DE-A 198 54 573, N-acyl-2-oxazolidones as described in DE-A 198 54 574, cyclic ureas as described in DE-A 102 04 937, bicyclic amide acetals as described in DE-A 103 34 584, oxetane and cyclic ureas as described in EP-A 1 199 327 and morpholine-2,3-dione and its derivatives as described in WO 03/031482.


The superabsorbent polymers or particles thereof may have surface modifications, such as being coated or partially coated with a coating agent. Examples of coated absorbent polymer particles are disclosed in WO2009/155265. The coating agent may be such that it renders the absorbent polymer particles more hydrophilic. For example, it may be hydrophilic (for example, fumed) silica, such as Aerosils. The coating agent may be a polymer, such as an elastic polymer or a film-forming polymer or an elastic film-forming polymer, which forms an elastomeric (elastic) film coating on the particle. The coating may be a homogeneous and/or uniform coating on the surface of the absorbent polymer particles. The coating agent may be applied at a level of from 0.1% to 5%.


The superabsorbent polymer particles may have a particle sizes in the range from 45 μm to 4000 μm, more specifically a particle size distribution within the range of from 45 μm to about 2000 μm, or from about 100 μm to about 1000 or to 850 μm. The particle size distribution of a material in particulate form can be determined as it is known in the art, for example by means of dry sieve analysis (EDANA 420.02 “Particle Size distribution).


In some embodiments herein, the superabsorbent material is in the form of particles with a mass medium particle size up to 2 mm, or between 50 microns and 2 mm or to 1 mm, or from 100 or 200 or 300 or 400 or 500 μm, or to 1000 or to 800 or to 700 μm; as can for example be measured by the method set out in for example EP-A-0691133. In some embodiments of the disclosure, the superabsorbent polymer material is in the form of particles whereof at least 80% by weight are particles of a size between 50 μm and 1200 μm and having a mass median particle size between any of the range combinations above. In addition, or in another embodiment of the disclosure, said particles are essentially spherical. In yet another or additional embodiment of the disclosure the superabsorbent polymer material has a relatively narrow range of particle sizes, e.g. with the majority (e.g. at least 80%, at least 90% or even at least 95% by weight) of particles having a particle size between 50 μm and 1000 μm, between 100 μm and 800 μm, between 200 μm and 600 μm.


Article



FIG. 1 is a plan view of an article, such as a diaper, 10 according to a certain embodiment of the present invention. The diaper 10 is shown in its flat out, uncontracted state (i.e., without elastic induced contraction) and portions of the diaper 10 are cut away to more clearly show the underlying structure of the diaper 10. A portion of the diaper 10 that contacts a wearer is facing the viewer in FIG. 1. The diaper 10 generally may comprise a chassis 12 and an absorbent core 14 disposed in the chassis.


The chassis 12 of the diaper 10 in FIG. 1 may comprise the main body of the diaper 10. The chassis 12 may comprise an outer covering 16 including a topsheet 18, which may be liquid pervious, and/or a backsheet 20, which may be liquid impervious. The absorbent core 14 may be encased between the topsheet 18 and the backsheet 20. The chassis 12 may also include side panels 22, elasticized leg cuffs 24, and an elastic waist feature 26.


The leg cuffs 24 and the elastic waist feature 26 may each typically comprise elastic members 28. One end portion of the diaper 10 may be configured as a first waist region 30 of the diaper 10. An opposite end portion of the diaper 10 may be configured as a second waist region 32 of the diaper 10. An intermediate portion of the diaper 10 may be configured as a crotch region 34, which extends longitudinally between the first and second waist regions 30 and 32. The waist regions 30 and 32 may include elastic elements such that they gather about the waist of the wearer to provide improved fit and containment (elastic waist feature 26). The crotch region 34 is that portion of the diaper 10 which, when the diaper 10 is worn, is generally positioned between the wearer's legs.


The diaper 10 is depicted in FIG. 1 with its longitudinal axis 36 and its transverse axis 38. The periphery 40 of the diaper 10 is defined by the outer edges of the diaper 10 in which the longitudinal edges 42 run generally parallel to the longitudinal axis 36 of the diaper 10 and the end edges 44 run between the longitudinal edges 42 generally parallel to the transverse axis 38 of the diaper 10. The chassis 12 may also comprise a fastening system, which may include at least one fastening member 46 and at least one stored landing zone 48.


The diaper 10 may also include such other features as are known in the art including front and rear ear panels, waist cap features, elastics and the like to provide better fit, containment and aesthetic characteristics. Such additional features are well known in the art and are e.g., described in U.S. Pat. Nos. 3,860,003 and 5,151,092.


In order to keep the diaper 10 in place about the wearer, at least a portion of the first waist region 30 may be attached by the fastening member 46 to at least a portion of the second waist region 32 to form leg opening(s) and an article waist. When fastened, the fastening system carries a tensile load around the article waist. The fastening system may allow an article user to hold one element of the fastening system, such as the fastening member 46, and connect the first waist region 30 to the second waist region 32 in at least two places. This may be achieved through manipulation of bond strengths between the fastening device elements.


According to certain embodiments, the diaper 10 may be provided with a re-closable fastening system or may alternatively be provided in the form of a pant-type diaper. When the absorbent article is a diaper, it may comprise a re-closable fastening system joined to the chassis for securing the diaper to a wearer. When the absorbent article is a pant-type diaper, the article may comprise at least two side panels joined to the chassis and to each other to form a pant. The fastening system and any component thereof may include any material suitable for such a use, including but not limited to plastics, films, foams, nonwoven, woven, paper, laminates, fiber reinforced plastics and the like, or combinations thereof. In certain embodiments, the materials making up the fastening device may be flexible. The flexibility may allow the fastening system to conform to the shape of the body and thus, reduce the likelihood that the fastening system will irritate or injure the wearer's skin.


For unitary absorbent articles, the chassis 12 and absorbent core 14 may form the main structure of the diaper 10 with other features added to form the composite diaper structure. While the topsheet 18, the backsheet 20, and the absorbent core 14 may be assembled in a variety of well-known configurations, preferred diaper configurations are described generally in U.S. Pat. No. 5,554,145 entitled “Absorbent Article With Multiple Zone Structural Elastic-Like Film Web Extensible Waist Feature” issued to Roe et al. on Sep. 10, 1996; U.S. Pat. No. 5,569,234 entitled “Disposable Pull-On Pant” issued to Buell et al. on Oct. 29, 1996; and U.S. Pat. No. 6,004,306 entitled “Absorbent Article With Multi-Directional Extensible Side Panels” issued to Robles et al. on Dec. 21, 1999.


The topsheet 18 in FIG. 1 may be fully or partially elasticized or may be foreshortened to provide a void space between the topsheet 18 and the absorbent core 14. Exemplary structures including elasticized or foreshortened topsheets are described in more detail in U.S. Pat. Nos. 5,037,416 and 5,269,775.


The topsheet may be compliant, soft feeling, and non-irritating to the wearer's skin and may be elastically stretchable in one or more directions. Further, the topsheet may be liquid pervious, permitting liquids (e.g., menses, urine, and/or runny feces) to penetrate through its thickness. Various topsheets may also comprise a hydrophilic material, for example, which is configured to draw bodily fluids into an absorbent core of the chassis when these fluids are expelled from the body. A suitable topsheet may be manufactured from a wide range of materials, such as woven and nonwoven materials, apertured or hydroformed thermoplastic films, apertured nonwovens, porous foams, reticulated foams, reticulated thermoplastic films, and/or thermoplastic scrims, for example. Suitable apertured films may comprise those described in U.S. Pat. Nos. 3,929,135, 4,324,246, 4,342,314, 4,463,045, 5,006,394, 5,628,097, 5,916,661, 6,545,197, and 6,107,539.


Apertured film or nonwoven topsheets typically may be pervious to bodily exudates, yet non-absorbent, and have a reduced tendency to allow fluids to pass back through and rewet the wearer's skin. Suitable woven and nonwoven materials may comprise natural fibers, such as, for example, wood or cotton fibers, synthetic fibers, such as, for example, polyester, polypropylene, or polyethylene fibers, or combinations thereof. If the topsheet comprises fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed, for example, as is generally known in the art.


The topsheet may comprise a skin care lotion. Examples of suitable lotions include, but are not limited to, those described in U.S. Pat. Nos. 5,607,760; 5,609,587; 5,635,191; 5,643,588; and 5,968,025, and as described in U.S. Application No. 61/391,353, and as described in U.S. Pub. No. 2014-0257216. Beyond these compositions, the absorbent article may comprise soluble cyclodextrin derivatives such as those described in U.S. Pub. No. 2014/0274870.


Additionally, the topsheet of the present disclosure may be a tufted laminate web as disclosed in U.S. Pat. No. 7,410,683, and/or may be an apertured web as disclosed in PCT/CN2014/083769 having an international filing date of Aug. 6, 2014.


In one embodiment, the topsheet may comprise graphics such that depth perception is created as described in U.S. Pat. No. 7,163,528. In other embodiments, the topsheet may be an integrated acquisition layer and topsheet as described in U.S. Ser. No. 14/680,426 or Ser. No. 14/634,928.


In one embodiment, the absorbent article may comprise a backsheet. The backsheet may be impervious, or at least partially impervious, to fluids or body exudates (e.g., menses, urine, and/or runny feces) and may be manufactured from a thin plastic film, although other flexible liquid impervious materials may also be used. The backsheet may prevent the body exudates or fluids absorbed and contained in an absorbent core of the absorbent article from wetting articles which contact the absorbent article, such as bedsheets, pajamas, clothes, and/or undergarments. The backsheet may comprise a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material (e.g., having an inner film layer and an outer nonwoven layer). A suitable backsheet may comprise a polyethylene film having a thickness of from about 0.012 mm (0.5 mils) to about 0.051 mm (2.0 mils). Examples of polyethylene films are manufactured by Clopay Corporation of Cincinnati, Ohio, under the designation BR-120 and BR-121, and by Tredegar Film Products of Terre Haute, Ind., under the designation XP-39385.


One suitable material for the backsheet can be a liquid impervious thermoplastic film having a thickness of from about 0.012 mm (0.50 mil) to about 0.051 mm (2.0 mils), for example including polyethylene or polypropylene. Typically, the backsheet can have a basis weight of from about 5 g/m2 to about 35 g/m2. The backsheet can be typically positioned adjacent the outer-facing surface of the absorbent core and can be joined thereto. For example, the backsheet may be secured to the absorbent core by a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive. Illustrative, but non-limiting adhesives, include adhesives manufactured by H. B. Fuller Company of St. Paul, Minn., U.S.A., and marketed as HL-1358J. An example of a suitable attachment device including an open pattern network of filaments of adhesive is disclosed in U.S. Pat. No. 4,573,986. Another suitable attachment device including several lines of adhesive filaments swirled into a spiral pattern is illustrated by the apparatus and methods shown in U.S. Pat. Nos. 3,911,173; 4,785,996; and 4,842,666. Alternatively, the attachment device may include heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds, or any other suitable attachment device or combinations of these attachment devices.


In one embodiment, the backsheet may be embossed and/or matte-finished to provide a more cloth-like appearance. Further, the backsheet may permit vapors to escape from the absorbent core of the absorbent article (i.e., the backsheet is breathable) while still preventing, or at least inhibiting, fluids or body exudates from passing through the backsheet. In one embodiment, the size of the backsheet may be dictated by the size of the absorbent article and the design or configuration of the absorbent article to be formed, for example.


The backsheet 20 may be joined with the topsheet 18. Suitable backsheet films include those manufactured by Tredegar Industries Inc. of Terre Haute, Ind. and sold under the trade names X15306, X10962, and X10964. Other suitable backsheet materials may include breathable materials that permit vapors to escape from the diaper 10 while still preventing liquid exudates from passing through the backsheet 10. Exemplary breathable materials may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, and microporous films such as manufactured by Mitsui Toatsu Co., of Japan under the designation ESPOIR NO and by EXXON Chemical Co., of Bay City, Tex., under the designation EXXAIRE. Suitable breathable composite materials comprising polymer blends are available from Clopay Corporation, Cincinnati, Ohio under the name HYTREL blend P18-3097. Such breathable composite materials are described in greater detail in PCT Application No. WO 95/16746, published on Jun. 22, 1995 in the name of E. I. DuPont. Other breathable backsheets including nonwoven webs and apertured formed films are described in U.S. Pat. No. 5,571,096 issued to Dobrin et al. on Nov. 5, 1996.


In certain embodiments, the backsheet of the present invention may have a water vapor transmission rate (WVTR) of greater than about 2000 g/24 h/m2, greater than about 3000 g/24 h/m2, greater than about 5000 g/24 h/m2, greater than about 6000 g/24 h/m2, greater than about 7000 g/24 h/m2, greater than about 8000 g/24 h/m2, greater than about 9000 g/24 h/m2, greater than about 10000 g/24 h/m2, greater than about 11000 g/24 h/m2, greater than about 12000 g/24 h/m2, greater than about 15000 g/24 h/m2, measured according to WSP 70.5 (08) at 37.8° C. and 60% Relative Humidity.



FIG. 2 shows a cross section of FIG. 1 taken along the sectional line 2-2 of FIG. 1. Starting from the wearer facing side, the diaper 10 may comprise the topsheet 18, the components of the absorbent core 14, and the backsheet 20. According to a certain embodiment, the diaper 10 may also comprise an acquisition system 50 disposed between the liquid permeable topsheet 18 and a wearer facing side of the absorbent core 14. The acquisition system 50 may be in direct contact with the absorbent core. The acquisition system 50 may comprise a single layer or multiple layers, such as an upper acquisition layer 52 facing towards the wearer's skin and a lower acquisition 54 layer facing the garment of the wearer. According to a certain embodiment, the acquisition system 50 may function to receive a surge of liquid, such as a gush of urine. In other words, the acquisition system 50 may serve as a temporary reservoir for liquid until the absorbent core 14 can absorb the liquid.


In a certain embodiment, the acquisition system 50 may comprise chemically cross-linked cellulosic fibers. Such cross-linked cellulosic fibers may have desirable absorbency properties. Exemplary chemically cross-linked cellulosic fibers are disclosed in U.S. Pat. No. 5,137,537. According to certain embodiments, the cross-linked cellulosic fibers may be crimped, twisted, or curled, or a combination thereof including crimped, twisted, and curled.


In a certain embodiment, one or both of the upper and lower acquisition layers 52 and 54 may comprise a non-woven, which may be hydrophilic. Further, according to a certain embodiment, one or both of the upper and lower acquisition layers 52 and 54 may comprise the chemically cross-linked cellulosic fibers, which may or may not form part of a nonwoven material. According to an exemplary embodiment, the upper acquisition layer 52 may comprise a nonwoven, without the cross-linked cellulosic fibers, and the lower acquisition layer 54 may comprise the chemically cross-linked cellulosic fibers. Further, according to an embodiment, the lower acquisition layer 54 may comprise the chemically cross-linked cellulosic fibers mixed with other fibers such as natural or synthetic polymeric fibers. According to exemplary embodiments, such other natural or synthetic polymeric fibers may include high surface area fibers, thermoplastic binding fibers, polyethylene fibers, polypropylene fibers, PET fibers, rayon fibers, lyocell fibers, and mixtures thereof. According to a particular embodiment, the lower acquisition layer 54 has a total dry weight, the cross-linked cellulosic fibers are present on a dry weight basis in the upper acquisition layer in an amount from about 30% to about 95% by weight of the lower acquisition layer 54, and the other natural or synthetic polymeric fibers are present on a dry weight basis in the lower acquisition layer 54 in an amount from about 70% to about 5% by weight of the lower acquisition layer 54.


According to a certain embodiment, the lower acquisition layer 54 desirably has a high fluid uptake capability. Fluid uptake is measured in grams of absorbed fluid per gram of absorbent material and is expressed by the value of “maximum uptake.” A high fluid uptake corresponds therefore to a high capacity of the material and is beneficial, because it ensures the complete acquisition of fluids to be absorbed by an acquisition material. According to exemplary embodiments, the lower acquisition layer 54 has a maximum uptake of about 10 g/g.


Suitable non-woven materials for the upper and lower acquisition layers 52 and 54 include, but are not limited to SMS material, comprising a spunbonded, a melt-blown and a further spunbonded layer. In certain embodiments, permanently hydrophilic non-wovens, and in particular, nonwovens with durably hydrophilic coatings are desirable. Additional suitable embodiments may in particular be formed by a nonwoven web, such as a carded nonwoven, a spunbond nonwoven (“S”) or a meltblown nonwoven (“M”), and laminates of any of these. For example spunmelt polypropylene nonwovens are suitable, in particular those having a laminate web SMS, or SMMS, or SSMMS, structure, and having a basis weight range of about 5 gsm to 15 gsm. Suitable materials are for example disclosed in U.S. Pat. No. 7,744,576, US2011/0268932A1, US2011/0319848A1, or US2011/0250413A1. Nonwoven materials provided from synthetic fibers may be used, such as polyethylene, polyethylene terephthalate, and in particular polypropylene.


As polymers used for nonwoven production may be inherently hydrophobic, they may be coated with hydrophilic coatings. One way to produce nonwovens with durably hydrophilic coatings, is via applying a hydrophilic monomer and a radical polymerization initiator onto the nonwoven, and conducting a polymerization activated via UV light resulting in monomer chemically bound to the surface of the nonwoven as described in co-pending U.S. Patent Publication No. 2005/0159720. Another way to produce nonwovens with durably hydrophilic coatings is to coat the nonwoven with hydrophilic nanoparticles as described in co-pending applications U.S. Pat. No. 7,112,621 to Rohrbaugh et al. and in PCT Application Publication WO 02/064877.


Typically, nanoparticles have a largest dimension of below 750 nm. Nanoparticles with sizes ranging from 2 to 750 nm may be economically produced. An advantage of nanoparticles is that many of them can be easily dispersed in water solution to enable coating application onto the nonwoven, they typically form transparent coatings, and the coatings applied from water solutions are typically sufficiently durable to exposure to water. Nanoparticles can be organic or inorganic, synthetic or natural. Inorganic nanoparticles generally exist as oxides, silicates, and/or, carbonates. Typical examples of suitable nanoparticles are layered clay minerals (e.g., LAPONITE™ from Southern Clay Products, Inc. (USA), and Boehmite alumina (e.g., Disperal P2™ from North American Sasol. Inc.). According to a certain embodiment, a suitable nanoparticle coated non-woven is that disclosed in patent application Ser. No. 10/758,066 entitled “Disposable absorbent article comprising a durable hydrophilic core wrap” to Ekaterina Anatolyevna Ponomarenko and Mattias NMN Schmidt.


Further useful non-wovens are described in U.S. Pat. No. 6,645,569 to Cramer et al., U.S. Pat. No. 6,863,933 to Cramer et al., U.S. Pat. No. 7,112,621 to Rohrbaugh et al., and co-pending patent application Ser. No. 10/338,603 to Cramer et al. and Ser. No. 10/338,610 to Cramer et al.


In some cases, the nonwoven surface can be pre-treated with high energy treatment (corona, plasma) prior to application of nanoparticle coatings. High energy pre-treatment typically temporarily increases the surface energy of a low surface energy surface (such as PP) and thus enables better wetting of a nonwoven by the nanoparticle dispersion in water.


Notably, permanently hydrophilic non-wovens are also useful in other parts of an absorbent article. For example, topsheets and absorbent core layers comprising permanently hydrophilic non-wovens as described above have been found to work well.


According to a certain embodiment, the upper acquisition layer 52 may comprise a material that provides good recovery when external pressure is applied and removed. Further, according to a certain embodiment, the upper acquisition layer 52 may comprise a blend of different fibers selected, for example from the types of polymeric fibers described above. In some embodiments, at least a portion of the fibers may exhibit a spiral-crimp which has a helical shape. In some embodiments, the upper acquisition layer 52 may comprise fibers having different degrees or types of crimping, or both. For example, one embodiment may include a mixture of fibers having about 8 to about 12 crimps per inch (cpi) or about 9 to about 10 cpi, and other fibers having about 4 to about 8 cpi or about 5 to about 7 cpi. Different types of crimps include, but are not limited to a 2D crimp or “flat crimp” and a 3D or spiral-crimp. According to a certain embodiment, the fibers may include bi-component fibers, which are individual fibers each comprising different materials, usually a first and a second polymeric material. It is believed that the use of side-by-side bi-component fibers is beneficial for imparting a spiral-crimp to the fibers.


The upper acquisition layer 52 may be stabilized by a latex binder, for example a styrene-butadiene latex binder (SB latex), in a certain embodiment. Processes for obtaining such lattices are known, for example, from EP 149 880 (Kwok) and US 2003/0105190 (Diehl et al.). In certain embodiments, the binder may be present in the upper acquisition layer 52 in excess of about 12%, about 14% or about 16% by weight. For certain embodiments, SB latex is available under the trade name GENFLO™ 3160 (OMNOVA Solutions Inc.; Akron, Ohio).


Channels


In some embodiments, the absorbent core may comprise channels, or areas substantially free of absorbent polymer particles or absorbent polymer material. The channels may provide improved liquid transport, and hence faster acquisition, and more efficient liquid absorbency over the whole absorbent structure, in addition to reducing the stiffness of partially or fully loaded cores. As shown in FIG. 9, the absorbent structure 213 comprises a first substrate (a supporting sheet) 216, and an absorbent layer 217 of absorbent material 250. The absorbent material 250 comprises at least a superabsorbent polymer material (absorbent particulate polymer material) and optionally a cellulosic material, such as a cellulose, e.g. pulp, or modified cellulose in a absorbent particulate polymer material area.


The absorbent structure 213 also comprises one or more thermoplastic compositions, as described above. The absorbent layer 217 is three dimensional and comprises a first substantially longitudinal channel 226 and a second substantially longitudinal channel 226 that are substantially free of said superabsorbent polymer material. Other materials may be present in said channels 226, as further described below, for example said one or more thermoplastic compositions and/or a fiberized net structure 240.


The absorbent structure 213 and the absorbent layer 217 each have a longitudinal dimension and average length L, e.g. extending in the longitudinal dimension of the structure or layer and a transverse dimension and average width W, e.g. extending in the transverse dimension of the structure or layer. The absorbent structure 213 and the absorbent layer 217 each have a front region, being in use towards the front of the user, back region, being in use towards the back of the user, and therein between a crotch region, each extending the full transverse width of the structure/layer, and each having ⅓ of the average length of the structure/layer.


The absorbent structure 213 and the absorbent layer 217 each have a pair of opposing longitudinal side edges 218 extending in the longitudinal dimension of the structure or layer and a pair of opposing transverse edges 219, e.g. front transverse edge being in use towards the front of a user (wearer), and a back transverse edge being in use towards the back of a user.


The absorbent layer 217 comprises at least a first channel 226 and second channel 226 that are substantially free of (e.g. free of) said superabsorbent polymer particles, said channels 226 extending through the thickness height of the absorbent layer 217. By “substantially free” it is meant that in each of these areas the basis weight of the absorbent material is at least less than 25%, in particular less than 20%, less than 10%, of the average basis weight of the absorbent material in the rest of the absorbent material deposition area of the core. In particular there can be no absorbent material in these areas 226. (It should be understood that, accidentally, a small, negligible amount of superabsorbent polymer particles may be present in the channel, which does not contribute to the overall functionality). When the absorbent layer 217 comprises cellulosic or cellulose, in some embodiments the said first and second channels 226 are also free of such cellulosic/cellulose material.


The first and second channel 226 each extend substantially longitudinally, which means typically that each channel 226 extends more in the longitudinal dimension than in the transverse dimension, and typically at least twice as much in the longitudinal dimension than in the transverse dimension.


Thus, this includes channels 226 that are completely longitudinal and parallel to the longitudinal direction of said absorbent layer 217; and this includes channels 226 that may curve, provided the radius of curvature is typically at least equal (optionally at least 1.5 or at least 2.0 times this average transverse dimension) to the average transverse dimension of the absorbent layer; and this includes channels 226 that are straight but under an angle of (e.g. from 5°) up to 30°, or for example up to 20°, or up to 10° with a line parallel to the longitudinal axis. In some embodiments, there may be no completely or substantially transverse channels present in at least said crotch region, or no such channels at all. Further descriptions of channels, including various dimensions and arrangements, are described in U.S. patent application Ser. Nos. 13/491,642, 13/491,643, 13/491,644, and 13/491,648.


The channels 226 may typically be so-called “permanent” channels 226. By permanent, it is meant that the integrity of the channels 226 is at least partially maintained both in the dry state and in the wet state, including during friction by the wearer thereon.


Permanent channels 226 may be obtained by provision of one or more thermoplastic compositions that immobilize said absorbent material 250, and/or said channels 226, e.g. or said absorbent layer 217, and/or that immobilize said supporting sheet 216 into said channels 226, or part thereof. As shown in FIG. 10, the absorbent core 207 may comprise in particular permanent channels formed by bonding of a first supporting sheet or first substrate 216 and a second supporting sheet or second substrate 216′ through the channels. Typically, glue may be used to bond both supporting sheets throughout the channel, but it is possible to bond via other known means, for example ultrasonic bonding, or heat bonding. The supporting layers can be continuously bonded or intermittently bonded along the channels.


Such channels provide for fast liquid acquisition which reduces risk of leakages. The permanent channels help to avoid saturation of the absorbent layer in the region of fluid discharge (such saturation increases the risk of leakages). Furthermore, whilst decreasing the overall amount of superabsorbent polymer material in the absorbent structure is reduced (by providing channels free of such material), the fluid handling properties of the absorbent structure, or diaper, are improved. Permanent channels also have the further advantage that in the wet state the absorbent material is more restricted to move within the core and remains in its intended application area, thus providing better fit and fluid absorption. This can be demonstrated by comparing the amount of AGM loss in a wet state according to the WAIIT test for a core having two absorbent layers with permanent channels relative to a similar core with the same amount of AGM and glue but having no channels.


In short, the WAIIT test determines the amount of non-immobilized absorbent particulate material amount in the cores in wet conditions. Further information regarding the test can be found in US 2008/0312622 A1. A permanent channel according to the disclosure has a percentage of integrity of at least 20%, or 30%, or 40%, or 50%, or 60, or 70%, or 80%, or 90% following this test.


One or more thermoplastic composition(s) 240 (fiberized net structure and/or a hot melt adhesive) may be present between said supporting sheet 216 and said absorbent layer 217, or parts thereof. For example, an adhesive material may be applied to portions of said supporting sheet 216 that are to coincide with the channels 226, so that in said channels the supporting sheet can be bonded with said adhesive to the walls of the channel, or part thereof or to a further material; and/or the adhesive may be applied to portions of the supporting sheet 216 that are to coincide with the absorbent material 250, to immobilize said material and avoid extensive migration thereof into said channels; the adhesive may be applied over substantially the whole surface area of the supporting sheet 216, e.g. substantially continuously and/or homogeneously. This may for example be a thermoplastic hotmelt adhesive applied by printing, slot coating or spraying.


In addition, or alternatively, the absorbent structure may comprise one or more adhesive materials applied on said absorbent layer or part thereof, that is already supported by said supporting sheet, (herein referred to as “first adhesive material”) e.g. after said absorbent material is combined with/deposited on said supporting sheet to form an absorbent layer. This may for example be a thermoplastic fibrous adhesive. In some embodiments, this may be applied continuously over the absorbent layer, hence over the absorbent material and in the channels, to immobilize the absorbent layer and to optionally also adhere the supporting sheet in said channel, as described above.


It should be understood that the first and second adhesive material may be the same or different type of adhesive, for example as a thermoplastic hotmelt adhesive.


In some embodiments, said one or more adhesive material are at least present in the channels, for example at least said first adhesive material, or both said first and second adhesive material. It may thus be present on the longitudinal walls of the channels (extending the height of the absorbent layer and the length thereof). If the supporting sheet material folds into said channels, or part thereof, e.g. the supporting sheet has undulations into said channels or part thereof, said undulations may be fixed to said walls or part thereof, to ensure the channels are maintained (at least partially) during use.


The absorbent structure may comprise two or more than two channels, for example at least 4, or at least 5 or at least 6. Some or all of these may be substantially parallel to one another, for example being all straight and completely longitudinally, and/or two or more or all may be mirror images of one another in the longitudinal axis, or two or more may be curved or angled and for example mirror images of one another in the longitudinal axis, and two or more may be differently curved or straight, and for example mirror images of one another in the longitudinal axis.


The absorbent structure typically comprises one or more further material(s) (e.g. a second substrate) to cover the absorbent layer, herein referred to as a second substrate; for the avoidance of any doubt, this is not a layer consisting of an adhesive material, however the second substrate may be a layer comprising adhesive, for example on the surface that is to contact the absorbent layer of the absorbent structure. Thus, the second substrate may comprise on the surface to be placed adjacent said absorbent layer of the absorbent structure, an adhesive material. The resulting structure is herein referred to as “absorbent core 207”.


This second substrate may be a further absorbent structure, with a second absorbent layer and a second supporting sheet 216′, so that both absorbent layers are sandwiched between said supporting sheets 216; 216′. The second absorbent structure may be identical to the first absorbent structure, or they may both be absorbent structure with channels 226; 226′, but they may be different, for example having different channels, different number of channels, different adhesive, different adhesive application or combinations thereof.


In some embodiments, the second substrate may be a part of the supporting sheet 216, which is folded over the absorbent layer 217 and then sealed along the peripheral edges, to enclose the absorbent layer 217.


In some embodiments, the further substrate is a further supporting sheet, i.e. the absorbent structure 213 is covered with a further supporting sheet 216′, said absorbent layer then being sandwiched between the two supporting sheets.


The supporting sheet of the first structure and/or the second supporting sheet of the acquisition material layer may fold into the channels of the first absorbent structure and/or optionally into the channels of the acquisition material layer, if present, or part of these channels. The one or more adhesive material(s) may be at least present in the channels, or part thereof, and the supporting sheets may be adhered to one another in said channels by one or more of these adhesive material(s). Another second adhesive may be present between the second supporting sheet and the acquisition material layer. Another adhesive (not represented) may be placed between the acquisition material layer and the absorbent layer, in addition to the thermoplastic composition 240, to improve better adhesion of both layers.


In any of these cases, the second substrate can then be sealed to the supporting sheet along the peripheral edges thereof, to enclose the absorbent layer(s).


In any of these cases the supporting sheet or acquisition layer/sheet may fold into (i.e. undulate into) said channels or part thereof, as shown in FIG. 10.


It may be adhered to the supporting sheet of the absorbent structure of the disclosure in said channels, e.g. by an adhesive material, as described herein, ie., the substrate 216 (nonwoven dusting layer or second substrate) may be laminated to substrate 216′ (core cover or first substrate) or visa versa. Alternatively, or in addition, it may be adhered to the walls of the channels or part thereof.


In some embodiments the absorbent structure comprises such a further material overlaying said absorbent layer, and a pressure means is applied selectively to said supporting sheet and/or to said further material, in those parts that coincide with said channels, to pressurize said supporting sheet and/or said further material into said channels of the absorbent structure and/or into the channels of a further (second) absorbent structure if present, to aid formulation of said undulations and/or to aid adhering of the further material and said supporting sheet to one another in said channel, if an adhesive material is present as described herein.


Further various embodiments of channels in an absorbent structure or core may be found in U.S. Ser. No. 13/491,642. Processes for making absorbent cores with channels may be such as those described in U.S. Ser. Nos. 14/615,467 and 14/615,456.


In one of the embodiment herein, the supporting sheet 216 has undulations that fold (undulate) into said first and second channels 226, and optionally in to said further channel(s), of part thereof. For example the undulations may extend over about the full longitudinal dimension of the channel; they may for example extend to complete average height of the absorbent layer 217/channel, or for example only up to 75% thereof, or up to 50% of the average height of the absorbent layer 217/channel. This aids immobilization of the absorbent material 250 adjacent said channels 226 and said channels 226 of said layers.


The undulations may be adhered with said one or more adhesive material, e.g. said second adhesive material, to said walls of said channels 226. The supporting sheet 216 may alternatively, or in addition, be adhered in said channels 226 to said further material, e.g. second supporting sheet 216, describe herein above, e.g. with said first and/or second adhesive.


The absorbent structure may comprise one or more adhesive material. In some embodiments, it comprises a first adhesive material and/or a second adhesive material, as described above, and in the manner described above.


The absorbent core herein may comprise a further second absorbent structure that may comprise one or more adhesive materials.


Storage Modulus (G′)


Absorbent structures of the present invention comprise adhesives and/or fiberized net structures that have relatively high G′ values.


An exemplary thermoplastic composition 68 and 76 may have a storage modulus G′ measured at 21° C. of at least about 1.2×106 Pa as measured by the test method detailed below. It is unexpected that the thermoplastic compositions of the present invention have high G′ values but are not too stiff to work as a fiberized net structure or a hot melt adhesive in absorbent articles. An adhesive with a relatively high G′, such as greater than 1.2×106 Pa, means a stiffer adhesive. The thermoplastic compositions in the present invention may be less dense, thus providing more volume at the same basis weight. This is particularly true for compositions comprising polyolefins.


The fiberized net structure may consist of continuous extruded polymer/adhesive strands, which create a net structure with irregular strand or filament thickness or with irregular open areas (pores or maximum strand to strand distance). Continuous polymer/adhesive strands may overlap and form strand crossings or overlaps with different diameters. The applied fiberized net structure may build a three-dimensional net in the absorbent core as described herein. At equivalent basis weights, a fiberized net structure with thicker fibers may be more open and irregular than a fiberized net structure with thinner fibers. It is believed that the thicker fibers can maintain heat in the fiber longer, which can allow the fiberized net structure to wet and penetrate a nonwoven better, allowing for bond strength. If, for example, the core has channels and the channels are more secure, that is, are permanent channels, the more open structure of the fiberized net structure allows the AGM or superabsorbent polymer material to adjust or move within its confined area.









TABLE 1







G′, viscosity and ring & ball softening point data






















Viscosity @










[mPas],










(spindel 27,










20 rpm; 20 min










preheating, 10










min stirring)










OR










**Viscosity @





DMA
DMA
DMA
DMA

T = 150° C.




Tg in
G′@21° C.
G′@35° C.
G′@60° C.
G′@90° C.

[mPas],




[° C.]
[Pa]
[Pa]
[Pa]
[Pa]
Viscosity
(spindel 27,
Ring &



(Fre-
(Fre-
(Fre-
(Fre-
(Fre-
@
20 rpm; 20
Ball



quency
quency
quency
quency
quency
T =
min
Softening


Glue
6.28
6.28
6.28
6.28
6.28
175° C.
preheating, 10
point


Code
rad/s)
rad/s)
rad/s)
rad/s)
rad/s)
[mPas]
min stirring)
[° C.]


















PO1
13
7.80 × 106
3.52 × 106
1.40 × 106
0.25 × 106
2,620
5000
109


PO4
N/A
N/A
N/A
N/A
N/A
3,010
5700
109


PO3
 2
5.24 × 106
2.85 × 106
1.02 × 106
0.21 × 106
3,500
7000 **
81


PO2
 5
6.35 × 106
3.33 × 106
0.94 × 106
  5 × 103
3,800
5500
~82


PO5
 6
3.63 × 106
1.86 × 106
0.55 × 106
1.41 × 104
4,600
6700
~84


PO6
N/A
N/A
N/A
N/A
N/A
2,500
3800 **
~90









In Table 1, Storage Modulus G′ at 21° C. is reflected to describe the thermoplastic hotmelt properties of core adhesives or fiberized net structures at lab measurement conditions of T=21° C. for PO1, PO2, PO5, and PO3 as described in table 2, as well as for PO4 and PO6, which are polyolefin-based materials, as described herein. Storage Modulus G′ at 35° C. is reflected to describe the thermoplastic hotmelt properties during hygiene product usage. And Storage Modulus G′ at 60° C. and 90° C. are reflected to describe the thermoplastic hotmelt properties during hygiene product storage conditions, i.e. environment of global climate zones or transportation.


Thermoplastic compositions with a G′ at 21° C. and 6.28 rad/s greater than about 1.2×106 Pa will likely have a high G′ at higher temperatures, such as 60° C. and/or 90° C. up to the melting point. These high G′ levels at higher temperatures present processing challenges in contact and/or contactless applications, i.e. slot coating, summit, curtain coater, spiral, omega, etc., due to, for example, higher viscosities. However, if these thermoplastic compositions, such as thermoplastic adhesive materials, properly wet and penetrate into the primary and secondary substrates, they can create mechanical bonding via a greater than 300° or even 360° flow around sufficient individual substrate fibers, and build up their final internal molecule structure and strength. They can yield strong bonds with exceptional bonding hang times.


The storage modulus measured at 60° C. and 90° C. may be a measure for the form stability of the thermoplastic adhesive material at elevated ambient temperatures. This value is particularly important if the absorbent product is used in a hot climate where the thermoplastic adhesive material would lose its integrity if the storage modulus G′ at 60° C. and 90° C. is not sufficiently high.

















TABLE 2





option
Unit
1
2
3
4
5
6
7







Fiberized net structure

PO1
PO1
PO1
PO1
PO2
PO5
PO1


composition










Auxiliary adhesive

PO1
PO1
PO1
PO3
PO2
PO5
PO1


Total weight of
[g/m2]
4/3 = 7
4/3 = 7
4/3 = 7
4/3 = 7
4/3 = 7
4/3 = 7
2/2 = 4


fiberized net structure










composition










First substrate/Second










substrate










Total weight of
[g/m2]
15
9
7
15
15
15
12


fiberized net structure










composition + auxiliary










adhesive










Total weight of front
[g/m2]
35
19
12
35
35
35
32


or back end seal










adhesive










Wet immobilization










Room temperature,
[%]
27
27
25
29
50
51
27


initial










60 C./6 hour aged
[%]
35
32
34
30
31
48
41


Core end seal hang










times










Back end seal/Front










end seal










Normalized initial core
[min]
1717/3327
434/864
 25/138
166/109
1172/1172
 539/1162
1526/1342


end seal hang time

>480
>60
<200
<200
>720
>480
>720


(initial~2 hrs after










production at room










temperature)










Normalized final core
[min]
1346*/1346*
770/421
30/64
215/157
1315/1069
1256/1256
1285/1285


end seal hang time

>480
>250
<100
<200
>720
>480
>720


(Final −60 C./6 hour










aged)










Normalized core end
[min]
1020*/1020*
 996/1002
N/A (not
494/355
N/A
N/A
N/A


seal hang time at

>720
>480
available)
>250





50 C./2 weeks aged










Channel hang times
[min]









(2 channels; left/right)










Normalized initial
[min]
1449/1057
1008/1321
645/750
294/306
1020/1020
1377/1377
1738/1738


channel hang time

>480
>70
>70
<300
>480
>720
>720


(initial~2 hrs after










production at room










temperature)










Normalized final
[min]
997*/997*
974*/974 
848/954
482/583
1119/1119
1172/1172
1199/1199


channel hang time

>800
>800
>500
<500
>800
>800
>1000


(final −60 C./6 hours










aged)










Normalized channel
[min]
1002/1002
 1243/1377*
 1354/1409*
908/908
N/A
N/A
N/A


hang time at 50 C./2

>1000
>1000
>600
>600





weeks aged










Wet normalized initial
[min]
1119*/1119*
N/A
1082/857 
1136/628 
952/952
952/952
941/941


channel hang time

>1000

>600
>1000
>600
>900
>900









In table 2, absorbent cores or structures were made as described herein, using 10 gsm hydrophilic nonwoven core cover material (first substrate) and a 10 gsm hydrophobic nonwoven dusting layer (second substrate), and absorbent material as described herein. Core adhesives and/or fiberized net structures used may be a polyolefin-based material as described herein. It may be polypropylene-based, or NW1414 available from the H.B. Fuller Company (PO1), or a blend of polyolefin polymers compounded with one or more hydrocarbon tackifying resins and plasticizers (PO2 or PO5), or a material such as Henkel DM3800 (PO3). The table displays the wet immobilization of each core (initial and aged), the core end seal hang times, and channel hang times (dry and wet), using the test methods described herein.


The normalized initial core end seal hang time of the present invention may be at least about 60 minutes, in some cases at least about 480 minutes, at least about 600 minutes, or at least about 720 minutes. The normalized final core end seal hang time may be at least about 250 minutes, in some cases at least about 480 minutes, or at least about 720 minutes. The normalized initial channel hang time may be at least about 70 minutes, in some cases at least about 480 minutes, or at least about 720 minutes. The normalized final channel hang time may be at least about 800 minutes, in some case at least about 1000 minutes. A channel hang time of at least about 480 minutes may be considered a permanent channel bond.


Test Methods


1. Bonded Nonwovens Hang Time (Core End Seal and Channel Hang Time) Purpose


Cores utilizing perimeter sealing of core contents to prevent the core materials from migrating to contact babies' skin must have seals strong enough to withstand the swelling pressures of the core materials and the pressures exerted from baby. This method determines the strength of the seal by measuring how long the perimeter seal can withstand a constantly applied force.


[For Channel hang time only: The purpose of the printed channel specific Normalized Core Hang Time (=>Normalized Channel Core Hang Time=NChHT) is to determine the bond strength of the AGM free channels. The bond strength of printed AGM free channels in AFF (air felt free or cellulose free) laminates has an impact on diaper performance as a too weak bonding might result in inferior core integrity and less wet fit. This method determines the strength of the substrate to substrate bond by measuring how long the bonding is able to withstand a constantly applied force (static peel force).


Scope


Applicable for all diapers or absorbent cores having fully encapsulated cores with a core endflap (core front and back end seals). Diapers or cores may be air felt free. Core may have AGM free channels. Channel specific Normalized Core Hang Time (or Normalized channel hang time, NChHT) applicable for cores with AGM free channels showing the following parameters: minimum distance between channels at the measuring point of 10 mm and a minimum channel free distance at the measuring point of 20 mm to the core bag edge to ensure a proper clamping of the nonwoven into the clamps.


Equipment

    • Clips . . . Medium Binder Clips 25 mm Capacity #72050. ACCO World Product. Other suppliers: Yihai Products (#Y10003), Universal Office Products (#10210), Diamond (#977114), or equivalent
    • Clips . . . Large Binder Clips 2 inch (50.8 mm). ACCO World Product. Other suppliers: Yihai Products, Universal Office Products, Diamond, or equivalent
    • Test Stand . . . RT-10 room temperature (Shear Tester) w/timer. ChemInstruments, 510 Commercial Drive, Fairfield Ohio 45014-9797, USA; or equivalent. (See FIG. 1) Must be placed in a vibration free area
    • Weight . . . Endseal: Normalized Core Hang Time (NCHT): 0.200 g (+/−1 g) TW200 Shear Tester Weight with hook on top (to attach to the clip). ChemInstruments, 510 Commercial Drive, Fairfield Ohio 45014-9797, USA; or equivalent;
      • Channel specific Normalized Core Hang Time (NChHT): 150 g (+/−1 g) TW150 Shear Tester Weight with hook on top (to attach to the clip). ChemInstruments, 510 Commercial Drive, Fairfield Ohio 45014-9797, USA; or equivalent
    • Cutting Tools . . . Scissors and a 25.4 mm (1 inch) cutter (convenient source, (see FIG. 2), e.g. JDC Precision Sample Cutter made by Thwings-Albert Instrument Company Philadelphia USA, cat#99, cut width 25.4 mm, accuracy at least +/−0.1 mm)
    • Metal Ruler Traceable to NIST, DIN, JIS or other comparable National Standard, graduated in mm, longer than the length to be measured
    • Marker Permanent Fine-tip waterproof marker with no more than 2 mm pen width from convenient source
    • Sticks Optional: Sticks from a convenient source, min. length=sample with, stick weight <0.1 g
    • Temperature Testo-temperature device (or equivalent) to measure temperature at sample height.
    • Measurement With an accuracy of ±0.5° C. and ±2.5% RH in the range between −10° C. and +50° C.
    • Device Testo GmbH & Co., Postbox 1140, D-79849 Lenzkirch (www.testo.com) Article number for Testo 625: 0563 6251.


Sample preparation: For normalized initial core end seal hang time and normalized initial channel hang time, test at room temperature about 2 hours after production. For normalized final core end seal hang time and normalized final channel hang time, test aged sample, meaning after 6 hours at 60° C.

    • 1. Open the diaper topsheet side up and place it flat onto a table. For pull-ups open side seams and remove waistbands. Hold the diaper with one hand and carefully remove Ears, Leg Elastics and BLCs along the BLC continuous bond (outer edge) on both Operator Side (OS) and Drive Side (DS) (see FIG. 3).
    • 2. Gently remove topsheet and acquisition system without damaging the core endflap gluing.


Back/Front edge bonding Specific Sample preparation:

    • 1. If the Edge of the Core Encapsulation Material is Folded Under the Core, Unfold the endflap. If this is not possible without tearing any core materials, discard the sample and pull another sample.
    • 2. The center of the core will be tested. Lay the pad onto the 25.4 mm cutter centered over the center of the core. Provide sufficient length on the cutter to ensure sufficient length (at least 65 mm) and cut the sample. Label the sample either “UTE”/Front or “TE”/Back with the marker
    • 3. After cut is made by the 25.4 mm cutter, use the scissors to cut sample from the pad. Ensure that the sample measures 70 mm+/−5 mm. If the sample is too long, use scissors to cut off the necessary amount of material at the open end of the sample (area with core material). If the sample is too short, discard the sample and pull another sample.
    • 4. Put each sample under the UV-light to identify the AGM edge and mark a line along the AGM edge at TE/Diaper Front and UTE/Diaper Back.
    • 5. Gently open samples like a book up to the marked line and gently remove core material that is between Nonwoven Core Cover (NWCC) and Nonwoven Dusting Layer (NWDL).
    • 6. Optional Step: Use marker to mark the edge of glued area. This should follow the shape of where the NWCC and NWDL are glued together. (line may not be straight).


Side Seal Specific Sample Preparation:

    • 1. Inspect the core side seal glue at Drive Side (DS) and Operator Side (OS) for “open” areas, such as open channels, because of missing glue, with free access to the core materials (AGM)
      • a) If no open areas are present proceed with step 2.
      • b) In case of “open” areas skip further testing and report a Failure.
    • 2. Label the cut samples appropriate, e.g. DS.
    • 3. Lay the pad on the 25.4 mm cutter approximately in the middle of the crotch area. If you choose to cut and measure at a different position, note down where, e.g. OS-TE or DS-UTE.
    • 4. Cut the pad in cross machine direction with the 25.4 mm cutter, use the scissors to cut sample in half
    • 5. Optional: Measure the width of the sample at the gluing on the NWCC side. The width has to be 25±2 mm.
    • 6. Put each sample under the UV-light to identify the AGM edge and mark a line along the AGM edge
    • 7. Open samples like a book up to the marked inner line and gently remove core material that is between Nonwoven Core Cover and Nonwoven Dusting Layer.


Channel Specific Sample Preparation:

    • 1. Label the cut samples appropriate, e.g. DS/OS (driveside/operator side, or left/right)
    • 2. Put each sample under the UV-light to identify the beginning and the end of the channels in the front and in the back and mark a line in cross direction.
    • 3. Define the center of the channel area by using a ruler and mark as the centerline.
    • 4. Lay the pad on the 25.4 mm cutter and align to the centerline cutting the sample out of the TE area.
    • 5. Cut the pad in cross direction and optionally measure the width of cut sample (target=25±2 mm).
    • 6. Use the scissors to cut the sample that there are at least a 5 mm channel free flap at the inner side (cutting in machine direction) to get an OS and a DS sample. All samples will be tested/opened from the outside of the core.
    • 7. Optional: Put each sample under the UV-light to identify the channel AGM edge and mark a line along the AGM edges of the channel.
    • 8. Open samples from the outside of the core like a book up to the beginning of the printed channel (respectively the first marked line if you have marked it) and gently remove core material that is between Nonwoven Core Cover and Nonwoven Dusting Layer.


Test Procedure:


Set up the tester in an area where the temperature is constant and ensure that the tester has at least 2 h time to reach the temperature of the environment. The same applies to the samples which usually will have the same temperature as the environment and can then be measured right away. However if this is not the case one needs to wait at least 2 h to reach the temperature of the environment prior to the start of the measurement.

    • 1. The equipment may be operated between 17.5° C.-28.5° C. for AFF products.
    • 2. Roll the topsheet side part of the sample around a stick, which is not heavier than 0.2 g (AGM to the inside) and staple it for fixation. You may cut the stick with scissors if it is longer than the sample width. The stick ensures that the samples do not slip from the clamp.
    • 3. Clamp the backsheet side/dusting layer side of the sample strip into the jaw of the large binder clip hanging at the top of the tester bar.
    • 4. Clamp the other binder clip (medium) to the nonwoven core cover.
    • 5. Once all test samples have been prepared, (can setup multiple tests at one time) begin picking up the weights from the tester switch (this will begin the timer) and slowly attach the 200 g weights for End flap or Side Seal or 150 g for AGM free channels to the lower binder clips and lower slowly until the weights hangs freely on the test strip.
    • 6. As soon as the weight is released, push the timer reset button for that sample to begin the timer at 0 minutes. NOTE: The timer must be checked to ensure that it has begun counting from 0.0 min. The operator should look for the number to change from 0.0 min to 0.1 min.
    • 7. Repeat procedure above for each sample prepared.
    • 8. Measure and note down the temperature Ta of the tester area at the sample height to the nearest 0.1° C. at the start of the measurement. The allowed temperature range is 17.5° C.-28.5° C. Measure the temperature at the beginning and at the end of the measurement. Ta is the average temperature between the two.
    • 9. The timers will stop automatically once the sample weight has fallen. This is the Hang time for that sample.


      Calculation:


A) Temperature Adjustment to 23° C. (Normalization). Use the following calculation to adjust for temperatures




embedded image




    • t23° C.: Corrected hang time in [min] at T=23 [° C.]

    • ta: actual hang time in [min] at the temperature Ta

    • Ta: temperature [° C.] of the test equipment and the sample during the measurement





The result actual hang time and the actual temperature are input of ta and Ta using the above equation t23° C..


Reporting:


Measure and write down the following values:

    • The actual temperature Ta to the nearest 0.1° C.
    • The actual hang time ta to the nearest 0.1 min
    • The transformed hang time (t23) to the nearest 0.1 (normalized hang time).


Wet normalized initial channel hang time is calculated by the normalized initial channel hang time test method, except sample is first dipped in 200 ml 0.9% NaCl @ T=21° C. for 30 minutes and then tested.


2. Dynamic Mechanical Analysis (DMA) to Determine G′ for Thermoplastic Compositions


Temperature Sweep—Principle


A dynamic mechanical analysis (DMA) is done. An oscillatory shear stress is continuously applied to the adhesive resulting in an oscillatory strain at constant amplitude, which is small enough to ensure fully recoverable deformation, whereas the temperature is increased (or decreased) in discrete steps. The relationship between the sinusoidal stress applied and the resulting strain response as well as the shift between both measures on the time axis are measured. The results are quantified by Storage Modulus [G′], Loss Modulus [G″] and Loss Factor [tan δ] of the adhesive in dependence of temperature.


Instrument:


TA Instruments DHR-3


Procedure:






    • 1. Use a rheometer with 20 mm plate/plate geometry consisting of an upper steel plate (diameter: 20 mm) and a lower peltier or heating plate enabling temperature control. The rheometer needs to be capable of applying temperatures from 0° C. to 150° C.

    • 2. Calibrate Rheometer according to instrument manual.

    • 3. Cut off and weigh a piece of adhesive of 0.37 g+/−0.01 g and place it onto the centre of the Peltier or heating plate of the rheometer and set the temperature to 150° C.

    • 4. After the adhesive is molten, slowly lower the upper plate to the geometry gap of 1000 micrometer. The velocity of the rheometer head must not exceed 1000 micrometer per second in order to achieve good contact between the adhesive and the upper plate without damaging the adhesive sample.

    • 5. Cover the geometry with the geometry cover for 2 minutes so that the upper plate can heat up and the adhesive gets completely molten.

    • 6. Remove the cover and rotate the upper plate manually to distribute the adhesive evenly between the upper plate and the Peltier or heating plate and to ensure full contact of the adhesive to the upper plate.

    • 7. Afterwards cover the geometry with the geometry cover for another 2 minutes.

    • 8. Remove the geometry cover and check whether the adhesive is distributed evenly.

    • 9. Perform a pre-shearing at a shear rate of 2.5 seconds-1 for 1 minute to condition the adhesive.

    • 10. After pre-shearing keep the temperature at 150° C. for 1 minute to let the adhesive settle and recover from pre-shearing.

    • 11. Set Axial force control to 0.0 N with a sensitivity +/−0.1 N

    • 12. Cool down to 25° C. and wait for 1 hour

    • 13. Cool down to 10° C. and wait for 10 minutes

    • 14. Start Temperature Sweep from 10 to 110° C. with temperature step of 2° C.
      • Equilibrate at each temperature step for 60 s.
      • Strain Amplitude: 0.03%
      • Angular frequency: 6.28319 rad/s


        Calculation/Reporting


        From the temperature sweep report the following parameters:

    • Glass transition temperature in ° C.

    • (The glass transition temperature is defined at the peak maximum of the tan δ value

    • Cross-over temperature in ° C.

    • (The cross-over-temperature is found at the end of the rubber-plateau towards higher temperatures indicating the beginning of the terminal zone. At the cross-over-temperature storage- and loss modulus equal and tan δ value is 1)

    • Storage modulus at 21° C., 35° C., 60° C. and 90° C. in Pascal.





3. Wet Immobilization Test


Equipment






    • Graduated Cylinder

    • Stop watch (±0.1 sec)

    • Scissors

    • Light Box

    • Pen

    • Test solution: 0.90% saline solution at 23+/−2° C.

    • Metal ruler traceable to NIST, DIN, JIS or other comparable National Standard

    • PVC/metal dishes with a flat surface inside and a minimum length of the core bag length (n) to be measured and a maximum length n+30 mm, width of 105±5 mm, height of 30-80 mm or equivalent

    • Electronic Force Gauge (Range 0 to 50 Kg)

    • Wet Immobilization Impact Tester Equipment (WAIIT), Design package number: BM-00112.59500-R01 available from T.M.G. Technisches Buero Manfred Gruna


      Facilities:


      Standard laboratory conditions, temperature: 23° C.±2° C., relative humidity: <55%


      Sample Preparation

    • 1. Open the product, topsheet side up.

    • 2. Unfold the diaper and cut the cuff elastics approximately every 2.5 cm to avoid chassis tension.

    • 3. For pull-up products open the side seams and remove the waistbands.

    • 4. Lay the core bag flat and rectangular topsheet side up onto the light box surface without any folds.

    • 5. Switch on the light box to clearly identify the absorbent core outer edges.

    • 6. With a ruler, draw a line at the front and back absorbent core outer edges.

    • 7. Measure the distance (A), between the two markers and divide the value by 2, this will be calculated distance (B).

    • 8. Measure the calculated distance (B) from front marker towards the middle of the core bag and mark it. At this marker draw a line in the cross direction.


      Test Procedure


      WAIIT Calibration:

    • 1. Make sure that the sliding board is in the lower position. Open the front door of the WAIIT tester and connect the force gauge hook to the upper sample clamp of the WAIIT. Make sure that the clamp is closed before connecting the spring-balance.

    • 2. Use both hands on the spring-balance to lift continuously and as slowly as possible up the sliding board towards the upper position. Record the average value (m1) during the execution to the nearest 0.02 kg.

    • 3. Guide down the sliding board as slowly as possible to the lower position and record the average value (m2) read off during execution to the nearest 0.02 kg.

    • 4. Calculate and report the delta of m1-m2 to the nearest 0.01 kg. If the delta is 0.6 kg±0.3 kg continue measurement. Otherwise, an adjustment of the sliding board is necessary. Make sure that the sliding board is in lower position and check the sliding path for any contamination or damage. Check if the position of the sliding board to the sliding path is correctly adjusted by shaking the board. For easy gliding some clearance is needed. If not present, readjust the system.


      WAIIT Test Settings:

    • Drop height is 50 cm.

    • Diaper load (lD) is 73% of the core capacity (cc); lD=0.73×cc.

    • Core capacity (cc) is calculated as: cc=mSAP×SAPGV, where mSAP is the mass of superabsorbent polymer (SAP) present in the diaper and SAPGV is the free swelling capacity of the superabsorbent polymer. Free swelling capacity of the superabsorbent polymer is determined with the method described in WO 2006/062258. The mass of the superabsorbent polymer present in the diaper is the average mass present in ten products.


      Test Execution:

    • 1. Reset the balance to zero (tare), put the dry core bag on the balance, weigh and report it to the nearest 0.1 g.

    • 2. Measure the appropriate volume Saline (0.9% NaCl in deionized water) with the graduated cylinder.

    • 3. Lay the core bag, topsheet side up, flat into the PVC dish. Pour the saline evenly over the core bag.

    • 4. Take the PVC dish and hold it slanting in different directions, to allow any free liquid to be absorbed. Products with poly-backsheet need to be turned after a minimum waiting time of 2 minutes so that liquid under the backsheet can be absorbed. Wait for 10 minutes (+/−1 minute) to allow all saline to be absorbed. Some drops may retain in the PVC dish. Use only the defined PVC/metal dish to guarantee homogenous liquid distribution and less retained liquid.

    • 5. Reset the balance to zero (tare), put the wet core bag on the balance. Weigh and report it to the nearest 0.1 g. Fold the core bag just once to make it fit on the balance. Check to see if the wet core bag weight is out of limit (defined as “dry core bag weight+diaper load±4 ml”). For example, 12 g dry core bag weight+150 ml load=162 g wet core bag weight. If the actual wet weight on the scale is between 158 g and 166 g, the pad can be used for shaking. Otherwise scrap the pad and use the next one.

    • 6. Take the loaded core bag and cut the pad along the marked line in the cross direction.

    • 7. Put the back of the wet core bag onto the balance (m1). Weigh and report it to the nearest 0.1 g.

    • 8. Take the wet core and clamp the end seal side in the top clamp of the sample holder of the WAIIT (open end of the core oriented down). Next, clamp both sides of the core with the side clamps of the sample holder making sure that the product is fixed to the sample holder along the whole product length. Make sure not to clamp the absorbent core, only the nonwoven; for some products this means securing the product with only the barrier leg cuff.

    • 9. Lift up the sliding board to the upper position by using both hands until the board is engaged.

    • 10. Close the safety front door and release the slide blade.

    • 11. Reset the balance to zero (tare), take the tested core bag out of the WAIIT and put it on the balance (m2). Report the weight to the nearest 0.1 g.

    • 12. Repeat steps 7 to 11 with front of the wet core bag.


      Reporting:

    • 1. Record the dry core bag weight to the nearest 0.1 g.

    • 2. Record the wet weight before (m1 front/back) and after (m2 front/back) testing, both to the nearest 0.1 g.

    • 3. Calculate and report the average weight loss (Δm) to the nearest 0.1 g: Δm=(m1front+m1back)−(m2front+m2back)

    • 4. Calculate and report the weight loss in percent to the nearest 1%, (Δmrel): (Δmrel)=(((m1front+m1back)−(m2front+m2back))×100)/(m1front+m1back)

    • 5. Calculate and report Wet Immobilization (WI) as: WI=100%−Δmrel





The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”


Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. An absorbent structure for an absorbent article, comprising a first substrate and an absorbent layer supported thereon; said absorbent layer comprising an absorbent material comprising a superabsorbent polymer material; wherein said absorbent structure comprises a fiberized net structure to at least partially immobilize said absorbent layer onto said first substrate;whereby said fiberized net structure has a storage modulus (G′) at 21° C. of greater than about 1.2×106 Pa to 7.8×106.
  • 2. The absorbent structure of claim 1, wherein said absorbent layer comprises at least two channels, said channels being substantially free of superabsorbent polymer material.
  • 3. The absorbent structure of claim 1, wherein the structure is substantially cellulose-free.
  • 4. The absorbent structure of claim 1, further comprising a hot melt adhesive.
  • 5. The absorbent structure of claim 4, wherein the hot melt adhesive has a storage modulus (G′) at 21° C. of greater than about 1.2×106 Pa to 7.8×106.
  • 6. The absorbent structure of claim 4, wherein the fiberized net structure and/or the hot melt adhesive comprise a polyolefin.
  • 7. The absorbent structure of claim 1, wherein the fiberized net structure is laid down onto the absorbent material such that the fiberized net structure is at least partially in contact with the absorbent material, the first substrate, and the absorbent layer.
  • 8. The absorbent structure of claim 1, wherein the absorbent structure provides an absorbent material loss of no more than about 40%, according to the Wet Immobilization Test.
  • 9. The absorbent structure of claim 1, wherein the fiberized net structure is a hot melt adhesive.
  • 10. The absorbent structure of claim 1, wherein the first substrate is a nonwoven core cover.
  • 11. The absorbent structure of claim 10, further comprising a second substrate.
  • 12. The absorbent structure of claim 11, wherein the second substrate is at least partially bonded to the first substrate and wherein the second substrate is a nonwoven dusting layer.
  • 13. The absorbent structure of claim 1, wherein an absorbent article comprises the absorbent structure.
  • 14. The absorbent structure of claim 13, wherein the article further comprises a topsheet and a backsheet, and wherein the absorbent structure is disposed between the topsheet and the backsheet.
  • 15. The absorbent structure of claim 1, wherein the fiberized net structure has a storage modulus (G′) at 21° C. of greater than about 3.0×106 Pa to 7.8×106.
  • 16. The absorbent structure of claim 1, wherein the fiberized net structure has a storage modulus (G′) at 21° C. of greater than about 6.0×106 Pa to 7.8×106.
  • 17. The absorbent structure of claim 1, wherein said fiberized net structure has a storage modulus (G′) at 21° C. of from 3.63×106 to 7.8×106.
  • 18. An absorbent structure for an absorbent article, comprising a first substrate and an absorbent layer supported thereon; said absorbent layer comprising an absorbent material comprising a superabsorbent polymer material; wherein said absorbent structure comprises an adhesive to at least partially immobilize said absorbent layer onto said first substrate;whereby said adhesive has a storage modulus (G′) at 21° C. of greater than about 1.2×106 Pa to 7.8×106.
  • 19. The absorbent structure of claim 18, wherein said absorbent layer comprises at least two channels, said channels being substantially free of superabsorbent polymer material.
  • 20. The absorbent structure of claim 18, wherein the structure is substantially cellulose-free.
  • 21. The absorbent structure of claim 18, further comprising a second adhesive.
  • 22. The absorbent structure of claim 21, wherein the second adhesive has a storage modulus (G′) at 21° C. of greater than about 1.2×106 Pa to 7.8×106.
  • 23. The absorbent structure of claim 18, wherein the first substrate is a nonwoven core cover.
  • 24. The absorbent structure of claim 23, further comprising a second substrate at least partially bonded to the first substrate, and wherein the second substrate is a nonwoven dusting layer.
  • 25. The absorbent structure of claim 18, wherein an absorbent article comprises the absorbent structure, wherein the article further comprises a topsheet and a backsheet, and wherein the absorbent structure is disposed between the topsheet and the backsheet.
  • 26. The absorbent structure of claim 18, wherein said adhesive has a storage modulus (G′) at 21° C. of from 3.63×106 to 7.8×106.
US Referenced Citations (1079)
Number Name Date Kind
1733997 Marr Oct 1929 A
1734499 Marinsky Nov 1929 A
1989283 Limacher Jan 1935 A
2058509 Rose Oct 1936 A
2271676 Bjornbak Feb 1942 A
2450789 Frieman Oct 1948 A
2508811 Best et al. May 1950 A
2568910 Condylis Sep 1951 A
2570796 Gross Oct 1951 A
2570963 Mesmer Oct 1951 A
2583553 Faure Jan 1952 A
2705957 Mauro Apr 1955 A
2788003 Morin Apr 1957 A
2788786 Dexter Apr 1957 A
2798489 Behrman Jul 1957 A
2807263 Newton Sep 1957 A
2830589 Doner Apr 1958 A
2890700 Lönberg-Holm Jun 1959 A
2890701 Weinman Jun 1959 A
2898912 Adams Aug 1959 A
2931361 Sostsrin Apr 1960 A
2977957 Clyne Apr 1961 A
3071138 Garcia Jan 1963 A
3180335 Duncan et al. Apr 1965 A
3207158 Yoshitake et al. Sep 1965 A
3227160 Joy Jan 1966 A
3386442 Sabee Jun 1968 A
3561446 Jones Feb 1971 A
3572342 Lindquist et al. Mar 1971 A
3572432 Burton Mar 1971 A
3575174 Mogor Apr 1971 A
3578155 Small et al. May 1971 A
3606887 Roeder Sep 1971 A
3610244 Jones Oct 1971 A
3618608 Brink Nov 1971 A
3642001 Sabee Feb 1972 A
3653381 Warnken Apr 1972 A
3670731 Harmon Jun 1972 A
3688767 Goldstein Sep 1972 A
3710797 Marsan Jan 1973 A
3731688 Litt et al. May 1973 A
3756878 Willot Sep 1973 A
3774241 Zerkle Nov 1973 A
3776233 Schaar Dec 1973 A
3814100 Nystrand et al. Jun 1974 A
3828784 Sabee Oct 1974 A
3840418 Sabee Oct 1974 A
3847702 Jones Nov 1974 A
3848594 Buell Nov 1974 A
3848595 Endres Nov 1974 A
3848597 Endres Nov 1974 A
3860003 Buell Jan 1975 A
3863637 MacDonald et al. Feb 1975 A
3882870 Hathaway May 1975 A
3884234 Taylor May 1975 A
3900032 Heurlen Aug 1975 A
3911173 Sprague, Jr. Oct 1975 A
3920017 Karami Nov 1975 A
3924626 Lee et al. Dec 1975 A
3926189 Taylor Dec 1975 A
3929134 Karami Dec 1975 A
3929135 Thompson Dec 1975 A
3930501 Schaar Jan 1976 A
3938523 Gilliland et al. Feb 1976 A
3968799 Schrading Jul 1976 A
3978861 Schaar Sep 1976 A
3981306 Krusko Sep 1976 A
3987794 Schaar Oct 1976 A
3995637 Schaar Dec 1976 A
3995640 Schaar Dec 1976 A
3999547 Hernandez Dec 1976 A
4014338 Schaar Mar 1977 A
4034760 Amirsakis Jul 1977 A
4055180 Karami Oct 1977 A
4074508 Reid Feb 1978 A
4079739 Whitehead Mar 1978 A
4084592 Tritsch Apr 1978 A
4100922 Hernandez Jul 1978 A
4232674 Melican Nov 1980 A
4257418 Hessner Mar 1981 A
4259220 Bunnelle et al. Mar 1981 A
4296750 Woon et al. Oct 1981 A
4315508 Bolick Feb 1982 A
4324246 Mullane et al. Apr 1982 A
4340706 Obayashi et al. Jul 1982 A
4341216 Obenour Jul 1982 A
4342314 Radel et al. Aug 1982 A
4360021 Stima Nov 1982 A
4381783 Elias May 1983 A
4388075 Mesek et al. Jun 1983 A
4410571 Korpman Oct 1983 A
4461621 Karami et al. Jul 1984 A
4463045 Ahr et al. Jul 1984 A
4469710 Bielley et al. Sep 1984 A
4475912 Coates Oct 1984 A
4490148 Beckeström Dec 1984 A
4507438 Obayashi et al. Mar 1985 A
4515595 Kievie May 1985 A
4527990 Sigl Jul 1985 A
4541871 Obayashi et al. Sep 1985 A
4551191 Kock et al. Nov 1985 A
4573986 Minetola et al. Mar 1986 A
4578072 Lancaster Mar 1986 A
4578702 Campbell Mar 1986 A
4585448 Enloe Apr 1986 A
4585450 Rosch et al. Apr 1986 A
4589878 Mitrani May 1986 A
4596568 Flug Jun 1986 A
4601717 Blevins Jul 1986 A
4606964 Wideman Aug 1986 A
4609518 Curro et al. Sep 1986 A
4610678 Weisman et al. Sep 1986 A
4623342 Ito et al. Nov 1986 A
4624666 Derossett Nov 1986 A
4629643 Curro et al. Dec 1986 A
4636207 Buell Jan 1987 A
4641381 Heran et al. Feb 1987 A
4646510 McIntyre Mar 1987 A
4662875 Hirotsu et al. May 1987 A
4666983 Tsubakimoto et al. May 1987 A
4670011 Mesek Jun 1987 A
4670012 Johnson Jun 1987 A
4680030 Coates et al. Jul 1987 A
4681579 Toussant et al. Jul 1987 A
4681581 Coates Jul 1987 A
4681793 Linman et al. Jul 1987 A
4690680 Higgins Sep 1987 A
4695278 Lawson Sep 1987 A
4699622 Toussant et al. Oct 1987 A
4704115 Buell Nov 1987 A
4704116 Enloe Nov 1987 A
4710189 Lash Dec 1987 A
4720321 Smith Jan 1988 A
4731066 Korpman Mar 1988 A
4731070 Koci Mar 1988 A
RE32649 Brandt et al. Apr 1988 E
4741941 Englebert et al. May 1988 A
4747846 Boland et al. May 1988 A
4753648 Jackson Jun 1988 A
4773905 Molee Sep 1988 A
4784892 Storey et al. Nov 1988 A
4785996 Ziecker et al. Nov 1988 A
4787896 Houghton et al. Nov 1988 A
4795454 Dragoo Jan 1989 A
4800102 Takada Jan 1989 A
4802884 Fröidh et al. Feb 1989 A
4806598 Morman Feb 1989 A
4808176 Kielpikowski Feb 1989 A
4808178 Aziz Feb 1989 A
4826880 Lesniak et al. May 1989 A
4834735 Alemany et al. May 1989 A
4834740 Suzuki et al. May 1989 A
4834742 Wilson et al. May 1989 A
4838886 Kent Jun 1989 A
4842666 Werenicz Jun 1989 A
4846815 Scripps Jul 1989 A
4846825 Enloe et al. Jul 1989 A
4848815 Molloy Jul 1989 A
4861652 Lippert et al. Aug 1989 A
4869724 Scripps Sep 1989 A
4886697 Perdelwitz, Jr. et al. Dec 1989 A
4888231 Angstadt Dec 1989 A
4892528 Suzuki et al. Jan 1990 A
4892535 Bjornberg Jan 1990 A
4892536 DesMarais et al. Jan 1990 A
4894060 Nestegard Jan 1990 A
4894277 Akasaki Jan 1990 A
4904251 Igaue et al. Feb 1990 A
4900317 Buell Mar 1990 A
4909802 Ahr et al. Mar 1990 A
4909803 Aziz et al. Mar 1990 A
4936839 Molee Jun 1990 A
4940463 Leathers et al. Jul 1990 A
4940464 Van Gompel et al. Jul 1990 A
4946527 Battrell Aug 1990 A
4950264 Osborn Aug 1990 A
4960477 Mesek Oct 1990 A
4963140 Robertson et al. Oct 1990 A
4966809 Tanaka et al. Oct 1990 A
4968313 Sabee Nov 1990 A
4990147 Freeland Feb 1991 A
4994053 Lang Feb 1991 A
5006394 Baird Apr 1991 A
5019063 Marsan et al. May 1991 A
5019072 Polski May 1991 A
5021051 Hiuke Jun 1991 A
5030314 Lang Jul 1991 A
5032120 Freeland et al. Jul 1991 A
5034008 Breitkopf Jul 1991 A
5037416 Allen et al. Aug 1991 A
5071414 Elliott Aug 1991 A
5072687 Mitchell Dec 1991 A
5085654 Buell Feb 1992 A
5087255 Sims et al. Feb 1992 A
5092861 Nomura et al. Mar 1992 A
5102597 Roe et al. Apr 1992 A
5114420 Igaue et al. May 1992 A
5124188 Roe et al. Jun 1992 A
5135522 Fahrenkrug et al. Aug 1992 A
5137537 Herron et al. Aug 1992 A
D329697 Fahrenkrug et al. Sep 1992 S
5143679 Weber et al. Sep 1992 A
5147343 Kellenberger Sep 1992 A
5147345 Young et al. Sep 1992 A
5149334 Roe et al. Sep 1992 A
5149335 Kellenberger et al. Sep 1992 A
5151091 Glaug Sep 1992 A
5151092 Buell et al. Sep 1992 A
5156793 Buell et al. Oct 1992 A
5167653 Igaue et al. Dec 1992 A
5167897 Weber et al. Dec 1992 A
5175046 Nguyen Dec 1992 A
5180622 Berg et al. Jan 1993 A
5190563 Herron et al. Mar 1993 A
5190606 Merkatoris et al. Mar 1993 A
5204997 Suzuki et al. Apr 1993 A
5213817 Pelley May 1993 A
5221274 Buell et al. Jun 1993 A
5235515 Ungpiyakul et al. Aug 1993 A
5242436 Weil et al. Sep 1993 A
5246431 Minetola et al. Sep 1993 A
5246432 Suzuki et al. Sep 1993 A
5246433 Hasse et al. Sep 1993 A
5248309 Serbiak et al. Sep 1993 A
5260345 DesMarais et al. Nov 1993 A
5269775 Freeland et al. Dec 1993 A
5281683 Yano et al. Jan 1994 A
H1298 Ahr Apr 1994 H
5300565 Berg et al. Apr 1994 A
5312386 Correa et al. May 1994 A
5331059 Engelhardt et al. Jul 1994 A
5336552 Strack et al. Aug 1994 A
5348547 Payne et al. Sep 1994 A
5358500 LaVon et al. Oct 1994 A
5366782 Curro et al. Nov 1994 A
5382610 Harada et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387208 Ashton et al. Feb 1995 A
5387209 Yamamoto et al. Feb 1995 A
5389095 Suzuki Feb 1995 A
5397316 LaVon et al. Mar 1995 A
5397317 Thomas Mar 1995 A
5399175 Glaug Mar 1995 A
5401792 Babu et al. Mar 1995 A
5409771 Dahmen et al. Apr 1995 A
H1440 New et al. May 1995 H
5411497 Tanzer et al. May 1995 A
5415644 Enloe May 1995 A
5425725 Tanzer et al. Jun 1995 A
5429630 Beal et al. Jul 1995 A
5433715 Tanzer et al. Jul 1995 A
5451219 Suzuki Sep 1995 A
5451442 Pieniak Sep 1995 A
5460622 Dragoo et al. Oct 1995 A
5462541 Bruemmer et al. Oct 1995 A
5476458 Glaug et al. Dec 1995 A
5486166 Bishop et al. Jan 1996 A
5486167 Dragoo et al. Jan 1996 A
5490846 Ellis et al. Feb 1996 A
5492962 Lahrman et al. Feb 1996 A
5494622 Heath et al. Feb 1996 A
5499978 Buell et al. Mar 1996 A
5507736 Clear et al. Apr 1996 A
5507895 Suekane Apr 1996 A
5509915 Hanson et al. Apr 1996 A
5514104 Cole May 1996 A
5518801 Chappell et al. May 1996 A
5520674 Hines et al. May 1996 A
5522810 Allen, Jr. Jun 1996 A
5527300 Sauer Jun 1996 A
5531730 Dreier Jul 1996 A
5532323 Yano et al. Jul 1996 A
5542943 Sageser Aug 1996 A
5549592 Fries et al. Aug 1996 A
5549593 Ygge et al. Aug 1996 A
5549791 Herron et al. Aug 1996 A
5554145 Roe et al. Sep 1996 A
5559335 Zing et al. Sep 1996 A
5560878 Dragoo et al. Oct 1996 A
5562634 Flumene et al. Oct 1996 A
5562646 Goldman et al. Oct 1996 A
5569234 Buell et al. Oct 1996 A
5571096 Dobrin et al. Nov 1996 A
5574121 Irie et al. Nov 1996 A
5580411 Nease et al. Dec 1996 A
5584829 Lavash et al. Dec 1996 A
5586979 Thomas Dec 1996 A
5591152 Buell et al. Jan 1997 A
5591155 Nishikawa et al. Jan 1997 A
5593399 Tanzer et al. Jan 1997 A
5599335 Goldman et al. Feb 1997 A
5601542 Melius et al. Feb 1997 A
5607414 Richards et al. Mar 1997 A
5607537 Johnson et al. Mar 1997 A
5607760 Roe Mar 1997 A
5609587 Roe Mar 1997 A
5609588 DiPalma et al. Mar 1997 A
5611879 Morman Mar 1997 A
5613959 Roessler et al. Mar 1997 A
5613960 Mizutani Mar 1997 A
5614283 Potnis et al. Mar 1997 A
5622589 Johnson et al. Apr 1997 A
5624423 Anjur Apr 1997 A
5624424 Saisaka et al. Apr 1997 A
5625222 Yoneda et al. Apr 1997 A
5607416 Yamamoto et al. May 1997 A
5626571 Young et al. May 1997 A
5628741 Buell et al. May 1997 A
5628845 Murray et al. May 1997 A
5635191 Roe et al. Jun 1997 A
5635271 Zafiroglu Jun 1997 A
5637106 Mitchell Jun 1997 A
5643238 Baker Jul 1997 A
5643243 Klemp Jul 1997 A
5643588 Roe et al. Jul 1997 A
5649914 Glaug Jul 1997 A
5650214 Anderson Jul 1997 A
H1674 Ames et al. Aug 1997 H
5658268 Johns et al. Aug 1997 A
5662634 Yamamoto et al. Sep 1997 A
5662638 Johnson et al. Sep 1997 A
5662758 Hamilton et al. Sep 1997 A
5669894 Goldman et al. Sep 1997 A
5674215 Ronnberg Oct 1997 A
5681300 Ahr Oct 1997 A
5683374 Yamamoto Nov 1997 A
5685874 Buell et al. Nov 1997 A
5690627 Clear et al. Nov 1997 A
5691035 Chappell et al. Nov 1997 A
5691036 Chappell et al. Nov 1997 A
5695488 Sosalla Dec 1997 A
5700254 McDowall et al. Dec 1997 A
5702376 Glaug Dec 1997 A
5714156 Schmidt et al. Feb 1998 A
5723087 Chappell et al. Mar 1998 A
5733275 Davis et al. Mar 1998 A
5749866 Roe et al. May 1998 A
5752947 Awolin May 1998 A
5756039 Mcfall et al. May 1998 A
H1732 Johnson Jun 1998 H
5762641 Bewick-Sonntag et al. Jun 1998 A
5766388 Pelley Jun 1998 A
5766389 Brandon et al. Jun 1998 A
5772825 Schmitz Jun 1998 A
5776121 Roe et al. Jul 1998 A
5779831 Schmitz Jul 1998 A
5788684 Abuto et al. Aug 1998 A
5795345 Mizutani Aug 1998 A
5797892 Glaug Aug 1998 A
5797894 Cadieux et al. Aug 1998 A
5807365 Luceri Sep 1998 A
5810796 Kimura et al. Sep 1998 A
5810800 Hunter et al. Sep 1998 A
5814035 Gryskiewicz et al. Sep 1998 A
5820618 Roberts et al. Oct 1998 A
5827257 Fujioka Oct 1998 A
5830202 Bogdanski et al. Nov 1998 A
5833678 Ashton et al. Nov 1998 A
5837789 Stockhausen et al. Nov 1998 A
5840404 Graff Nov 1998 A
5843059 Niemeyer et al. Dec 1998 A
5846231 Fujioka et al. Dec 1998 A
5846232 Serbiak et al. Dec 1998 A
5849816 Suskind et al. Dec 1998 A
5851204 Mitzutani Dec 1998 A
5855572 Schmidt Jan 1999 A
5858013 Kling Jan 1999 A
5865823 Curro Feb 1999 A
5865824 Chen Feb 1999 A
5873868 Nakahata Feb 1999 A
5876391 Roe et al. Mar 1999 A
5879751 Bogdanski Mar 1999 A
5891118 Toyoshima Apr 1999 A
5891544 Chappell et al. Apr 1999 A
5897545 Kline et al. Apr 1999 A
5904673 Roe et al. May 1999 A
5925439 Haubach Jul 1999 A
5928184 Etheredge Jul 1999 A
5931825 Kuen et al. Aug 1999 A
5938648 Lavon et al. Aug 1999 A
5938650 Baer et al. Aug 1999 A
5941862 Haynes et al. Aug 1999 A
5944706 Palumbo et al. Aug 1999 A
5947949 Inoue et al. Sep 1999 A
5951536 Osborn, III et al. Sep 1999 A
5957908 Kline et al. Sep 1999 A
5968025 Roe et al. Oct 1999 A
5968029 Chappell et al. Oct 1999 A
5980500 Shimizu et al. Nov 1999 A
5981824 Luceri Nov 1999 A
5989236 Roe et al. Nov 1999 A
6004306 Robles et al. Dec 1999 A
6022430 Blenke et al. Feb 2000 A
6022431 Blenke et al. Feb 2000 A
6042673 Johnson et al. Mar 2000 A
6050984 Fujioka Apr 2000 A
6054631 Gent Apr 2000 A
6056732 Fujioka et al. May 2000 A
6060115 Borowski et al. May 2000 A
6068620 Chmielewski May 2000 A
6080909 Osterdahl et al. Jun 2000 A
6083210 Young et al. Jul 2000 A
6090994 Chen Jul 2000 A
6091336 Zand Jul 2000 A
6093474 Sironi Jul 2000 A
6099515 Sugito Aug 2000 A
6102892 Putzer et al. Aug 2000 A
6103814 Van Drongelen et al. Aug 2000 A
6107537 Elder et al. Aug 2000 A
6110157 Schmidt Aug 2000 A
6117121 Faulks et al. Sep 2000 A
6117803 Morman et al. Sep 2000 A
6120486 Toyoda et al. Sep 2000 A
6120487 Ashton Sep 2000 A
6120489 Johnson et al. Sep 2000 A
6120866 Arakawa et al. Sep 2000 A
6121509 Ashraf et al. Sep 2000 A
6129717 Fujioka et al. Oct 2000 A
6129720 Blenke et al. Oct 2000 A
6132411 Huber et al. Oct 2000 A
6139912 Onuschak Oct 2000 A
6143821 Houben Nov 2000 A
6152908 Widlund Nov 2000 A
6156023 Yoshioka Dec 2000 A
6156424 Taylor Dec 2000 A
6160197 Lassen Dec 2000 A
6165160 Suzuki et al. Dec 2000 A
6174302 Kumasaka Jan 2001 B1
6177606 Etheredge Jan 2001 B1
6177607 Blaney et al. Jan 2001 B1
6186996 Martin Feb 2001 B1
6210386 Inoue Apr 2001 B1
6210390 Karlsson Apr 2001 B1
6231556 Osborn, III May 2001 B1
6231566 Lai May 2001 B1
6238380 Sasaki May 2001 B1
6241716 Rönnberg Jun 2001 B1
6254294 Muhar Jul 2001 B1
6258996 Goldman Jul 2001 B1
6265488 Fujino et al. Jul 2001 B1
6290686 Tanzer et al. Sep 2001 B1
6306122 Narawa et al. Oct 2001 B1
6315765 Datta Nov 2001 B1
6319239 Daniels et al. Nov 2001 B1
6322552 Blenke et al. Nov 2001 B1
6325787 Roe et al. Dec 2001 B1
6326525 Hamajima Dec 2001 B1
6330735 Hahn et al. Dec 2001 B1
6334858 Rönnberg et al. Jan 2002 B1
6336922 Van Gompel et al. Jan 2002 B1
6340611 Shimizu Jan 2002 B1
6342715 Shimizu Jan 2002 B1
6402731 Suprise et al. Jan 2002 B1
6350332 Thomas et al. Feb 2002 B1
6368687 Joseph et al. Apr 2002 B1
6371948 Mizutani Apr 2002 B1
6372952 Lash et al. Apr 2002 B1
6375644 Mizutani Apr 2002 B2
6376034 Brander Apr 2002 B1
6383431 Dobrin et al. May 2002 B1
6383960 Everett et al. May 2002 B1
6394989 Mizutani May 2002 B2
6403857 Gross et al. Jun 2002 B1
6409883 Makolin Jun 2002 B1
6410820 McFall et al. Jun 2002 B1
6410822 Mizutani Jun 2002 B1
6402729 Boberg et al. Jul 2002 B1
6413248 Mizutani Jul 2002 B1
6413249 Turi et al. Jul 2002 B1
6414214 Engelhardt et al. Jul 2002 B1
6416502 Connelly et al. Jul 2002 B1
6416697 Venturino et al. Jul 2002 B1
6419667 Avalon et al. Jul 2002 B1
6423046 Fujioka et al. Jul 2002 B1
6423048 Suzuki et al. Jul 2002 B1
6423884 Oehmen Jul 2002 B1
6429350 Tanzer et al. Aug 2002 B1
6432094 Fujioka et al. Aug 2002 B1
6432098 Kline et al. Aug 2002 B1
6432099 Rönnberg Aug 2002 B2
6437214 Everett et al. Aug 2002 B1
6441268 Edwardsson Aug 2002 B1
6443933 Suzuki et al. Sep 2002 B1
6444064 Henry et al. Sep 2002 B1
6447496 Mizutani Sep 2002 B1
6458111 Onishi et al. Oct 2002 B1
6458877 Ahmed et al. Oct 2002 B1
6459016 Rosenfeld et al. Oct 2002 B1
6461034 Schaefer et al. Oct 2002 B1
6461342 Tanji et al. Oct 2002 B2
6461343 Schaefer et al. Oct 2002 B1
6472478 Funk et al. Oct 2002 B1
6475201 Saito et al. Nov 2002 B2
6494872 Suzuki et al. Dec 2002 B1
6494873 Karlsson et al. Dec 2002 B2
6500159 Carvalho Dec 2002 B1
6503233 Chen Jan 2003 B1
6503979 Funk et al. Jan 2003 B1
6506186 Roessler Jan 2003 B1
6506961 Levy Jan 2003 B1
6515195 Lariviere Feb 2003 B1
6517525 Berthou Feb 2003 B1
6518479 Graef Feb 2003 B1
6520947 Tilly et al. Feb 2003 B1
6521811 Lassen Feb 2003 B1
6521812 Graef Feb 2003 B1
6524294 Hilston et al. Feb 2003 B1
6525240 Graef Feb 2003 B1
6528698 Mizutani et al. Mar 2003 B2
6529860 Strumolo et al. Mar 2003 B1
6531025 Lender et al. Mar 2003 B1
6531027 Lender et al. Mar 2003 B1
6534149 Daley et al. Mar 2003 B1
6559081 Erspamer May 2003 B1
6559239 Riegel et al. May 2003 B1
6562168 Schmitt et al. May 2003 B1
6562192 Hamilton May 2003 B1
6569137 Suzuki et al. May 2003 B2
6573422 Rosenfeld Jun 2003 B1
6585713 LaMahieu et al. Jul 2003 B1
6585858 Otto et al. Jul 2003 B1
6602234 Klemp et al. Aug 2003 B2
6605070 Ludwig et al. Aug 2003 B2
6605172 Anderson et al. Aug 2003 B1
6605752 Magnusson et al. Aug 2003 B2
6610900 Tanzer Aug 2003 B1
6630054 Graef Oct 2003 B1
6632209 Chmielewski Oct 2003 B1
6632504 Gillespie et al. Oct 2003 B1
6645569 Cramer et al. Nov 2003 B2
6646180 Chmielewski Nov 2003 B1
6648869 Gillies et al. Nov 2003 B1
6648870 Itoh et al. Nov 2003 B2
6648871 Kusibojoska et al. Nov 2003 B2
6649807 Mizutani Nov 2003 B2
6649810 Minato et al. Nov 2003 B1
6657015 Riegel et al. Dec 2003 B1
6657102 Furuya Dec 2003 B2
6667424 Hamilton Dec 2003 B1
6670522 Graef Dec 2003 B1
6673982 Chen Jan 2004 B1
6673983 Graef Jan 2004 B1
6673985 Mizutani Jan 2004 B2
6682515 Mizutani et al. Jan 2004 B1
6682516 Johnston Jan 2004 B2
6689115 Popp et al. Feb 2004 B1
6689934 Dodge, II et al. Feb 2004 B2
6695827 Chen Feb 2004 B2
6700034 Lindsay et al. Mar 2004 B1
6703538 Lassen Mar 2004 B2
6705465 Ling et al. Mar 2004 B2
6706129 Ando et al. Mar 2004 B2
6706943 Onishi Mar 2004 B2
6710224 Chmielewski et al. Mar 2004 B2
6710225 Everett et al. Mar 2004 B1
6716205 Popp et al. Apr 2004 B2
6716441 Roe et al. Apr 2004 B1
6717029 Baker Apr 2004 B2
6726668 Underhill et al. Apr 2004 B2
6726792 Johnson et al. Apr 2004 B1
6730387 Rezai et al. May 2004 B2
6734335 Graef May 2004 B1
6790798 Suzuki et al. Sep 2004 B1
6802834 Melius et al. Oct 2004 B2
6809158 Ikeuchi et al. Oct 2004 B2
6811642 Ochi Nov 2004 B2
6818083 Mcamish et al. Nov 2004 B2
6818166 Edwardson et al. Nov 2004 B2
6830800 Curro et al. Dec 2004 B2
6832905 Delzer et al. Dec 2004 B2
6840929 Kurata Jan 2005 B2
6846374 Popp Jan 2005 B2
6858771 Yoshimasa Feb 2005 B2
6863933 Cramer et al. Mar 2005 B2
6863960 Curro et al. Mar 2005 B2
6867345 Shimoe et al. Mar 2005 B2
6867346 Dopps Mar 2005 B1
6878433 Curro et al. Apr 2005 B2
6878647 Rezai Apr 2005 B1
6880211 Jackson et al. Apr 2005 B2
6891080 Minato May 2005 B2
6904865 Klofta Jun 2005 B2
6911574 Mizutani Jun 2005 B1
6923797 Shinohara et al. Aug 2005 B2
6923926 Walter et al. Aug 2005 B2
6926703 Sugito Aug 2005 B2
6929629 Drevik et al. Aug 2005 B2
6939914 Qin et al. Sep 2005 B2
6946585 Brown Sep 2005 B2
6953451 Berba Oct 2005 B2
6955733 Henry et al. Oct 2005 B2
6962578 Lavon Nov 2005 B1
6962645 Graef Nov 2005 B2
6965058 Raidel Nov 2005 B1
6969781 Graef Nov 2005 B2
6972010 Pesce et al. Dec 2005 B2
6972011 Maeda et al. Dec 2005 B2
6979564 Glucksmann et al. Dec 2005 B2
6982052 Daniels et al. Jan 2006 B2
7001167 Venturino Feb 2006 B2
7014632 Takino et al. Mar 2006 B2
7015370 Watanabe Mar 2006 B2
7037299 Turi et al. May 2006 B2
7037571 Fish et al. May 2006 B2
7048726 Kusagawa et al. May 2006 B2
7056311 Kinoshita Jun 2006 B2
7067711 Kinoshita et al. Jun 2006 B2
7073373 La Fortune Jul 2006 B2
7078583 Kudo Jul 2006 B2
7090665 Ohashi Aug 2006 B2
7108759 You Sep 2006 B2
7108916 Ehrnsperger et al. Sep 2006 B2
7112621 Rohrbaugh et al. Sep 2006 B2
7122713 Komatsu Oct 2006 B2
7125470 Graef Oct 2006 B2
7132585 Kudo Nov 2006 B2
7147628 Drevik Dec 2006 B2
7150729 Shimada Dec 2006 B2
7154019 Mishima et al. Dec 2006 B2
7160281 Leminh et al. Jan 2007 B2
7163528 Christon et al. Jan 2007 B2
7166190 Graef Jan 2007 B2
7169136 Otsubo Jan 2007 B2
7183360 Daniel et al. Feb 2007 B2
7189888 Wang et al. Mar 2007 B2
7196241 Kinoshita Mar 2007 B2
7199211 Popp et al. Apr 2007 B2
7204830 Mishima Apr 2007 B2
7207978 Takino Apr 2007 B2
7219403 Miyamoto et al. May 2007 B2
7220251 Otsubo et al. May 2007 B2
7241280 Christen et al. Jul 2007 B2
7250481 Jaworek et al. Jul 2007 B2
7252657 Mishima Aug 2007 B2
7265258 Hamilton Sep 2007 B2
7270651 Adams et al. Sep 2007 B2
7285178 Mischler et al. Oct 2007 B2
7306582 Adams et al. Dec 2007 B2
7311696 Christen et al. Dec 2007 B2
7311968 Ehrnsperger et al. Dec 2007 B2
7312372 Miyama Dec 2007 B2
7318820 LaVon et al. Jan 2008 B2
7329244 Otsubo Feb 2008 B2
7329246 Kinoshita Feb 2008 B2
7335810 Yoshimasa et al. Feb 2008 B2
7377914 LaVon May 2008 B2
7429689 Chen Sep 2008 B2
7435244 Schroer et al. Oct 2008 B2
7465373 Graef Dec 2008 B2
7500969 Mishima Mar 2009 B2
7504552 Tamura Mar 2009 B2
7521109 Suzuki et al. Apr 2009 B2
7521587 Busam et al. Apr 2009 B2
7537832 Carlucci et al. May 2009 B2
7547815 Ohashi Jun 2009 B2
7550646 Tamura Jun 2009 B2
7563257 Nakajima Jul 2009 B2
7588561 Kenmochi Sep 2009 B2
7594904 Rosenfeld Sep 2009 B2
7598428 Gustavsson et al. Oct 2009 B2
7625363 Yoshimasa Dec 2009 B2
7641642 Murai et al. Jan 2010 B2
7648490 Kuroda Jan 2010 B2
7652111 Hermeling et al. Jan 2010 B2
7666173 Mishima Feb 2010 B2
7666174 Kawakami et al. Feb 2010 B2
7686790 Rasmussen et al. Mar 2010 B2
7687596 Hermeling et al. Mar 2010 B2
7695461 Rosenfeld Apr 2010 B2
7696402 Nishikawa Apr 2010 B2
7708725 Tamagawa May 2010 B2
7717150 Manabe May 2010 B2
7718844 Olson May 2010 B2
7722587 Suzuki et al. May 2010 B2
7722590 Tsuji May 2010 B2
7727217 Hancock-Cooke Jun 2010 B2
7736351 Nigam Jun 2010 B2
7737324 LaVon et al. Jun 2010 B2
7744576 Busam et al. Jun 2010 B2
7744578 Tanio et al. Jun 2010 B2
7750203 Busam et al. Jul 2010 B2
7754822 Daniel et al. Jul 2010 B2
7754940 Brisebois Jul 2010 B2
7759540 Litvay et al. Jul 2010 B2
7763004 Beck Jul 2010 B2
7767875 Olson Aug 2010 B2
7767876 Davis et al. Aug 2010 B2
7767878 Suzuki Aug 2010 B2
7772420 Hermeling et al. Aug 2010 B2
7786341 Schneider et al. Aug 2010 B2
7795492 Vartiainen Sep 2010 B2
7803145 Rosenfeld Sep 2010 B2
7825291 Elfsberg et al. Nov 2010 B2
7838722 Blessing et al. Nov 2010 B2
7850672 Guidotti et al. Dec 2010 B2
7851667 Becker et al. Dec 2010 B2
7855314 Hanao Dec 2010 B2
7857797 Kudo Dec 2010 B2
7858842 Komatsu Dec 2010 B2
7884259 Hanao Feb 2011 B2
7888549 Jansson et al. Feb 2011 B2
7910797 Nandrea Mar 2011 B2
7931636 LaVon et al. Apr 2011 B2
7935207 Zhao May 2011 B2
7935861 Suzuki May 2011 B2
7938813 Wang et al. May 2011 B2
7942858 Francoeur May 2011 B2
7951126 Nanjyo May 2011 B2
7959620 Miura et al. Jun 2011 B2
7982091 Konawa Jul 2011 B2
7993319 Sperl Aug 2011 B2
8017827 Hundorf et al. Sep 2011 B2
8029486 Nakajima Oct 2011 B2
8034991 Bruzadin et al. Oct 2011 B2
8039684 Guidotti et al. Oct 2011 B2
8052454 Polnyi Nov 2011 B2
8057620 Perego et al. Nov 2011 B2
8109915 Shimoe Feb 2012 B2
8133212 Takada Mar 2012 B2
8148598 Tsang et al. Apr 2012 B2
8163124 Moriura et al. Apr 2012 B2
8167862 Digiacomantonio et al. May 2012 B2
8173858 Kuroda May 2012 B2
8178747 Venturino et al. May 2012 B2
8183430 Hakansson et al. May 2012 B2
8186296 Brown et al. May 2012 B2
8187239 LaVon et al. May 2012 B2
8187240 Busam et al. May 2012 B2
8198506 Venturino et al. Jun 2012 B2
8211815 Baker Jul 2012 B2
8236715 Schmidt et al. Aug 2012 B2
8237012 Miyama Aug 2012 B2
8246594 Sperl Aug 2012 B2
8258367 Lawson et al. Sep 2012 B2
8268424 Suzuki Sep 2012 B1
8273943 Noda Sep 2012 B2
8282617 Kaneda Oct 2012 B2
8283516 Litvay Oct 2012 B2
8317766 Naoto Nov 2012 B2
8317768 Larsson Nov 2012 B2
8319005 Becker et al. Nov 2012 B2
8343123 Noda Jan 2013 B2
8343296 Blessing et al. Jan 2013 B2
8360977 Marttila et al. Jan 2013 B2
8361047 Mukai et al. Jan 2013 B2
8377025 Nakajima et al. Feb 2013 B2
8450555 Nahn et al. May 2013 B2
8496637 Hundorf et al. Jul 2013 B2
8519213 Venturino et al. Aug 2013 B2
8524355 Nakaoka Sep 2013 B2
8552252 Hundorf et al. Oct 2013 B2
8568566 Jackets et al. Oct 2013 B2
8581019 Carlucci et al. Nov 2013 B2
8603058 Sprerl et al. Dec 2013 B2
8604270 Venturino et al. Dec 2013 B2
8633347 Bianco et al. Jan 2014 B2
8664468 Lawson et al. Mar 2014 B2
8674170 Busam et al. Mar 2014 B2
8734417 LaVon et al. May 2014 B2
8766031 Becker et al. Jul 2014 B2
8772570 Kawakami et al. Jul 2014 B2
8784594 Blessing et al. Jul 2014 B2
8785715 Wright et al. Jul 2014 B2
8791318 Becker et al. Jul 2014 B2
8936584 Zander et al. Jan 2015 B2
20010007065 Blanchard et al. Jul 2001 A1
20010008964 Kurata et al. Jul 2001 A1
20010016548 Kugler et al. Aug 2001 A1
20010020157 Mizutani et al. Sep 2001 A1
20010037101 Allan et al. Nov 2001 A1
20010044610 Kim et al. Nov 2001 A1
20020007167 Dan et al. Jan 2002 A1
20020007169 Graef et al. Jan 2002 A1
20020016122 Curro et al. Feb 2002 A1
20020016579 Stenberg Feb 2002 A1
20020045881 Kusibojoska et al. Apr 2002 A1
20020056516 Ochi May 2002 A1
20020058919 Hamilton et al. May 2002 A1
20020062112 Mizutani May 2002 A1
20020062115 Wada et al. May 2002 A1
20020062116 Mizutani et al. May 2002 A1
20020065498 Ohashi May 2002 A1
20020072471 Ikeuchi et al. Jun 2002 A1
20020082575 Dan Jun 2002 A1
20020087139 Popp et al. Jul 2002 A1
20020095127 Fish et al. Jul 2002 A1
20020102392 Fish et al. Aug 2002 A1
20020115969 Maeda et al. Aug 2002 A1
20020123728 Graef et al. Sep 2002 A1
20020123848 Schneiderman et al. Sep 2002 A1
20020151634 Rohrbaugh et al. Oct 2002 A1
20020151861 Klemp et al. Oct 2002 A1
20020173767 Popp et al. Nov 2002 A1
20020192366 Cramer et al. Dec 2002 A1
20020197695 Glucksmann et al. Dec 2002 A1
20030036741 Abba et al. Feb 2003 A1
20030078553 Wada et al. Apr 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030088223 Vogt et al. May 2003 A1
20030105190 Diehl et al. Jun 2003 A1
20030109839 Costae et al. Jun 2003 A1
20030114811 Christen et al. Jun 2003 A1
20030114816 Underhill et al. Jun 2003 A1
20030114818 Benecke et al. Jun 2003 A1
20030115969 Koyano et al. Jun 2003 A1
20030120235 Boulanger Jun 2003 A1
20030120249 Wulz et al. Jun 2003 A1
20030135176 Delzer et al. Jul 2003 A1
20030135181 Chen et al. Jul 2003 A1
20030135182 Woon et al. Jul 2003 A1
20030139712 Dodge, II et al. Jul 2003 A1
20030139715 Dodge, II et al. Jul 2003 A1
20030139718 Graef et al. Jul 2003 A1
20030144642 Dopps et al. Jul 2003 A1
20030144644 Murai et al. Jul 2003 A1
20030148684 Cramer et al. Aug 2003 A1
20030148694 Ghiam Aug 2003 A1
20030158530 Diehl et al. Aug 2003 A1
20030158531 Chmielewski Aug 2003 A1
20030158532 Magee et al. Aug 2003 A1
20030167045 Graef et al. Sep 2003 A1
20030171727 Graef et al. Sep 2003 A1
20030208175 Gross et al. Nov 2003 A1
20030225385 Glaug et al. Dec 2003 A1
20030233082 Kline et al. Dec 2003 A1
20030236512 Baker Dec 2003 A1
20040019338 Litvay et al. Jan 2004 A1
20040022998 Miyamoto et al. Feb 2004 A1
20040033750 Everett et al. Feb 2004 A1
20040063367 Dodge, II et al. Apr 2004 A1
20040064113 Erdman Apr 2004 A1
20040064115 Arora et al. Apr 2004 A1
20040064116 Arora et al. Apr 2004 A1
20040064125 Justmann et al. Apr 2004 A1
20040065420 Graef et al. Apr 2004 A1
20040082928 Pesce et al. Apr 2004 A1
20040097895 Busam et al. May 2004 A1
20040122411 Hancock-Cooke Jun 2004 A1
20040127131 Potnis Jul 2004 A1
20040127871 Odorzynski et al. Jul 2004 A1
20040127872 Petryk et al. Jul 2004 A1
20040134596 Rosati et al. Jul 2004 A1
20040138633 Mishima et al. Jul 2004 A1
20040147890 Nakahata et al. Jul 2004 A1
20040158212 Ponomarenko et al. Aug 2004 A1
20040162536 Becker et al. Aug 2004 A1
20040167486 Busam Aug 2004 A1
20040167489 Kellenberger et al. Aug 2004 A1
20040170813 Digiacomantonio et al. Sep 2004 A1
20040193127 Hansson Sep 2004 A1
20040215160 Chmielewski et al. Oct 2004 A1
20040220541 Suzuki et al. Nov 2004 A1
20040225271 Datta et al. Nov 2004 A1
20040231065 Daniel et al. Nov 2004 A1
20040236299 Tsang et al. Nov 2004 A1
20040236455 Woltman et al. Nov 2004 A1
20040249355 Tanio et al. Dec 2004 A1
20040260259 Baker Dec 2004 A1
20050001929 Ochial et al. Jan 2005 A1
20050004543 Schroer et al. Jan 2005 A1
20050004548 Otsubo et al. Jan 2005 A1
20050008839 Cramer et al. Jan 2005 A1
20050018258 Miyagi et al. Jan 2005 A1
20050038401 Suzuki et al. Feb 2005 A1
20050070867 Beruda et al. Mar 2005 A1
20050085784 LeMinh et al. Apr 2005 A1
20050090789 Graef et al. Apr 2005 A1
20050101929 Waksmundzki et al. May 2005 A1
20050137543 Underhill et al. Jun 2005 A1
20050148258 Chakravarty et al. Jul 2005 A1
20050148961 Sosalla et al. Jul 2005 A1
20050148990 Shimoe et al. Jul 2005 A1
20050154363 Minato et al. Jul 2005 A1
20050159720 Gentilcore et al. Jul 2005 A1
20050165208 Popp et al. Jul 2005 A1
20050171499 Nigam et al. Aug 2005 A1
20050176910 Jaworek et al. Aug 2005 A1
20050203475 LaVon et al. Sep 2005 A1
20050215752 Popp et al. Sep 2005 A1
20050229543 Tippey Oct 2005 A1
20050245684 Daniel et al. Nov 2005 A1
20050288645 LaVon Dec 2005 A1
20050288646 LaVon Dec 2005 A1
20060004334 Schlinz et al. Jan 2006 A1
20060021695 Blessing et al. Feb 2006 A1
20060024433 Blessing et al. Feb 2006 A1
20060069367 Waksmundzki et al. Mar 2006 A1
20060069371 Ohashi et al. Mar 2006 A1
20060073969 Torii et al. Apr 2006 A1
20060081348 Graef Apr 2006 A1
20060129114 Mason, Jr. et al. Jun 2006 A1
20060142724 Watanabe et al. Jun 2006 A1
20060155057 Hermeling et al. Jul 2006 A1
20060155254 Sanz et al. Jul 2006 A1
20060167215 Hermeling et al. Jul 2006 A1
20060177647 Schmidt et al. Aug 2006 A1
20060178071 Schmidt et al. Aug 2006 A1
20060184146 Suzuki Aug 2006 A1
20060184149 Kasai et al. Aug 2006 A1
20060189954 Kudo et al. Aug 2006 A1
20060202380 Bentley et al. Sep 2006 A1
20060206091 Cole et al. Sep 2006 A1
20060211828 Daniel et al. Sep 2006 A1
20060240229 Erhnsperger et al. Oct 2006 A1
20060264860 Beck et al. Nov 2006 A1
20060264861 Lavon et al. Nov 2006 A1
20060271010 LaVon et al. Nov 2006 A1
20070049892 Lord et al. Jan 2007 A1
20070027436 Nakagawa et al. Feb 2007 A1
20070032770 LaVon et al. Feb 2007 A1
20070043191 Hermeling et al. Feb 2007 A1
20070043330 Lankhof et al. Feb 2007 A1
20070049897 LaVon et al. Mar 2007 A1
20070073253 Miyama et al. Mar 2007 A1
20070078422 Glaug et al. Apr 2007 A1
20070088308 Ehrnsperger et al. Apr 2007 A1
20070093164 Nakaoka Apr 2007 A1
20070093767 Carlucci et al. Apr 2007 A1
20070100307 Nomoto et al. May 2007 A1
20070118087 Flohr et al. May 2007 A1
20070123834 McDowall et al. May 2007 A1
20070156108 Becker et al. Jul 2007 A1
20070156110 Thyfault Jul 2007 A1
20070167928 Becker et al. Jul 2007 A1
20070179464 Becker et al. Aug 2007 A1
20070179469 Takahashi et al. Aug 2007 A1
20070191798 Glaug et al. Aug 2007 A1
20070219521 Hird et al. Sep 2007 A1
20070219523 Bruun et al. Sep 2007 A1
20070244455 Hansson et al. Oct 2007 A1
20070246147 Venturino et al. Oct 2007 A1
20070255245 Asp et al. Nov 2007 A1
20070282288 Noda et al. Dec 2007 A1
20070282290 Cole et al. Dec 2007 A1
20070282291 Cole et al. Dec 2007 A1
20080027402 Schmidt et al. Jan 2008 A1
20080091159 Carlucci et al. Apr 2008 A1
20080119810 Kuroda et al. May 2008 A1
20080125735 Busam et al. May 2008 A1
20080132864 Lawson et al. Jun 2008 A1
20080208154 Oetjen et al. Aug 2008 A1
20080221538 Zhao et al. Sep 2008 A1
20080221539 Zhao et al. Sep 2008 A1
20080228158 Sue et al. Sep 2008 A1
20080262459 Kamoto et al. Oct 2008 A1
20080268194 Kim et al. Oct 2008 A1
20080274227 Boatman et al. Nov 2008 A1
20080281287 Marcelo et al. Nov 2008 A1
20080294140 Ecker et al. Nov 2008 A1
20080032035 Schmidt et al. Dec 2008 A1
20080312617 Hundorf et al. Dec 2008 A1
20080312618 Hundorf et al. Dec 2008 A1
20080312619 Ashton et al. Dec 2008 A1
20080312620 Ashton et al. Dec 2008 A1
20080312621 Hundorf et al. Dec 2008 A1
20080312622 Hundorf et al. Dec 2008 A1
20080312623 Hundorf et al. Dec 2008 A1
20080312624 Hundorf et al. Dec 2008 A1
20080312625 Hundorf et al. Dec 2008 A1
20080312627 Takeuchi et al. Dec 2008 A1
20080312628 Hundorf et al. Dec 2008 A1
20090023848 Ahmed et al. Jan 2009 A1
20090056867 Moriura et al. Mar 2009 A1
20090062760 Wright et al. Mar 2009 A1
20090112173 Bissah et al. Apr 2009 A1
20090112175 Bissah et al. Apr 2009 A1
20090157022 MacDonald et al. Jun 2009 A1
20090192035 Stueven et al. Jul 2009 A1
20090240220 MacDonald et al. Sep 2009 A1
20090247977 Takeuchi et al. Oct 2009 A1
20090258994 Stueven et al. Oct 2009 A1
20090270825 Wciorka et al. Oct 2009 A1
20090298963 Matsumoto et al. Dec 2009 A1
20090299312 MacDonald et al. Dec 2009 A1
20090306618 Kudo et al. Dec 2009 A1
20090318884 Meyer et al. Dec 2009 A1
20090326494 Uchida et al. Dec 2009 A1
20100051166 Hundorf et al. Mar 2010 A1
20100062165 Suzuki et al. Mar 2010 A1
20100062934 Suzuki et al. Mar 2010 A1
20100063470 Suzuki et al. Mar 2010 A1
20100068520 Stueven Mar 2010 A1
20100100065 Bianco et al. Apr 2010 A1
20100115237 Brewer et al. May 2010 A1
20100121296 Noda et al. May 2010 A1
20100137773 Gross et al. Jun 2010 A1
20100137823 Corneliusson et al. Jun 2010 A1
20100198179 Noda et al. Aug 2010 A1
20100228210 Busam et al. Sep 2010 A1
20100241096 LaVon et al. Sep 2010 A1
20100241097 Nigam et al. Sep 2010 A1
20100262099 Klofta Oct 2010 A1
20100262104 Carlucci et al. Oct 2010 A1
20100274208 Gabrielii et al. Oct 2010 A1
20100274210 Noda et al. Oct 2010 A1
20100312208 Bond et al. Dec 2010 A1
20100324521 Mukai et al. Dec 2010 A1
20100324523 Mukai et al. Dec 2010 A1
20110041999 Hundorf et al. Feb 2011 A1
20110060301 Nishikawa et al. Mar 2011 A1
20110060303 Bissah et al. Mar 2011 A1
20110066127 Kuwano et al. Mar 2011 A1
20110071486 Harada et al. Mar 2011 A1
20110092944 Sagisaka et al. Apr 2011 A1
20110112498 Nhan et al. May 2011 A1
20110125120 Nishitani et al. May 2011 A1
20110130732 Jackels et al. Jun 2011 A1
20110130737 Sagisaka et al. Jun 2011 A1
20110137276 Yoshikawa Jun 2011 A1
20110144602 Long et al. Jun 2011 A1
20110144604 Noda et al. Jun 2011 A1
20110144606 Nandrea et al. Jun 2011 A1
20110152813 Ellingson Jun 2011 A1
20110166540 Yang Jul 2011 A1
20110172630 Nomoto et al. Jul 2011 A1
20110174430 Zhao et al. Jul 2011 A1
20110208147 Kawakami et al. Aug 2011 A1
20110250413 Lu et al. Oct 2011 A1
20110268932 Catalan et al. Nov 2011 A1
20110274834 Brown et al. Nov 2011 A1
20110288513 Hundorf et al. Nov 2011 A1
20110288514 Kuroda et al. Nov 2011 A1
20110295222 Becker et al. Dec 2011 A1
20110319846 Rinnert et al. Dec 2011 A1
20110319848 McKiernan et al. Dec 2011 A1
20110319851 Kudo et al. Dec 2011 A1
20120004633 Marcelo et al. Jan 2012 A1
20120016326 Brennan et al. Jan 2012 A1
20120022479 Cotton Jan 2012 A1
20120035566 Sagisaka et al. Feb 2012 A1
20120035576 Ichikawa et al. Feb 2012 A1
20120064792 Bauduin Mar 2012 A1
20120071848 Zhang et al. Mar 2012 A1
20120165771 Ruman et al. Jun 2012 A1
20120165776 McGregor et al. Jun 2012 A1
20120175056 Tsang et al. Jul 2012 A1
20120184934 Venturino et al. Jul 2012 A1
20120232514 Baker et al. Sep 2012 A1
20120238977 Oku et al. Sep 2012 A1
20120253306 Otsubo et al. Oct 2012 A1
20120256750 Novak Oct 2012 A1
20120271262 Venturino et al. Oct 2012 A1
20120312491 Jackels et al. Dec 2012 A1
20120316046 Jackels et al. Dec 2012 A1
20120316523 Hippe et al. Dec 2012 A1
20120316526 Rosati et al. Dec 2012 A1
20120316527 Rosati et al. Dec 2012 A1
20120316528 Kreuzer et al. Dec 2012 A1
20120316529 Kreuzer et al. Dec 2012 A1
20120323195 Ehrnsperger et al. Dec 2012 A1
20120323201 Bissah et al. Dec 2012 A1
20120323202 Bissah et al. Dec 2012 A1
20130035656 Moriya et al. Feb 2013 A1
20130041334 Prioleau et al. Feb 2013 A1
20130178811 Kikuchi et al. Jul 2013 A1
20130211354 Tsuji et al. Aug 2013 A1
20130218115 Katsuragawa et al. Aug 2013 A1
20130226119 Katsuragawa et al. Aug 2013 A1
20130226120 Van De Maele Aug 2013 A1
20140005622 Wirtz et al. Jan 2014 A1
20140005623 Wirtz et al. Jan 2014 A1
20140027066 Jackels et al. Jan 2014 A1
20140039437 Van De Maele Feb 2014 A1
20140045683 Loick et al. Feb 2014 A1
20140135726 Busam et al. May 2014 A1
20140142531 Sasayama et al. May 2014 A1
20140163500 Roe et al. Jun 2014 A1
20140163501 Ehrnsperger et al. Jun 2014 A1
20140163502 Arizti et al. Jun 2014 A1
20140163503 Arizti et al. Jun 2014 A1
20140163506 Roe et al. Jun 2014 A1
20140163511 Roe et al. Jun 2014 A1
20140171893 Lawson et al. Jun 2014 A1
20140318694 Blessing et al. Oct 2014 A1
20140324008 Hundorf et al. Oct 2014 A1
20140358100 Remmers et al. Dec 2014 A1
20150065986 Blessing et al. Mar 2015 A1
20150080837 Rosati et al. Mar 2015 A1
20150250662 Isele et al. Sep 2015 A1
Foreign Referenced Citations (536)
Number Date Country
2001370 Apr 1990 CA
2291997 Jun 2000 CA
2308961 Nov 2000 CA
2487027 Dec 2003 CA
2561521 Mar 2007 CA
2630713 Nov 2008 CA
2636673 Jan 2009 CA
2712563 Aug 2010 CA
2702001 Oct 2010 CA
1238171 Dec 1999 CN
2362468 Feb 2000 CN
1371671 Feb 2001 CN
2527254 Dec 2002 CN
2535020 Feb 2003 CN
2548609 May 2003 CN
1539391 Oct 2004 CN
1939242 Apr 2007 CN
101292930 Oct 2008 CN
201263750 Jul 2009 CN
201591689 Sep 2010 CN
201855366 Jun 2011 CN
3205931 Sep 1983 DE
3608114 Sep 1987 DE
19732499 Feb 1999 DE
10204937 Aug 2003 DE
083022 Jul 1983 EP
149880 Jul 1985 EP
0149880 Jul 1985 EP
203289 Dec 1986 EP
0203289 Dec 1986 EP
0206208 Dec 1986 EP
209561 Jan 1987 EP
297411 Jan 1989 EP
304957 Mar 1989 EP
374542 Jun 1990 EP
394274 Oct 1990 EP
0403832 Dec 1990 EP
481322 Apr 1992 EP
530438 Mar 1993 EP
547847 Jun 1993 EP
555346 Aug 1993 EP
559476 Sep 1993 EP
591647 Apr 1994 EP
597273 May 1994 EP
601610 Jun 1994 EP
632068 Jan 1995 EP
0640330 Mar 1995 EP
0668066 Sep 1995 EP
685214 Dec 1995 EP
687453 Dec 1995 EP
0689817 Jan 1996 EP
0691133 Jan 1996 EP
0394274 Jul 1996 EP
724418 Aug 1996 EP
725613 Aug 1996 EP
725615 Aug 1996 EP
725616 Aug 1996 EP
758543 Feb 1997 EP
0761194 Mar 1997 EP
769284 Apr 1997 EP
0781537 Jul 1997 EP
783877 Jul 1997 EP
787472 Aug 1997 EP
788874 Aug 1997 EP
796068 Sep 1997 EP
799004 Oct 1997 EP
822794 Feb 1998 EP
826351 Mar 1998 EP
844861 Jun 1998 EP
0737055 Aug 1998 EP
863733 Sep 1998 EP
971751 Sep 1998 EP
0875224 Nov 1998 EP
875224 Nov 1998 EP
880955 Dec 1998 EP
891758 Jan 1999 EP
0893115 Jan 1999 EP
0724418 Mar 1999 EP
0725613 Mar 1999 EP
0725616 Mar 1999 EP
904755 Mar 1999 EP
0916327 May 1999 EP
925769 Jun 1999 EP
933074 Aug 1999 EP
937736 Aug 1999 EP
941157 Sep 1999 EP
947549 Oct 1999 EP
951887 Oct 1999 EP
0951890 Oct 1999 EP
2295493 Oct 1999 EP
2305749 Oct 1999 EP
2330152 Oct 1999 EP
953326 Nov 1999 EP
0978263 Feb 2000 EP
985397 Mar 2000 EP
0778762 Apr 2000 EP
1005847 Jun 2000 EP
1008333 Jun 2000 EP
1013252 Jun 2000 EP
1018999 Jul 2000 EP
1019002 Jul 2000 EP
1019003 Jul 2000 EP
1022008 Jul 2000 EP
1023884 Aug 2000 EP
1053729 Nov 2000 EP
1059072 Dec 2000 EP
1063954 Jan 2001 EP
1071388 Jan 2001 EP
1078618 Feb 2001 EP
1088537 Apr 2001 EP
0796068 May 2001 EP
752892 Jul 2001 EP
1116479 Jul 2001 EP
0790839 Aug 2001 EP
1132069 Sep 2001 EP
1173128 Jan 2002 EP
1175194 Jan 2002 EP
1184018 Mar 2002 EP
1192312 Apr 2002 EP
1196122 Apr 2002 EP
1199059 Apr 2002 EP
1199327 Apr 2002 EP
1208824 May 2002 EP
0793469 Jun 2002 EP
1210925 Jun 2002 EP
1224922 Jul 2002 EP
1225857 Jul 2002 EP
1253231 Oct 2002 EP
1262531 Dec 2002 EP
1263374 Dec 2002 EP
0737056 Jan 2003 EP
1275358 Jan 2003 EP
1275361 Jan 2003 EP
1293187 Mar 2003 EP
1304986 May 2003 EP
1332742 Aug 2003 EP
1339368 Sep 2003 EP
1374817 Jan 2004 EP
1388334 Feb 2004 EP
1402863 Mar 2004 EP
962208 Aug 2004 EP
1447067 Aug 2004 EP
1447606 Aug 2004 EP
1460987 Sep 2004 EP
963749 Nov 2004 EP
1495739 Jan 2005 EP
1524955 Apr 2005 EP
1920743 Apr 2005 EP
1541103 Jun 2005 EP
1551344 Jul 2005 EP
1586289 Oct 2005 EP
1588723 Oct 2005 EP
1605882 Dec 2005 EP
1609448 Dec 2005 EP
1621166 Feb 2006 EP
1621167 Feb 2006 EP
1632206 Mar 2006 EP
1642556 Apr 2006 EP
1403419 May 2006 EP
1656162 May 2006 EP
1669046 Jun 2006 EP
1688114 Aug 2006 EP
2314265 Aug 2006 EP
1723939 Nov 2006 EP
1738727 Jan 2007 EP
1754461 Feb 2007 EP
1787611 May 2007 EP
1813238 Aug 2007 EP
2008626 Dec 2008 EP
2022452 Feb 2009 EP
2055279 May 2009 EP
2093049 Aug 2009 EP
2130522 Dec 2009 EP
1621165 Apr 2010 EP
2444046 Apr 2012 EP
2532328 Dec 2012 EP
2532329 Dec 2012 EP
2532332 Dec 2012 EP
2679210 Jan 2014 EP
2740449 Jun 2014 EP
2740450 Jun 2014 EP
2740452 Jun 2014 EP
2213491 Aug 2004 ES
2566631 Jan 1986 FR
2583377 Dec 1986 FR
2612770 Sep 1988 FR
2810234 Dec 2001 FR
1333081 Aug 1971 GB
1307441 Feb 1973 GB
1513055 Jun 1978 GB
2101468 Jan 1983 GB
2170108 Jul 1986 GB
2262873 Jul 1993 GB
2288540 Jun 1994 GB
2354449 Mar 2001 GB
2452260 Oct 2007 GB
851769 Nov 1985 GR
0984KOL1999 Oct 2005 IN
212479 Mar 2007 IN
208543 Aug 2007 IN
0980MUM2009 Jun 2009 IN
5572928 May 1980 JP
598322 Jan 1984 JP
630148323 Sep 1988 JP
2107250 Apr 1990 JP
03224481 Oct 1991 JP
04122256 Apr 1992 JP
04341368 Nov 1992 JP
06191505 Jul 1994 JP
06269475 Sep 1994 JP
07124193 May 1995 JP
08215629 Aug 1996 JP
10328232 Dec 1998 JP
11033056 Feb 1999 JP
11318980 Nov 1999 JP
11320742 Nov 1999 JP
2000232985 Aug 2000 JP
2000238161 Sep 2000 JP
2001037810 Feb 2001 JP
2001046435 Feb 2001 JP
2001120597 May 2001 JP
2001158074 Jun 2001 JP
2001178768 Jul 2001 JP
2001198157 Jul 2001 JP
2001224626 Aug 2001 JP
2001277394 Oct 2001 JP
03420481 Nov 2001 JP
2001321397 Nov 2001 JP
2001353174 Dec 2001 JP
2002052042 Feb 2002 JP
2002065718 Mar 2002 JP
2002113800 Apr 2002 JP
2002165832 Jun 2002 JP
2002165836 Jun 2002 JP
2002178429 Jun 2002 JP
2002272769 Sep 2002 JP
2002320641 Nov 2002 JP
2002325792 Nov 2002 JP
2002325799 Nov 2002 JP
2002369841 Dec 2002 JP
2003126140 May 2003 JP
2003153955 May 2003 JP
2003265523 Sep 2003 JP
2003265524 Sep 2003 JP
2003275237 Sep 2003 JP
2004089269 Mar 2004 JP
03566012 Jun 2004 JP
03568146 Jun 2004 JP
03616077 Nov 2004 JP
2004337314 Dec 2004 JP
2004337385 Dec 2004 JP
2004350864 Dec 2004 JP
03640475 Jan 2005 JP
2005000312 Jan 2005 JP
03660816 Mar 2005 JP
03676219 May 2005 JP
03688403 Jun 2005 JP
03705943 Aug 2005 JP
03719819 Sep 2005 JP
03724963 Sep 2005 JP
03725008 Sep 2005 JP
03737376 Nov 2005 JP
2006014792 Jan 2006 JP
03781617 Mar 2006 JP
2006110329 Apr 2006 JP
2006513824 Apr 2006 JP
03801449 May 2006 JP
2006116036 May 2006 JP
03850102 Sep 2006 JP
03850207 Sep 2006 JP
03856941 Sep 2006 JP
03868628 Oct 2006 JP
03874499 Nov 2006 JP
03877702 Nov 2006 JP
2006325639 Dec 2006 JP
2006346021 Dec 2006 JP
03904356 Jan 2007 JP
2007007455 Jan 2007 JP
2007007456 Jan 2007 JP
03926042 Mar 2007 JP
03934855 Mar 2007 JP
2007089906 Apr 2007 JP
2007105198 Apr 2007 JP
2007152033 Jun 2007 JP
03986210 Jul 2007 JP
03986222 Jul 2007 JP
2007167453 Jul 2007 JP
2007175515 Jul 2007 JP
2007195665 Aug 2007 JP
2007267763 Oct 2007 JP
2007275491 Oct 2007 JP
04035341 Nov 2007 JP
04058281 Dec 2007 JP
04061086 Dec 2007 JP
04092319 Mar 2008 JP
2008080150 Apr 2008 JP
2008093289 Apr 2008 JP
04124322 May 2008 JP
2008119081 May 2008 JP
2008136739 Jun 2008 JP
2008136877 Jun 2008 JP
04148594 Jul 2008 JP
04148620 Jul 2008 JP
2008154606 Jul 2008 JP
04162609 Aug 2008 JP
04162637 Aug 2008 JP
04166923 Aug 2008 JP
04167406 Aug 2008 JP
04173723 Aug 2008 JP
04190675 Sep 2008 JP
04190693 Sep 2008 JP
04208338 Oct 2008 JP
2008246089 Oct 2008 JP
4177770 Nov 2008 JP
04230971 Dec 2008 JP
2008295475 Dec 2008 JP
2008295713 Dec 2008 JP
04261593 Feb 2009 JP
2009112590 May 2009 JP
04322228 Jun 2009 JP
2009136601 Jun 2009 JP
2009142401 Jul 2009 JP
2009201878 Sep 2009 JP
04392936 Oct 2009 JP
2009232987 Oct 2009 JP
2009261777 Nov 2009 JP
2009291473 Dec 2009 JP
2009297048 Dec 2009 JP
2010017342 Jan 2010 JP
04458702 Feb 2010 JP
04459013 Feb 2010 JP
2010022560 Feb 2010 JP
04481325 Mar 2010 JP
2010051654 Mar 2010 JP
2010063814 Mar 2010 JP
2010063944 Mar 2010 JP
04492957 Apr 2010 JP
2010068954 Apr 2010 JP
2010075462 Apr 2010 JP
2010082059 Apr 2010 JP
2010104545 May 2010 JP
2010104547 May 2010 JP
2010110535 May 2010 JP
2010119454 Jun 2010 JP
2010119605 Jun 2010 JP
2010119743 Jun 2010 JP
2010131131 Jun 2010 JP
2010131132 Jun 2010 JP
2010131206 Jun 2010 JP
2010131297 Jun 2010 JP
2010136917 Jun 2010 JP
2010136973 Jun 2010 JP
04540563 Jul 2010 JP
04587947 Sep 2010 JP
2010194124 Sep 2010 JP
2010201093 Sep 2010 JP
2010221067 Oct 2010 JP
4577766 Nov 2010 JP
04620299 Nov 2010 JP
04627472 Nov 2010 JP
04627473 Nov 2010 JP
04638087 Dec 2010 JP
04652626 Dec 2010 JP
2010273842 Dec 2010 JP
2010284418 Dec 2010 JP
2011000480 Jan 2011 JP
2011030700 Feb 2011 JP
04693574 Mar 2011 JP
2011067484 Apr 2011 JP
2011072720 Apr 2011 JP
2011104014 Jun 2011 JP
2011104122 Jun 2011 JP
2011120661 Jun 2011 JP
2011125360 Jun 2011 JP
2011125537 Jun 2011 JP
04776516 Jul 2011 JP
2011130797 Jul 2011 JP
2011130799 Jul 2011 JP
2011156032 Aug 2011 JP
2011156070 Aug 2011 JP
2011156254 Aug 2011 JP
04824882 Sep 2011 JP
4850272 Oct 2011 JP
04855533 Nov 2011 JP
2011239858 Dec 2011 JP
04931572 Feb 2012 JP
04937225 Mar 2012 JP
04953618 Mar 2012 JP
04969437 Apr 2012 JP
04969640 Apr 2012 JP
4971491 Apr 2012 JP
04974524 Apr 2012 JP
04979780 Apr 2012 JP
05016020 Jun 2012 JP
05027364 Jun 2012 JP
05031082 Jul 2012 JP
05042351 Jul 2012 JP
05043569 Jul 2012 JP
05043591 Jul 2012 JP
05046488 Jul 2012 JP
2012125452 Jul 2012 JP
2012125625 Jul 2012 JP
05053765 Aug 2012 JP
05070275 Aug 2012 JP
05079931 Sep 2012 JP
05080189 Sep 2012 JP
05084442 Sep 2012 JP
05084476 Sep 2012 JP
5085770 Sep 2012 JP
05089269 Sep 2012 JP
05113146 Oct 2012 JP
05129536 Nov 2012 JP
05105884 Dec 2012 JP
5715806 May 2015 JP
20010005620 Jan 2001 KR
20020035634 May 2002 KR
20080028771 Apr 2008 KR
9400916 Mar 1994 SE
9704893 Dec 1997 SE
WO9015830 Dec 1990 WO
WO9219198 Nov 1992 WO
WO9321237 Oct 1993 WO
WO9321879 Nov 1993 WO
WO9510996 Apr 1995 WO
WO9511652 May 1995 WO
WO9514453 Jun 1995 WO
WO9515139 Jun 1995 WO
WO9516424 Jun 1995 WO
WO9516746 Jun 1995 WO
WO9519753 Jul 1995 WO
WO9521596 Aug 1995 WO
WO9524173 Sep 1995 WO
WO9526209 Oct 1995 WO
WO9529657 Nov 1995 WO
WO9532698 Dec 1995 WO
WO9534329 Dec 1995 WO
WO9616624 Jun 1996 WO
WO9619173 Jun 1996 WO
WO96029967 Oct 1996 WO
WO9711659 Apr 1997 WO
WO9717922 May 1997 WO
WO9816179 Apr 1998 WO
WO9816180 Apr 1998 WO
WO9843684 Oct 1998 WO
WO9913813 Mar 1999 WO
WO9934841 Jul 1999 WO
WO9951178 Oct 1999 WO
WO200000235 Jan 2000 WO
WO200032145 Jun 2000 WO
WO200059430 Oct 2000 WO
WO0115647 Mar 2001 WO
WO200126596 Apr 2001 WO
WO200207663 Jan 2002 WO
WO200232962 Apr 2002 WO
WO02064877 Aug 2002 WO
WO2002067809 Sep 2002 WO
WO2003009794 Feb 2003 WO
WO2003039402 May 2003 WO
WO2003053297 Jul 2003 WO
WO03079946 Oct 2003 WO
WO03101622 Dec 2003 WO
WO2003105738 Dec 2003 WO
WO2004021946 Mar 2004 WO
WO2004049995 Jun 2004 WO
WO2004071539 Aug 2004 WO
WO2004084784 Oct 2004 WO
WO2004105664 Dec 2004 WO
WO2005018694 Mar 2005 WO
WO2005087164 Sep 2005 WO
WO2006104024 May 2006 WO
WO2006059922 Jun 2006 WO
WO2006062258 Jun 2006 WO
WO2006066029 Jun 2006 WO
WO2006083584 Aug 2006 WO
WO2006134904 Dec 2006 WO
WO2006134906 Dec 2006 WO
WO2007000315 Jan 2007 WO
WO2007046052 Apr 2007 WO
WO2007047598 Apr 2007 WO
WO2007049725 May 2007 WO
WO2007061035 May 2007 WO
WO2007142145 Dec 2007 WO
WO2007148502 Dec 2007 WO
WO2008018922 Feb 2008 WO
WO2008065945 Jun 2008 WO
WO2008146749 Dec 2008 WO
WO2008155699 Dec 2008 WO
WO2009004941 Jan 2009 WO
WO2009005431 Jan 2009 WO
WO2009139248 Jan 2009 WO
WO2009139255 Jan 2009 WO
WO2009041223 Apr 2009 WO
WO2009096108 Aug 2009 WO
WO2009107435 Sep 2009 WO
WO2009122830 Oct 2009 WO
WO2009152018 Dec 2009 WO
WO2009155264 Dec 2009 WO
WO2009155265 Dec 2009 WO
WO2010071508 Jun 2010 WO
WO2010074319 Jul 2010 WO
WO2010107096 Sep 2010 WO
WO2010114052 Oct 2010 WO
WO2010117015 Oct 2010 WO
WO2010118272 Oct 2010 WO
WO201153044 May 2011 WO
WO2011118725 Sep 2011 WO
WO2011118842 Sep 2011 WO
WO2011145653 Nov 2011 WO
WO2011150955 Dec 2011 WO
WO2011163582 Dec 2011 WO
WO2012002252 Jan 2012 WO
WO2012014436 Feb 2012 WO
WO2012042908 Apr 2012 WO
WO2012043077 Apr 2012 WO
WO2012043078 Apr 2012 WO
WO2012052172 Apr 2012 WO
WO2012043082 May 2012 WO
WO2012067216 May 2012 WO
WO2012073499 Jun 2012 WO
WO2012074466 Jun 2012 WO
WO201291016 Jul 2012 WO
WO2012090508 Jul 2012 WO
WO2012101934 Aug 2012 WO
WO2012102034 Aug 2012 WO
WO2012117824 Sep 2012 WO
WO2012132460 Oct 2012 WO
WO2012170778 Dec 2012 WO
WO2012170779 Dec 2012 WO
WO2012170781 Dec 2012 WO
WO2012170808 Dec 2012 WO
WO2012174026 Dec 2012 WO
WO2013001788 Jan 2013 WO
WO2013046701 Apr 2013 WO
WO2013060733 May 2013 WO
WO2014073636 May 2014 WO
WO2014078247 May 2014 WO
Non-Patent Literature Citations (1)
Entry
International Search Report, PCT/US2016/022440, dated Jun. 23, 2016, 13 pages.
Related Publications (1)
Number Date Country
20160270986 A1 Sep 2016 US
Provisional Applications (2)
Number Date Country
62158009 May 2015 US
62133572 Mar 2015 US